Parallel Programming Using MPI

Short Course on HPC
215t January 2020

Aditya Krishna Swamy

adityaks(@iisc.ac.in
SERC, Indian Institute of Science

mailto:adityaks@iisc.ac.in

What 1s MPI?

MPI stands for Message Passing Interface

It 1s a message-passing specification, a standard, for the vendors to
implement

In practice, MPI is a library consisting of C functions and Fortran
subroutines (Fortran) used for exchanging data between processes

An MPI library exists on ALL parallel computing facilities so it 1s highly
portable

Also available for Python (mpi4py.scipy.org), R (Rmpi)

Why use MPI?

* General
 MPI-1°92-°94, MPI-2 ~2008, MPI-3 2012. Has been around for ~25 years
* Widely used parallel model
« Libraries and algorithms readily available
* Very scalable: 1 ~ 300,000 cores

« Portable
» Works well with Hybrid models (MPI+X. X=OpenMP, CUDA, OpenACC,
OpenCL...)

* Your problem
« Want to speed up your calculation
« Want to scale up your problem size
* Your problem size 1s too large for a single PC/Workstation

The reason for disruption 1015 -> 1018 FLOPSFLOPS

a0 # of transistors (000)
Dual-Core Itanium 2 = /
100,000
- = o
Intel CPU Trends 4
{sources: Intel, Wikipedia, K. Olukotun} .-
.00,000
‘ (]
10,000 ' |
| k speed (Mhz)
|
1,000 L E_B_ | ‘
% ©
BEE - - - Power (W)
A
100 ‘ /_;_A S N—
Py ‘ Adad :
@ e A
} e S % .o. 2 Al
i a4 ‘Perficlock (ILP)
/i oo 2 st -
. A a o
- o o L a
1 4 : o ® ®m Transistors (000) -
P P ® Clock Speed (MHz)
® 0o O > A Power (W)
® Perf/Clock (ILP) —
(o] { | ’~ \\
1970 1975 1980 1985 1990 1995 2000 2005 2010 t\(l)
\%—

) EXASCALE
COMPUTING
PROJECT

From Giga to Exa, via Tera & Peta*

1000
Exa
2 Peta . A
g 100 I 1.5x from transistor
E) 8x from transistor 670x from parallelism
§ Tera / 128x from parallelism
9 Illllllllllllllllllllll
2 /f
o
|_
o 10 /
=
© /
cqu , 32x from transistor
Giga / 32x from parallelism
1 =
1986 1995 2004 2013 2022

*S. Borkar, Intel

Performance from parallelism

l:\(l_\\ D EEgE

MPI Implementations

- MPICH
* ANL, (foss) mpich.org/
o Intel, (Paid. 1-year free student license, IISc campus lisense)
 Cray
- IBM
* OpenMPI, (foss)
* open-mpi.org/
« MVAPICH (free, BSD)

e mvapich.cse.ohio-state.edu/

MPI

Context: Distributed memory parallel

computers
— Each processor has its own memory and = -
cannot access the memory of other
processors orocessor

node

- @

process

— A copy of the same executable runs as
MPI process (on each processor core)

— All variables are private to each process = - — Q
— Any data to be shared must be explicitly process
transmitted from one to another node processer

Cluster - 90°s

Modern HPC Facilities

node

node

process

process

ath Gen
Inter” Core™ i7

process

12 cores

process
e s
process
-
process
2 sockets 12 cores

MPI only

node

2 sockets 12 cores

s I

4th Gen

node

2 sockets 12 cores

process thread thread thread

Hybrid

OS/Software

Process

Thread(s)

Hardware

core
“Processor/CPU”
Node

Blade
Cabinet

Terminology

Independent stream of instructions.
OS provides dedicated resources

Created by process
Shares resources with process/fellow threads

“Instruction stream processing unit”
Single die that sits on a “Socket” (has 1 or more cores)

~ “mother board”. With 1 or more sockets

1 or more Nodes

Several blades

Basic MPI

* Basic functionality in a parallel program

* Start processes

* Send messages

* recelve messages
e Synchronize

A stmple program in C

#include <stdio>
#include <stdlib> Any PC
$./a.out

int main(int argc, char *argv[])
{

Hello
printf (“Hello \n”)

return 0;

}

A stmple MPI program in C

#include <stdio> .
#include <stdlib> Typlcal CIUSter
#include “mpi.h" $ mpirun -n 8 ./a.out

int main(int argc, char *argv[])

{
int nproc, myrank; SahasraT

$ aprun -n 8 ./a.out
MPI Init(&argc,&argv) ;

MPI Comm size (MPI_COMM WORLD, &nproc) ;

MPI Comm rank (MPI_COMM WORLD, smyrank) ; Hello from O.

