
Parallel Programming Using MPI

Short Course on HPC
21st January 2020

Aditya Krishna Swamy
adityaks@iisc.ac.in

SERC, Indian Institute of Science

mailto:adityaks@iisc.ac.in

What is MPI?
• MPI stands for Message Passing Interface
• It is a message-passing specification, a standard, for the vendors to

implement
• In practice, MPI is a library consisting of C functions and Fortran

subroutines (Fortran) used for exchanging data between processes
• An MPI library exists on ALL parallel computing facilities so it is highly

portable
• Also available for Python (mpi4py.scipy.org), R (Rmpi)

Why use MPI? 
• General

• MPI-1 ’92-’94, MPI-2 ~2008, MPI-3 2012. Has been around for ~25 years
• Widely used parallel model
• Libraries and algorithms readily available
• Very scalable: 1 ~ 300,000 cores
• Portable
• Works well with Hybrid models (MPI+X. X=OpenMP, CUDA, OpenACC,

OpenCL…)
• Your problem

• Want to speed up your calculation
• Want to scale up your problem size
• Your problem size is too large for a single PC/Workstation

!4

The reason for disruption 1015 -> 1018 FLOPSFLOPS

Clock speed (Mhz)

of transistors (000)

Power (W)

Perf/clock (ILP)

!5

From Giga to Exa, via Tera & Peta*

21

R
el

at
iv

e
Tr

an
si

st
or

 P
er

fo
rm

an
ce

1

10

100

1000

1986 1995 2004 2013 2022

Giga

Tera

Peta
Exa

32x from transistor
32x from parallelism

8x from transistor
128x from parallelism

1.5x from transistor
670x from parallelism

Performance from parallelism
*S. Borkar, Intel

MPI Implementations
• MPICH

• ANL, (foss) mpich.org/
• Intel, (Paid. 1-year free student license, IISc campus lisense)
• Cray
• IBM

• OpenMPI, (foss)
• open-mpi.org/

• MVAPICH (free, BSD)
• mvapich.cse.ohio-state.edu/

MPI
Context: Distributed memory parallel
computers

– Each processor has its own memory and
cannot access the memory of other
processors

– A copy of the same executable runs as
MPI process (on each processor core)

– All variables are private to each process
– Any data to be shared must be explicitly

transmitted from one to another

Cluster - 90’s

Modern HPC Facilities

MPI only Hybrid

Terminology
OS/Software

Hardware

Process Independent stream of instructions.
OS provides dedicated resources

Thread(s) Created by process
Shares resources with process/fellow threads

core “instruction stream processing unit”

“Processor/CPU” Single die that sits on a “Socket” (has 1 or more cores)

Node ~ “mother board”. With 1 or more sockets

Blade 1 or more Nodes

Cabinet Several blades

Basic MPI
• Basic functionality in a parallel program

• Start processes
• Send messages
• receive messages
• Synchronize

A simple program in C
#include <stdio>
#include <stdlib>

int main(int argc, char *argv[])
{

 printf(“Hello \n”)

return 0;
}

Any PC
$./a.out

Hello

A simple MPI program in C
#include <stdio>
#include <stdlib>
#include “mpi.h"

int main(int argc, char *argv[])
{
 int nproc, myrank;

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

 printf(“Hello from %d. \n”,myrank)

 /* Finalize */
 MPI_Finalize();
 return 0;
}

Typical Cluster
$ mpirun -n 8 ./a.out

SahasraT
$ aprun -n 8 ./a.out

Hello from 0.
Hello from 1.
Hello from 2.
Hello from 3.
Hello from 4.
Hello from 5.
Hello from 6.
Hello from 7.

Header file
#include "mpi.h"
int main(int argc, char *argv[])
{
 int nproc, myrank;
 /* Initialize MPI */
 MPI_Init(&argc,&argv);
 /* Get the number of processes */
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 /* Get my process number (rank) */
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

 Do work and make message passing calls…

 /* Finalize */
 MPI_Finalize();
 return 0;
}

• Defines MPI-related parameters and functions
• Must be included in all routines calling MPI functions
• Can also use include file:
 include mpif.h

Initialization
#include "mpi.h"
int main(int argc, char *argv[])
{
 int nproc, myrank;
 /* Initialize MPI */
 MPI_Init(&argc,&argv);
 /* Get the number of processes */
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 /* Get my process number (rank) */
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

 Do work and make message passing calls…

 /* Finalize */
 MPI_Finalize();
 return 0;
}

• Must be called at the beginning of the code
before any other calls to MPI functions

• Sets up the communication channels between the
processes and gives each one a rank.

