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What is MPI?
• MPI stands for Message Passing Interface 
• It is a message-passing specification, a standard, for the vendors to 

implement 
• In practice, MPI is a library consisting of C functions and Fortran 

subroutines (Fortran) used for exchanging data between processes 
• An MPI library exists on ALL parallel computing facilities so it is highly 

portable 
• Also available for Python (mpi4py.scipy.org), R (Rmpi)



Why use MPI? 
• General 

• MPI-1 ’92-’94, MPI-2 ~2008, MPI-3 2012. Has been around for ~25 years 
• Widely used parallel model 
• Libraries and algorithms readily available 
• Very scalable: 1 ~ 300,000 cores 
• Portable 
• Works well with Hybrid models (MPI+X.  X=OpenMP, CUDA, OpenACC, 

OpenCL…) 
• Your problem 

• Want to speed up your calculation 
• Want to scale up your problem size 
• Your problem size is too large for a single PC/Workstation
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The reason for disruption 1015 -> 1018 FLOPSFLOPS
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From Giga to Exa, via Tera & Peta*
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1.5x from transistor 
670x from parallelism

Performance from parallelism
*S. Borkar, Intel



MPI Implementations
• MPICH 

• ANL, (foss) mpich.org/ 
• Intel, (Paid. 1-year free student license, IISc campus lisense) 
• Cray 
• IBM 

• OpenMPI, (foss)  
• open-mpi.org/ 

• MVAPICH (free, BSD) 
• mvapich.cse.ohio-state.edu/



MPI
Context:   Distributed memory parallel 
computers 

– Each processor has its own memory and 
cannot access the memory of other 
processors 

– A copy of the same executable runs as 
MPI process ( on each processor core) 

– All variables are private to each process 
– Any data to be shared must be explicitly 

transmitted from one to another 

Cluster - 90’s



Modern HPC Facilities

MPI only Hybrid



Terminology
OS/Software 

Hardware 

Process Independent stream of instructions. 
OS provides dedicated resources

Thread(s) Created by process 
Shares resources with process/fellow threads

core “instruction stream processing unit” 

“Processor/CPU” Single die that sits on a “Socket” (has 1 or more cores)

Node ~ “mother board”. With 1 or more sockets 

Blade 1 or more Nodes

Cabinet Several blades



Basic MPI
• Basic functionality in a parallel program 

• Start processes 
• Send messages 
• receive messages 
• Synchronize



A simple program in C
#include <stdio> 
#include <stdlib> 

int main( int argc, char *argv[] ) 
{ 

    printf(“Hello \n”) 

return 0; 
}

Any PC
$ ./a.out

Hello



A simple MPI program in C
#include <stdio> 
#include <stdlib> 
#include “mpi.h" 

int main( int argc, char *argv[] ) 
{ 
  int nproc, myrank; 
  
    MPI_Init(&argc,&argv); 
    MPI_Comm_size(MPI_COMM_WORLD,&nproc); 
    MPI_Comm_rank(MPI_COMM_WORLD,&myrank); 

    printf(“Hello from %d. \n”,myrank) 

  /* Finalize */ 
    MPI_Finalize(); 
 return 0; 
}

Typical Cluster
$ mpirun -n 8 ./a.out

SahasraT
$ aprun -n 8 ./a.out

Hello from 0. 
Hello from 1. 
Hello from 2. 
Hello from 3. 
Hello from 4. 
Hello from 5. 
Hello from 6. 
Hello from 7.