_ . . 3 Hello from 1.
printf (“Hello from %d. \n” ,myrank) Hello from 2.

/* Finalize */ Hello from 3.
MPI Finalize(); Hello from 4.
return 0; Hello from 5.
} Hello from 6.

Hello from 7.

Header file

* Defines MPI-related parameters and functions

#include "mpi.h" < * Must be included 1n all routines calling MPI functions
int main(int argc, emar *argv[]| * Can also use include file:

{ include mpif.h

int nproc, myrank;
/* Initialize MPI */
MPI Init(&argc, &argv);
/* Get the number of processes */
MPI Comm size (MPI_COMM WORLD, &nproc) ;
/* Get my process number (rank) */
MPI Comm rank (MPI_COMM WORLD, &myrank) ;

Do work and make message passing calls..

/* Finalize */
MPI Finalize();
return O;

}

Initialization

#include "mpi.h"
int main(int argc, char *argv[])

{

int nproc, myrank; » Must be called at the beginning of the code

/* Initialize MPI */ before any other calls to MPI functions
MPI Init(&argc, &argv);

/* Get the number of processes +,|* Setsup the communication channels between the

MPI_Comm size (MPI_COMM WORLD,s&nf processes and gives each one a rank.
/* Get my process number (rank) */

MPI Comm rank (MPI_COMM WORLD, &myrank) ;

Do work and make message passing calls..

/* Finalize */
MPI Finalize();
return O;

}

How many processes do we have?

* Returns the number of processes available under
MPI_ COMM_WORLD communicator
 This is the number used on the mpiexec (or mpirun)
command:
mpiexec —n nproc ./a.out

MPI Init(&argc,&) ;
/* Get the number o rocesses */

MPI Comm size (MPI_COMM WORLD, &nproc) ;
/* Get my process number (rank) */
MPI Comm rank (MPI_COMM WORLD, &myrank) ;

Do work and make message passing calls..

/* Finalize */
MPI Finalize();
return O;

}

What 1s my rank?

#include "mpi.h"

ale ra \

int main(int *
{ * Get my rank among all of the nproc processes under

int nproc, 1 MPL COMM WORLD
/* Initialife This is a unique number that can be used to distinguish this
MPI_Init({ process from the others

/* Get the
MPI Comm size (MPI | COMM WORLD, &npiibz;
/* Get my process number (rank) */

MPI Comm rank (MPI_COMM WORLD, &myrank) ;

Do work and make message passing calls..

/* Finalize */
MPI Finalize();
return O;

}

Termination

#include "mpi.h"
int main(int argc, char *argv[])
{
int nproc, myrank;
/* Initialize MPI */
MPI Init(&argc, &argv);
/* Get the number of processes */
MPI Comm size (MPI_COMM WORLD, &nproc) ;
/* Get my process number (rank) */
MPI Comm rank (MPI_COMM WORLD, &myrank) ;

Do work and make message passing calls..

/* Finalize */ » Must be called at the end of the properly
MPI_Finalize(); < ——— close all communication channels
return 0; * No more MPI calls after finalize

}

MPI Communicators

An MPI Function: MPI Comm_size(MPI COMM_ WORLD, &nproc);
MPI_COMM_WORLD - communicator

A communicator is a group of processes
— Each process has a unique rank within a specific communicator

— Rank starts from 0 and has a maximum value of (nproc-1). Fortran programmers
beware!

— Internal mapping of processes to processing units

— Necessary to specify communicator when initiating a communication by calling an MPI
function or routine.

Default communicator MPI COMM WORLD, which contains all available
processes.