How many processes do we have?

#include "mpi.h"
int main(int argc, char *argv[])
{
 int nproc, myrank;
 /* Initialize MPI */
 MPI_Init(&argc,&argv);
 /* Get the number of processes */
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 /* Get my process number (rank) */
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

 Do work and make message passing calls…

 /* Finalize */
 MPI_Finalize();
 return 0;
}

• Returns the number of processes available under
MPI_COMM_WORLD communicator

• This is the number used on the mpiexec (or mpirun)
command:

 mpiexec –n nproc ./a.out

What is my rank?

#include "mpi.h"
int main(int argc, char *argv[])
{
 int nproc, myrank;
 /* Initialize MPI */
 MPI_Init(&argc,&argv);
 /* Get the number of processes */
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 /* Get my process number (rank) */
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

 Do work and make message passing calls…

 /* Finalize */
 MPI_Finalize();
 return 0;
}

• Get my rank among all of the nproc processes under
MPI_COMM_WORLD

• This is a unique number that can be used to distinguish this
process from the others

Termination

#include "mpi.h"
int main(int argc, char *argv[])
{
 int nproc, myrank;
 /* Initialize MPI */
 MPI_Init(&argc,&argv);
 /* Get the number of processes */
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 /* Get my process number (rank) */
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

 Do work and make message passing calls…

 /* Finalize */
 MPI_Finalize();
 return 0;
}

• Must be called at the end of the properly
close all communication channels

• No more MPI calls after finalize

MPI Communicators
• An MPI Function: MPI_Comm_size(MPI_COMM_WORLD, &nproc);
• MPI_COMM_WORLD - communicator
• A communicator is a group of processes

– Each process has a unique rank within a specific communicator
– Rank starts from 0 and has a maximum value of (nproc-1). Fortran programmers

beware!
– Internal mapping of processes to processing units
– Necessary to specify communicator when initiating a communication by calling an MPI

function or routine.
• Default communicator MPI_COMM_WORLD, which contains all available

processes.
• Several communicators can coexist

– A process can belong to different communicators at the same time, but has a unique
rank in each communicator

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

1

2

3

Y_comm• MPI_COMM_WORLD

0

1

2

3

0

1

2

3

0

1

2

3

A sample MPI program in Fortran 90
Program mpi_code
 ! Load MPI definitions
 use mpi (or include mpif.h)

 ! Initialize MPI
 call MPI_Init(ierr)

 ! Get the number of processes
 call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)

 ! Get my process number (rank)
 call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

 Do work and make message passing calls…

 ! Finalize
 call MPI_Finalize(ierr)

end program mpi_code

When hello-mpi runs

Any Cluster
$ mpirun -n 8 ./a.out
SahasraT
$ aprun -n 8 ./a.out

Hello from 0.
Hello from 4.
Hello from 2.
Hello from 1.
Hello from 3.
Hello from 6.
Hello from 7.
Hello from 5.

#include “mpi.h"
int main(int argc, char *argv[]){

 int nproc, myrank;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
 printf(“Hello from %d. \n”,myrank)
 MPI_Finalize();
 return 0;
}

#include “mpi.h"
int main(int argc, char *argv[]){

 int nproc, myrank;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
 printf(“Hello from %d. \n”,myrank)
 MPI_Finalize();
 return 0;
}

#include “mpi.h"
int main(int argc, char *argv[]){

 int nproc, myrank;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
 printf(“Hello from %d. \n”,myrank)
 MPI_Finalize();
 return 0;
}

#include “mpi.h"
int main(int argc, char *argv[]){

 int nproc, myrank;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
 printf(“Hello from %d. \n”,myrank)
 MPI_Finalize();
 return 0;
}

#include “mpi.h"
int main(int argc, char *argv[]){

 int nproc, myrank;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
 printf(“Hello from %d. \n”,myrank)
 MPI_Finalize();
 return 0;
}

#include “mpi.h"
int main(int argc, char *argv[]){

 int nproc, myrank;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
 printf(“Hello from %d. \n”,myrank)
 MPI_Finalize();
 return 0;
}

#include “mpi.h"
int main(int argc, char *argv[]){

 int nproc, myrank;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
 printf(“Hello from %d. \n”,myrank)
 MPI_Finalize();
 return 0;
}

#include “mpi.h"
int main(int argc, char *argv[]){

 int nproc, myrank;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
 printf(“Hello from %d. \n”,myrank)
 MPI_Finalize();
 return 0;
}

How much do I need to know?
• MPI is large: MPI-1 has over 125 functions/subroutines. MPI-3 has over

400
• MPI is small: Can actually most work with about 6 functions!
• Collective functions are EXTREMELY useful since they simplify the

coding and vendors optimize them for their interconnect hardware
• One can access flexibility when it is required.
• One need not master all parts of MPI to use it.