Header file
#include "mpi.h" 
int main( int argc, char *argv[] ) 
{ 
  int nproc, myrank; 
  /* Initialize MPI */ 
    MPI_Init(&argc,&argv); 
  /* Get the number of processes */  
    MPI_Comm_size(MPI_COMM_WORLD,&nproc); 
  /* Get my process number (rank) */ 
    MPI_Comm_rank(MPI_COMM_WORLD,&myrank); 

    Do work and make message passing calls… 

  /* Finalize */ 
    MPI_Finalize(); 
 return 0; 
}

• Defines MPI-related parameters and functions 
• Must be included in all routines calling MPI functions 
• Can also use include file: 
              include mpif.h



Initialization
#include "mpi.h" 
int main( int argc, char *argv[] ) 
{ 
  int nproc, myrank; 
  /* Initialize MPI */ 
    MPI_Init(&argc,&argv); 
  /* Get the number of processes */  
    MPI_Comm_size(MPI_COMM_WORLD,&nproc); 
  /* Get my process number (rank) */ 
    MPI_Comm_rank(MPI_COMM_WORLD,&myrank); 

    Do work and make message passing calls… 

  /* Finalize */ 
    MPI_Finalize(); 
 return 0; 
}

• Must be called at the beginning of the code 
before any other calls to MPI functions 

• Sets up the communication channels between the 
processes and gives each one a rank.



How many processes do we have?

#include "mpi.h" 
int main( int argc, char *argv[] ) 
{ 
  int nproc, myrank; 
  /* Initialize MPI */ 
    MPI_Init(&argc,&argv); 
  /* Get the number of processes */  
    MPI_Comm_size(MPI_COMM_WORLD,&nproc); 
  /* Get my process number (rank) */ 
    MPI_Comm_rank(MPI_COMM_WORLD,&myrank); 

    Do work and make message passing calls… 

  /* Finalize */ 
    MPI_Finalize(); 
 return 0; 
}

• Returns the number of processes available under 
MPI_COMM_WORLD communicator 

• This is the number used on the mpiexec (or mpirun) 
command: 

          mpiexec –n nproc ./a.out



What is my rank?

#include "mpi.h" 
int main( int argc, char *argv[] ) 
{ 
  int nproc, myrank; 
  /* Initialize MPI */ 
    MPI_Init(&argc,&argv); 
  /* Get the number of processes */  
    MPI_Comm_size(MPI_COMM_WORLD,&nproc); 
  /* Get my process number (rank) */ 
    MPI_Comm_rank(MPI_COMM_WORLD,&myrank); 

    Do work and make message passing calls… 

  /* Finalize */ 
    MPI_Finalize(); 
 return 0; 
}

• Get my rank among all of the nproc processes under 
MPI_COMM_WORLD 

• This is a unique number that can be used to distinguish this 
process from the others 



Termination

#include "mpi.h" 
int main( int argc, char *argv[] ) 
{ 
  int nproc, myrank; 
  /* Initialize MPI */ 
    MPI_Init(&argc,&argv); 
  /* Get the number of processes */  
    MPI_Comm_size(MPI_COMM_WORLD,&nproc); 
  /* Get my process number (rank) */ 
    MPI_Comm_rank(MPI_COMM_WORLD,&myrank); 

    Do work and make message passing calls… 

  /* Finalize */ 
    MPI_Finalize(); 
 return 0; 
}

• Must be called at the end of the properly 
close all communication channels 

• No more MPI calls after finalize



MPI Communicators
• An MPI Function: MPI_Comm_size(MPI_COMM_WORLD, &nproc);  
• MPI_COMM_WORLD - communicator 
• A communicator is a group of processes 

– Each process has a unique rank within a specific communicator  
– Rank starts from 0 and has a maximum value of (nproc-1). Fortran programmers 

beware! 
– Internal mapping of processes to processing units 
– Necessary to specify communicator when initiating a communication by calling an MPI 

function or routine. 
• Default communicator MPI_COMM_WORLD, which contains all available 

processes. 
• Several communicators can coexist 

– A process can belong to different communicators at the same time, but has a unique 
rank in each communicator



0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

1

2

3

Y_comm• MPI_COMM_WORLD

0

1

2

3

0

1

2

3

0

1

2

3



A sample MPI program in Fortran 90
Program mpi_code 
  ! Load MPI definitions 
    use mpi (or include mpif.h) 

  ! Initialize MPI 
    call MPI_Init(ierr) 

  ! Get the number of processes  
    call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr) 

  ! Get my process number (rank) 
    call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr) 

    Do work and make message passing calls… 

  ! Finalize 
    call MPI_Finalize(ierr) 

end program mpi_code



When hello-mpi runs

Any Cluster
$ mpirun -n 8 ./a.out
SahasraT
$ aprun -n 8 ./a.out

Hello from 0. 
Hello from 4. 
Hello from 2. 
Hello from 1. 
Hello from 3. 
Hello from 6. 
Hello from 7.
Hello from 5. 