Several communicators can coexist

— A process can belong to different communicators at the same time, but has a unique
rank in each communicator

MPI_COMM_WORLD

Y comm

10

11

12

13

14

15

A sample MPI program in Fortran 90

Program mpi_ code
! Load MPI definitions
use mpi (or include mpif.h)

! Tnitialize MPI
call MPI Init(ierr)

! Get the number of processes
call MPI Comm size (MPI_COMM WORLD,nproc,ierr)

! Get my process number (rank)
call MPI Comm rank (MPI_COMM WORLD,myrank,ierr)

Do work and make message passing calls..

! Finalize
call MPI Finalize (ierr)

end program mpi_code

When hello-mpi1 runs

#include “mpi.h"
int main(int argc, char *argv[]){

int nproc, myrank;
MPI_Init(&arge,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&nproc);
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
printf(“Hello from %d. \n”,myrank)
MPI_Finalize();

return 0;

Any Cluster

#include “mpi.h"
int main(int argc, char *argv[]){

int nproc, myrank;
MPI_Init(&arge,&argv);
MPI Comm_size(MPI COMM_WORLD,&nproc);
MPI Comm_rank(MPI COMM_WORLD,&myrank);
printf(“Hello from %d. \n”,myrank)
MPI_Finalize();

return 0;

$ mpirun -n 8 ./a.out
SahasraT
$ aprun -n 8 ./a.out

Hello from O.

#include “mpi.h"
int main(int argc, char *argv[]){

int nproc, myrank;
MPI_Init(&arge,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&nproc);
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
printf(“Hello from %d. \n”,myrank)
MPI_Finalize();

return 0;

Hello from 4.
< Hello from 2.
Hello from 1.
Hello from 3.

Hello from 6.

#include “mpi.h"
int main(int argc, char *argv[]){

int nproc, myrank;
MPI_Init(&arge,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&nproc);
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
printf(“Hello from %d. \n”,myrank)
MPI_Finalize();

return 0;

Hello from 7.
Hello from 5.

#include “mpi.h"
int main(int argc, char *argv[]){

int nproc, myrank;
MPI_Init(&argce,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&nproc);
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
printf(“Hello from %d. \n”,myrank)
MPI_Finalize();

return 0;

#include “mpi.h"
int main(int arge, char *argv[]){

int nproc, myrank;
MPI_Init(&arge,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&nproc);
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
printf(“Hello from %d. \n”,myrank)
MPI_Finalize();

return 0;

}

#include “mpi.h"
int main(int argc, char *argv[]){

int nproc, myrank;
MPI_Init(&arge,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&nproc);
MPI_Comm_rank(MPI_ COMM_WORLD,&myrank);
printf(“Hello from %d. \n”,myrank)
MPI_Finalize();

return 0;

#include “mpi.h"
int main(int arge, char *argv[]){

int nproc, myrank;
MPI_Init(&arge,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&nproc);
MPI_Comm_rank(MPI_ COMM_WORLD,&myrank);
printf(“Hello from %d. \n”,myrank)
MPI_Finalize();

return 0;

How much do I need to know?

MPI is large: MPI-1 has over 125 functions/subroutines. MPI-3 has over
400

MPI is small: Can actually most work with about 6 functions!

Collective functions are EXTREMELY useful since they simplify the
coding and vendors optimize them for their interconnect hardware

One can access flexibility when it 1s required.
One need not master all parts of MPI to use it.

Do I need a Supercomputer?

 To learn MPI and develop MPI application - No. Your laptop/PC will suffice.
« Any number of MPI processes can be started even on a laptop
« Same accuracy, but not efficient
 Test your real application - Eaptep, PC, Workstation, Cluster, Supercomputer
* Production runs - Eaptep, PC, Workstation, Cluster, Supercomputer

ded?