Do I need a Supercomputer?
• To learn MPI and develop MPI application - No. Your laptop/PC will suffice.

• Any number of MPI processes can be started even on a laptop
• Same accuracy, but not efficient

• Test your real application - Laptop, PC, Workstation, Cluster, Supercomputer
• Production runs - Laptop, PC, Workstation, Cluster, Supercomputer

Is communication needed?  
Domain Decomposition

• Most widely used method for grid-based calculations

Is communication needed?  
“Coloring”

• Useful for particle simulations

Proc 0 Proc 1 Proc 2 Proc 3 Proc 4

MPI Function Categories
• MPI calls to exchange data

• Point-to-Point communications
– Only 2 processes exchange data
– It is the basic operation of all MPI calls

• Collective communications
– A single call handles the communication between all the processes in a communicator
– There are 2 types of collective communications

• Data movement (e.g. MPI_Bcast)
• Reduction (e.g. MPI_Reduce)

• Synchronization:
• MPI_Barrier
• MPI_Wait

Send Message: MPI_Send
MPI_Send(&numToSend,1,MPI_INT,0,10,MPI_COMM_WORLD);

&numToSend Pointer to whatever information to send. In this case, an integer

1 counts to send (the number of items). 1 in this example. 
If sending a vector of 12 int's, count is 12

MPI_INT the type of object we are sending. In this case, an integer

0 Destination of the message. In this example, Rank 0

10 Message Tag. Useful to identify/sort messages

MPI_COMM_WORLD We don’t have any subsets yet. We just choose the “default”

Point to point: 2 processes at a time

MPI_Recv(recvbuf,count,datatype,source,tag,comm,status)

MPI_Sendrecv(sendbuf,sendcount,sendtype,dest,sendtag,
 recvbuf,recvcount,recvtype,source,recvtag,comm,status)

Datatypes are:
FORTRAN: MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION,
MPI_COMPLEX,MPI_CHARACTER, MPI_LOGICAL, etc…
C : MPI_INT, MPI_LONG, MPI_SHORT, MPI_FLOAT, MPI_DOUBLE, etc…

Predefined Communicator: MPI_COMM_WORLD

Collective communication:  
Broadcast

• One process (called “root”) sends data to all the other processes in the same
communicator

• Must be called by ALL processes with the same arguments

MPI_Bcast(buffer,count,datatype,root,comm,ierr)

P0 A B C D

P1

P2

P3

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

Broadcast

Collective communication:  
Gather, Scatter

• One root process collects data from all the other processes in the same communicator
• Must be called by all the processes in the communicator with the same arguments
• “sendcount” is the number of basic datatypes sent, not received (example above would

be sendcount = 1)
• Make sure that you have enough space in your receiving buffer!

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount,
 recvtype,root,comm,ierr)

P0 A

P1 B

P2 C

P3 D

P0 A B C D

P1

P2

P3

Gather

Scatter

Collective communication:  
Gather to All

• All processes within a communicator collect data from each other and end up with the
same information

• Must be called by all the processes in the communicator with the same arguments
• Again, sendcount is the number of elements sent

MPI_Allgather(sendbuf,sendcount,sendtype,recvbuf,recvcount,
 recvtype,comm,info)

P0 A

P1 B

P2 C

P3 D

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

Allgather

Collective communication:  
Reduction

• One root process collects data from all the other processes in the same communicator and
performs an operation on the received data

• Called by all the processes with the same arguments
• Operations are: MPI_SUM, MPI_MIN, MPI_MAX, MPI_PROD, logical AND, OR,

XOR, and a few more
• User can define own operation with MPI_Op_create()

MPI_Reduce(sendbuf,recvbuf,count,datatype,op,root,comm,ierr)

P0 A

P1 B

P2 C

P3 D

Reduce (+)