#include “mpi.h" 
int main( int argc, char *argv[] ){ 

  int nproc, myrank;  
    MPI_Init(&argc,&argv); 
    MPI_Comm_size(MPI_COMM_WORLD,&nproc); 
    MPI_Comm_rank(MPI_COMM_WORLD,&myrank); 
    printf(“Hello from %d. \n”,myrank) 
    MPI_Finalize(); 
 return 0; 
}

#include “mpi.h" 
int main( int argc, char *argv[] ){ 

  int nproc, myrank;  
    MPI_Init(&argc,&argv); 
    MPI_Comm_size(MPI_COMM_WORLD,&nproc); 
    MPI_Comm_rank(MPI_COMM_WORLD,&myrank); 
    printf(“Hello from %d. \n”,myrank) 
    MPI_Finalize(); 
 return 0; 
}

#include “mpi.h" 
int main( int argc, char *argv[] ){ 

  int nproc, myrank;  
    MPI_Init(&argc,&argv); 
    MPI_Comm_size(MPI_COMM_WORLD,&nproc); 
    MPI_Comm_rank(MPI_COMM_WORLD,&myrank); 
    printf(“Hello from %d. \n”,myrank) 
    MPI_Finalize(); 
 return 0; 
}

#include “mpi.h" 
int main( int argc, char *argv[] ){ 

  int nproc, myrank;  
    MPI_Init(&argc,&argv); 
    MPI_Comm_size(MPI_COMM_WORLD,&nproc); 
    MPI_Comm_rank(MPI_COMM_WORLD,&myrank); 
    printf(“Hello from %d. \n”,myrank) 
    MPI_Finalize(); 
 return 0; 
}

#include “mpi.h" 
int main( int argc, char *argv[] ){ 

  int nproc, myrank;  
    MPI_Init(&argc,&argv); 
    MPI_Comm_size(MPI_COMM_WORLD,&nproc); 
    MPI_Comm_rank(MPI_COMM_WORLD,&myrank); 
    printf(“Hello from %d. \n”,myrank) 
    MPI_Finalize(); 
 return 0; 
}

#include “mpi.h" 
int main( int argc, char *argv[] ){ 

  int nproc, myrank;  
    MPI_Init(&argc,&argv); 
    MPI_Comm_size(MPI_COMM_WORLD,&nproc); 
    MPI_Comm_rank(MPI_COMM_WORLD,&myrank); 
    printf(“Hello from %d. \n”,myrank) 
    MPI_Finalize(); 
 return 0; 
}

#include “mpi.h" 
int main( int argc, char *argv[] ){ 

  int nproc, myrank;  
    MPI_Init(&argc,&argv); 
    MPI_Comm_size(MPI_COMM_WORLD,&nproc); 
    MPI_Comm_rank(MPI_COMM_WORLD,&myrank); 
    printf(“Hello from %d. \n”,myrank) 
    MPI_Finalize(); 
 return 0; 
}

#include “mpi.h" 
int main( int argc, char *argv[] ){ 

  int nproc, myrank;  
    MPI_Init(&argc,&argv); 
    MPI_Comm_size(MPI_COMM_WORLD,&nproc); 
    MPI_Comm_rank(MPI_COMM_WORLD,&myrank); 
    printf(“Hello from %d. \n”,myrank) 
    MPI_Finalize(); 
 return 0; 
}



How much do I need to know?
• MPI is large: MPI-1 has over 125 functions/subroutines. MPI-3 has over 

400 
• MPI is small: Can actually most work with about 6 functions! 
• Collective functions are EXTREMELY useful since they simplify the 

coding and vendors optimize them for their interconnect hardware 
• One can access flexibility when it is required. 
• One need not master all parts of MPI to use it. 