Domain Decomposition

1cation nee

Is commun

SO

RO
AR
LS

1011S

=
<
p—
)
=
<
O
i)
O
N
S
<
o v—
S S R R
=1y AR
S
=
i)
o
<=
N
=
o)
O
N
)
>
p—
O
o
o p—

Most w

Is communication needed?
“Coloring”

« Useful for particle simulations

)
o @ °, 0% ¢ ©O 4
O .o °e ® O
O O
® ¢ 0o, ©%e,
O
© @ ¢ o 0 o .".
O
O g’ O © @ O.o.o
° O © o e
o o ° o @ o

MPI Function Categories

» MPI calls to exchange data

* Point-to-Point communications

— Only 2 processes exchange data
— It is the basic operation of all MPI calls

* Collective communications
— A single call handles the communication between all the processes in a communicator
— There are 2 types of collective communications
* Data movement (e.g. MPI Bcast)
« Reduction (e.g. MPI_Reduce)
* Synchronization:
« MPI_Barrier
« MPI Wait

Send Message: MPI Send

MPI Send(&numToSend,l1,MPI INT,0,10,MPI COMM WORLD) ;

&SnumToSend Pointer to whatever information to send. In this case, an integer
1 counts to send (the number of items). 1 in this example.
If sending a vector of 12 int's, count is 12
MPI INT the type of object we are sending. In this case, an integer
0 Destination of the message. In this example, Rank 0
10 Message Tag. Useful to identify/sort messages

MPI COMM WORLD We don’t have any subsets yet. We just choose the “default”

Point to point: 2 processes at a time

MPI Recv(recvbuf, count,datatype,source, tag,comm,status)
MPI Sendrecv (sendbuf, sendcount, sendtype,dest, sendtagqg,
recvbuf ,h recvcount, recvtype, source, recvtag,comm,status)

Datatypes are:

FORTRAN: MPI INTEGER, MPI REAL, MPI DOUBLE_ PRECISION,
MPI COMPLEX,MPI CHARACTER, MPI LOGICAL, etc..

C : MPI INT, MPI LONG, MPI SHORT, MPI FLOAT, MPI DOUBLE, etc..

Predefined Communicator: MPI COMM WORLD

Collective communication:
Broadcast

MPI Bcast (buffer,count,datatype,root,comm,ierr)

POl A B|C|D POl A|B|C|D

P1 Broadcast PIL|A|B|C|D
| >

P2 P2l A| B|C|D

P3 P3|A|B|C|D

* One process (called “root”) sends data to all the other processes in the same
communicator

* Must be called by ALL processes with the same arguments

MPI Gather (sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype,root,comm, ierr)

PO
P1
P2
P3

One root process collects data from all the other processes in the same communicator
Must be called by all the processes in the communicator with the same arguments

“sendcount” 1s the number of basic datatypes sent, not received (example above would
be sendcount = 1)

Collective communication:

Gather, Scatter

A

B Gather

C | <
D Scatter

PO
P1
P2
P3

A

B

C

D

Make sure that you have enough space in your receiving buffer!

Collective communication:
Gather to All

MPI Allgather (sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype,comm,info)

PO | A PO|A|B|C|D

P1| B Allgather PpP1|A|B | C| D
| >

P2| C P2lA|lB|lC|D

P3| D P3| A| B C|D

« All processes within a communicator collect data from each other and end up with the
same information

* Must be called by all the processes in the communicator with the same arguments
* Again, sendcount is the number of elements sent

Collective communication:
Reduction

MPI Reduce (sendbuf, recvbuf, count,datatype,op,root,comm,ierr)

PO A PO | A+B+C+D
P1| B Reduce (+) P1
| =
P2 | C P2
P3| D P3

* One root process collects data from all the other processes in the same communicator and
performs an operation on the received data

« C(Called by all the processes with the same arguments

e Operations are: MPI_SUM, MPI_ MIN, MPI MAX, MPI PROD, logical AND, OR,
XOR, and a few more

« User can define own operation with MPI_Op_create()

Collective communication:
Reduction to All

MPI Allreduce (sendbuf, recvbuf,6 count,datatype,op,comm, ierr)

PO| A PO | A+B+C+D
P1| B Allreduce (+) p1 | A+B+C+D
P2 | C | = P2 | A+B+C+D
P3| D P3 | A+B+C+D

« All processes within a communicator collect data from all the other processes and
performs an operation on the received data

« C(alled by all the processes with the same arguments
* Operations are the same as for MPI_Reduce