Do I need a Supercomputer?
• To learn MPI and develop MPI application - No. Your laptop/PC will suffice. 

• Any number of MPI processes can be started even on a laptop 
• Same accuracy, but not efficient 

• Test your real application - Laptop, PC, Workstation, Cluster, Supercomputer 
• Production runs - Laptop, PC, Workstation, Cluster, Supercomputer



Is communication needed?  
Domain Decomposition

• Most widely used method for grid-based calculations



Is communication needed?  
“Coloring”

• Useful for particle simulations

Proc 0 Proc 1 Proc 2 Proc 3 Proc 4



MPI Function Categories
• MPI calls to exchange data 

• Point-to-Point communications 
– Only 2 processes exchange data 
– It is the basic operation of all MPI calls 

• Collective communications 
– A single call handles the communication between all the processes in a communicator 
– There are 2 types of collective communications 

• Data movement (e.g. MPI_Bcast) 
• Reduction (e.g. MPI_Reduce) 

• Synchronization:  
• MPI_Barrier 
• MPI_Wait 



Send Message: MPI_Send
MPI_Send(&numToSend,1,MPI_INT,0,10,MPI_COMM_WORLD);

&numToSend Pointer to whatever information to send. In this case, an integer

1 counts to send (the number of items). 1 in this example. 
If sending a vector of 12 int's, count is 12

MPI_INT the type of object we are sending. In this case, an integer

0 Destination of the message. In this example, Rank 0

10 Message Tag. Useful to identify/sort messages

MPI_COMM_WORLD We don’t have any subsets yet. We just choose the “default”



Point to point:   2 processes at a time

    
MPI_Recv(recvbuf,count,datatype,source,tag,comm,status) 

MPI_Sendrecv(sendbuf,sendcount,sendtype,dest,sendtag, 
    recvbuf,recvcount,recvtype,source,recvtag,comm,status) 

Datatypes are:  
FORTRAN: MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION, 
MPI_COMPLEX,MPI_CHARACTER, MPI_LOGICAL, etc… 
C : MPI_INT, MPI_LONG, MPI_SHORT, MPI_FLOAT, MPI_DOUBLE, etc… 

Predefined Communicator: MPI_COMM_WORLD 



Collective communication:  
Broadcast

• One process (called “root”) sends data to all the other processes in the same 
communicator 

• Must be called by ALL processes with the same arguments

MPI_Bcast(buffer,count,datatype,root,comm,ierr)

P0 A B C D

P1

P2

P3

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

Broadcast



Collective communication:  
Gather, Scatter

• One root process collects data from all the other processes in the same communicator 
• Must be called by all the processes in the communicator with the same arguments 
• “sendcount” is the number of basic datatypes sent, not received (example above would 

be sendcount = 1) 
• Make sure that you have enough space in your receiving buffer!

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount, 
            recvtype,root,comm,ierr) 

P0 A

P1 B

P2 C

P3 D

P0 A B C D

P1

P2

P3

Gather

Scatter



Collective communication:  
Gather to All

• All processes within a communicator collect data from each other and end up with the 
same information 

• Must be called by all the processes in the communicator with the same arguments 
• Again, sendcount is the number of elements sent

MPI_Allgather(sendbuf,sendcount,sendtype,recvbuf,recvcount, 
              recvtype,comm,info)

P0 A

P1 B

P2 C

P3 D

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

Allgather



Collective communication:  
Reduction

• One root process collects data from all the other processes in the same communicator and 
performs an operation on the received data 

• Called by all the processes with the same arguments 
• Operations are: MPI_SUM, MPI_MIN, MPI_MAX, MPI_PROD, logical AND, OR, 

XOR, and a few more 
• User can define own operation with MPI_Op_create()

MPI_Reduce(sendbuf,recvbuf,count,datatype,op,root,comm,ierr)

P0 A

P1 B

P2 C

P3 D

Reduce (+)

P0 A+B+C+D

P1

P2

P3



Collective communication:  
Reduction to All

• All processes within a communicator collect data from all the other processes and 
performs an operation on the received data 

• Called by all the processes with the same arguments 
• Operations are the same as for MPI_Reduce

MPI_Allreduce(sendbuf,recvbuf,count,datatype,op,comm,ierr)

P0 A

P1 B

P2 C

P3 D

Allreduce (+)
P0 A+B+C+D

P1 A+B+C+D

P2 A+B+C+D

P3 A+B+C+D



More MPI collective calls
One “root” process send a different piece of the data to each one of the other 
Processes (inverse of gather) 
MPI_Scatter(sendbuf,sendcnt,sendtype,recvbuf,recvcnt, 
            recvtype,root,comm,ierr) 

Each process performs a scatter operation, sending a distinct message to all 
the processes in the group in order by index.  
MPI_Alltoall(sendbuf,sendcount,sendtype,recvbuf,recvcnt, 
             recvtype,comm,ierr) 

Synchronization: When necessary, all the processes within a communicator can 
be forced to wait for each other although this operation can be expensive  
MPI_Barrier(comm,ierr) 



MPI_Alltoall(sendbuf,sendcount,sendtype,recvbuf,recvcnt, 
             recvtype,comm,ierr) 



MPI collective calls - Uneven sized chunks



More MPI collective calls
• Non-uniform sized chunks



How to time your MPI code
• Several possibilities but MPI provides an easy to use function called 

“MPI_Wtime()”. It returns the number of seconds since an arbitrary point of time in 
the past. 

     FORTRAN: double precision MPI_WTIME() 
           C: double MPI_Wtime() 

     starttime=MPI_WTIME() 
       … program body … 
     endtime=MPI_WTIME() 
     elapsetime=endtime-starttime



Blocking communications
• The call waits until the data transfer is 

done 
– The sending process waits until all 

data are transferred to the system 
buffer (differences for eager vs 
rendezvous protocols...) 

– The receiving process waits until all 
data are transferred from the system 
buffer to the receive buffer 

• All collective communications are 
blocking



Non-blocking

• Returns immediately after the 
data transferred is initiated 

• Allows to overlap computation 
with communication 

• Need to be careful though 
– When send and receive buffers 

are updated before the transfer 
is over, the result will be wrong



Debugging tips
Use “unbuffered” writes to do “printf-debugging” and always write out the process 
id: 
   C:       fprintf(stderr,”%d: …”,myid,…); 
   Fortran: write(0,*)myid,’: …’ 

If the code detects an error and needs to terminate, use MPI_ABORT. The 
errorcode is returned to the calling environment so it can be any number. 
   C:       MPI_Abort(MPI_Comm comm, int errorcode); 
   Fortran: call MPI_ABORT(comm, errorcode, ierr) 

Use a parallel debugger such as Totalview or DDT 



References

• Keywords for search “mpi”, or “mpi standard”, or “mpi tutorial”… 
• https://www.mpich.org/static/docs/latest/ 
• http://www.mpi-forum.org (location of the MPI standard) 
• http://www.llnl.gov/computing/tutorials/mpi/ 
• http://www.nersc.gov/nusers/help/tutorials/mpi/intro/ 
• https://bitbucket.org/VictorEijkhout/parallel-computing-book/src/default/ 

• MPI on Linux clusters: 
– MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/) 
– Open MPI (http://www.open-mpi.org/)

https://www.mpich.org/static/docs/latest/
http://www.mpi-forum.org/
http://www.llnl.gov/computing/tutorials/mpi/
http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
https://bitbucket.org/VictorEijkhout/parallel-computing-book/src/default/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.open-mpi.org/