More MPI collective calls

One “root” process send a different piece of the data to each one of the other

Processes (inverse of gather)
MPI Scatter (sendbuf, sendcnt, sendtype, recvbuf, recvent,
recvtype,root,comm, ierr)

Each process performs a scatter operation, sending a distinct message to all

the processes in the group in order by index.
MPI Alltoall (sendbuf, sendcount, sendtype, recvbuf, recvent,
recvtype,comm, ierr)

Synchronization: When necessary, all the processes within a communicator can

be forced to wait for each other although this operation can be expensive
MPI Barrier (comm,ierr)

MPI Alltoall (sendbuf, sendcount, sendtype, recvbuf, recvent,
recvtype,comm, ierr)

MPI_AlltoAll

Combines multiple scatters:

PO |A0[A1A2 A3 A0 |BO (CO| DO

P1 (B0 |B1 B2 B3 All to All A1|B1|C1|D1

_->

P2 |co|c1|c2lc3 A2[B2 |c2 D2

p3 |D0|D1|D2D3 A3B3 |[C3 D3

This is essentially matrix transposition

MPI collective calls - Uneven sized chunks

SRR
AN
RS

J

J

U

()
...

X

¢
V) U7l

A

JIN

IWDN L[

s
:..

N T 711177
() ..III! VT 1IN T 17
.. N !..I -

Y
I q.

More MPI collective calls

 Non-uniform sized chunks

] fa A

Alltoalle‘>

* D ¢ p y ‘\ & ’ N
2 Vs oy N I
Allgathorv>
2 . y b \ g I

)|

How to time your MPI code

» Several possibilities but MPI provides an easy to use function called
“MPI_Wtime()”. It returns the number of seconds since an arbitrary point of time in
the past.

FORTRAN: double precision MPI WTIME ()
C: double MPI Wtime ()

starttime=MPI_ WTIME ()

.. program body ...
endtime=MPI_WTIME ()
elapsetime=endtime-starttime

Blocking communications

User mode Kernel mode . . .
o, » The call waits until the data transfer is
Y \ done
zmcess Callsend Subrout=™ 7T Copy data from — The sending process waits until all
f sendbuf to sysbuf
U] e ldat; toyth data are transferred to the system
:e;”m:mm send A\iﬁf at the receiving buffer (differences for eager vs
rendezvous protocols...)
— The receiving process waits until all
User mode Kernel mode data are transferred from the system
Call receive 74‘ Rﬁve I buffer to the receive buffer
Subroutine f sysbuyf at the sending
T Bl P * All collective communications are
Process Return from receive Aiﬂ Z? rom sysbu bl k
1 . e ocKiIn
Subroutine W j g

W ‘_/ sysbuf

recvbuf

Process
0

Process
1

User mode

Non-blocking

Kernel mode

M —~

Call send Subroutine

Return from send ‘(
Subroutine

1L

[

Copy data from
send‘ uf to sysbuf

Send/data to the
syshuf at the receiving
d

User mode

Kernel mode

Call receive Subroutina

A 4

Receive data from the

Return from receive
Subroutine

mn ~—

recvbuf

sysbyf at the sending
end 7

y data from sysbuf
¥ to recvbuf
7/

syshuf

Returns immediately after the
data transferred 1s initiated

Allows to overlap computation
with communication

Need to be careful though

— When send and receive buffers
are updated before the transfer
is over, the result will be wrong

Debugging tips

Use “unbuffered” writes to do “printf-debugging” and always write out the process
id:

C: fprintf (stderr,”%d: ..” ,myid,..);

Fortran: write(0,*)myid,’: ../

If the code detects an error and needs to terminate, use MPI_ABORT. The

errorcode is returned to the calling environment so it can be any number.
C: MPI Abort (MPI Comm comm, int errorcode);
Fortran: call MPI ABORT (comm, errorcode, ierr)

Use a parallel debugger such as Totalview or DDT

References

Keywords for search “mpi1”, or “mpi standard”, or “mpi tutorial”...
https://www.mpich.org/static/docs/latest/

http://www.mpi-forum.org (location of the MPI standard)
http://www.lInl.gov/computing/tutorials/mpi/

http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
https://bitbucket.org/VictorEijkhout/parallel-computing-book/src/default/

MPI on Linux clusters:
— MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/)

— Open MPI (http://www.open-mpi.org/)

https://www.mpich.org/static/docs/latest/
http://www.mpi-forum.org/
http://www.llnl.gov/computing/tutorials/mpi/
http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
https://bitbucket.org/VictorEijkhout/parallel-computing-book/src/default/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.open-mpi.org/

Example: calculating using numerical integration

#include <stdio.h>
#include <math.h>
int main(int argc, char *argv[])
{
int n, myid, numprocs, ij;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x;
FILE *ifp;

ifp = fopen("ex4.in","r");
fscanf(ifp,"%d",&n);

C version

printf("number of intervals = %d\n",n);

h =1
sum = 0.0;
for (i = 1; i <= n; i++) {
x = h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x*x));

.0 / (double) n;
.0

}

mypi = h * sum;

pi = mypi;

printf("pi is approximately %.16f, Error is %.16f\n",
pi, fabs(pi - PI25DT));

return 0;

#include "mpi.h"

#include <stdio.h>

#include <math.h>

int main(int argc, char *argv[])

{ .
int n, myid, numprocs, i, j, tag, my n; R t d t
double PI25DT = 3.141592653589793238462643; OO rea S lnpu
double mypi,pi,h,sum,x,pi frac,ttO,ttl,ttf;

IR e, and broadcast to

MPI Request request; 1]~

n=1;
tag = 1;

MPI Init(&argc,&argv);

MPI Comm size(MPI COMM WORLD, &numprocs) ;
MPI Comm_ rank(MPI_COMM WORLD, &myid) ;

tt0 = MPI Wtime();
if (myid == 0) {
ifp = fopen("ex4.in","r");
fscanf(ifp,"%d",&n);
fclose(ifp);
//printf ("number of intervals = %d\n",n);
}
/* Global communication. Process 0 "broadcasts" n to all other processes */
MPI Bcast(&n, 1, MPI_INT, O, MPI_COMM WORLD);

Each process calculates its section of the integral and adds up
results with MPI Reduce

h = 1.
sum = 0.
for (i = myid*n/numprocs+1l; i <= (myid+1l)*n/numprocs; i++) {
x = h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x*x));

0 / (double) n;
0;

}

mypi = h * sum;
pi = 0.; /* It is not necessary to set pi = 0 */

/* Global reduction. All processes send their value of mypi to process 0
and process 0 adds them up (MPI_SUM) */
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM WORLD);

ttf = MPI Wtime();
printf("myid=%d pi is approximately %.16f, Error is %.16f time = %10f\n",
myid, pi, fabs(pi - PI25DT), (ttf-tt0));

MPI Finalize();
return 0;

Thank you...

Non-blocking send and receive

Point to point:

MPI Isend (buf,count,datatype,dest,tag,comm,request,ierr)
MPI Irecv(buf,count,datatype, source, tag,comm,request,ierr)
The functions MPI_Wait and MPI_Test are used to complete a nonblocking communication
MPI Wait (request, status,ierr)
MPI Test (request, flag,status,ierr)
MPI_Wait returns when the operation identified by “request” is complete. This is a non-local operation.

MPI_Test returns “flag = true” if the operation identified by “request” is complete. Otherwise it returns
“flag = false”. This is a local operation.

MPI-3 standard introduces “non-blocking collective calls”

MPI + OpenMP

By default, MPI assumes no threaded execution.

MPI Init(int *argc, char ***argv) old.

MPI Init thread(int *argc,char ***argv,int required,
int *provided)

required = MPI Thread Support level

Levels of MPI Thread Support

Support Levels
MPI_THREAD SINGLE
MPI_ THREAD FUNNELED

MPI THREAD SERIALIZE

MPI THREAD MULTIPLE

Description
Only one thread will execute

Process may be multi-threaded, but only the main
thread will make MPI calls (calls are “funneled”
to main thread). *Default™

Process may be multi-threaded, and any thread
can make MPI calls, but threads cannot execute
MPI calls concurrently; they must take turns
(calls are “serialized”).

Multiple threads may call MPI, with no
restriction.