Example: calculating π using numerical integration
#include <stdio.h>
#include <math.h>
int main( int argc, char *argv[] )
{
    int n, myid, numprocs, i;
    double PI25DT = 3.141592653589793238462643;
    double mypi, pi, h, sum, x;
    FILE *ifp;

    ifp = fopen("ex4.in","r");
    fscanf(ifp,"%d",&n);
    fclose(ifp);
    printf("number of intervals = %d\n",n);

    h   = 1.0 / (double) n;
    sum = 0.0;
    for (i = 1; i <= n; i++) {
        x = h * ((double)i - 0.5);
        sum += (4.0 / (1.0 + x*x));
    }
    mypi = h * sum;

    pi = mypi;
    printf("pi is approximately %.16f, Error is %.16f\n",
            pi, fabs(pi - PI25DT));
    return 0;
}

C version



#include "mpi.h"
#include <stdio.h>
#include <math.h>
int main( int argc, char *argv[] )
{
    int n, myid, numprocs, i, j, tag, my_n;
    double PI25DT = 3.141592653589793238462643;
    double mypi,pi,h,sum,x,pi_frac,tt0,tt1,ttf;
    FILE *ifp;
    MPI_Status  Stat;
    MPI_Request request;

    n = 1;
    tag = 1;
    MPI_Init(&argc,&argv);
    MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
    MPI_Comm_rank(MPI_COMM_WORLD,&myid);

    tt0 = MPI_Wtime();
    if (myid == 0) {
       ifp = fopen("ex4.in","r");
       fscanf(ifp,"%d",&n);
       fclose(ifp);
       //printf("number of intervals = %d\n",n);
    }
 /* Global communication. Process 0 "broadcasts" n to all other processes */
    MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

Root reads input 
and broadcast to 

all



Each process calculates its section of the integral and adds up 
results with MPI_Reduce

… 
    h   = 1.0 / (double) n;
    sum = 0.0;
    for (i = myid*n/numprocs+1; i <= (myid+1)*n/numprocs; i++) {
        x = h * ((double)i - 0.5);
        sum += (4.0 / (1.0 + x*x));
    }
    mypi = h * sum;

    pi = 0.;  /* It is not necessary to set pi = 0 */

 /* Global reduction. All processes send their value of mypi to process 0
    and process 0 adds them up (MPI_SUM) */
    MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

    ttf = MPI_Wtime();
    printf("myid=%d  pi is approximately %.16f, Error is %.16f  time = %10f\n",
               myid, pi, fabs(pi - PI25DT), (ttf-tt0));

    MPI_Finalize();
    return 0;
}



Thank you...



Non-blocking send and receive
Point to point: 
    MPI_Isend(buf,count,datatype,dest,tag,comm,request,ierr) 
    MPI_Irecv(buf,count,datatype,source,tag,comm,request,ierr) 
The functions MPI_Wait and MPI_Test are used to complete a nonblocking communication 
    MPI_Wait(request,status,ierr) 
    MPI_Test(request,flag,status,ierr) 
MPI_Wait returns when the operation identified by “request” is complete. This is a non-local operation. 
MPI_Test returns “flag = true” if the operation identified by “request” is complete. Otherwise it returns 
“flag = false”. This is a local operation. 
MPI-3 standard introduces “non-blocking collective calls”



MPI + OpenMP
• By default, MPI assumes no threaded execution. 
• MPI_Init(int *argc, char ***argv) old.
• MPI_Init_thread(int *argc,char ***argv,int required, 

int *provided )
• required = MPI Thread Support level 
• Levels of MPI Thread Support 
•



Support Levels Description

MPI_THREAD_SINGLE Only one thread will execute

MPI_THREAD_FUNNELED Process may be multi-threaded, but only the main 
thread will make MPI calls (calls are “funneled” 
to main thread). *Default*

MPI_THREAD_SERIALIZE Process may be multi-threaded, and any thread 
can make MPI calls, but threads cannot execute 
MPI calls concurrently; they must take turns 
(calls are “serialized”). 

MPI_THREAD_MULTIPLE Multiple threads may call MPI, with no 
restriction.