P0 A+B+C+D

P1

P2

P3

Collective communication:  
Reduction to All

• All processes within a communicator collect data from all the other processes and
performs an operation on the received data

• Called by all the processes with the same arguments
• Operations are the same as for MPI_Reduce

MPI_Allreduce(sendbuf,recvbuf,count,datatype,op,comm,ierr)

P0 A

P1 B

P2 C

P3 D

Allreduce (+)
P0 A+B+C+D

P1 A+B+C+D

P2 A+B+C+D

P3 A+B+C+D

More MPI collective calls
One “root” process send a different piece of the data to each one of the other
Processes (inverse of gather)
MPI_Scatter(sendbuf,sendcnt,sendtype,recvbuf,recvcnt,
 recvtype,root,comm,ierr)

Each process performs a scatter operation, sending a distinct message to all
the processes in the group in order by index.
MPI_Alltoall(sendbuf,sendcount,sendtype,recvbuf,recvcnt,
 recvtype,comm,ierr)

Synchronization: When necessary, all the processes within a communicator can
be forced to wait for each other although this operation can be expensive
MPI_Barrier(comm,ierr)

MPI_Alltoall(sendbuf,sendcount,sendtype,recvbuf,recvcnt,
 recvtype,comm,ierr)

MPI collective calls - Uneven sized chunks

More MPI collective calls
• Non-uniform sized chunks

How to time your MPI code
• Several possibilities but MPI provides an easy to use function called

“MPI_Wtime()”. It returns the number of seconds since an arbitrary point of time in
the past.

 FORTRAN: double precision MPI_WTIME()
 C: double MPI_Wtime()

 starttime=MPI_WTIME()
 … program body …
 endtime=MPI_WTIME()
 elapsetime=endtime-starttime

Blocking communications
• The call waits until the data transfer is

done
– The sending process waits until all

data are transferred to the system
buffer (differences for eager vs
rendezvous protocols...)

– The receiving process waits until all
data are transferred from the system
buffer to the receive buffer

• All collective communications are
blocking

Non-blocking

• Returns immediately after the
data transferred is initiated

• Allows to overlap computation
with communication

• Need to be careful though
– When send and receive buffers

are updated before the transfer
is over, the result will be wrong

Debugging tips
Use “unbuffered” writes to do “printf-debugging” and always write out the process
id:
 C: fprintf(stderr,”%d: …”,myid,…);
 Fortran: write(0,*)myid,’: …’

If the code detects an error and needs to terminate, use MPI_ABORT. The
errorcode is returned to the calling environment so it can be any number.
 C: MPI_Abort(MPI_Comm comm, int errorcode);
 Fortran: call MPI_ABORT(comm, errorcode, ierr)

Use a parallel debugger such as Totalview or DDT

References

• Keywords for search “mpi”, or “mpi standard”, or “mpi tutorial”…
• https://www.mpich.org/static/docs/latest/
• http://www.mpi-forum.org (location of the MPI standard)
• http://www.llnl.gov/computing/tutorials/mpi/
• http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
• https://bitbucket.org/VictorEijkhout/parallel-computing-book/src/default/

• MPI on Linux clusters:
– MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/)
– Open MPI (http://www.open-mpi.org/)

https://www.mpich.org/static/docs/latest/
http://www.mpi-forum.org/
http://www.llnl.gov/computing/tutorials/mpi/
http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
https://bitbucket.org/VictorEijkhout/parallel-computing-book/src/default/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.open-mpi.org/

Example: calculating π using numerical integration
#include <stdio.h>
#include <math.h>
int main(int argc, char *argv[])
{
 int n, myid, numprocs, i;
 double PI25DT = 3.141592653589793238462643;
 double mypi, pi, h, sum, x;
 FILE *ifp;

 ifp = fopen("ex4.in","r");
 fscanf(ifp,"%d",&n);
 fclose(ifp);
 printf("number of intervals = %d\n",n);

 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = 1; i <= n; i++) {
 x = h * ((double)i - 0.5);
 sum += (4.0 / (1.0 + x*x));
 }
 mypi = h * sum;

 pi = mypi;
 printf("pi is approximately %.16f, Error is %.16f\n",
 pi, fabs(pi - PI25DT));
 return 0;
}

C version

#include "mpi.h"
#include <stdio.h>
#include <math.h>
int main(int argc, char *argv[])
{
 int n, myid, numprocs, i, j, tag, my_n;
 double PI25DT = 3.141592653589793238462643;
 double mypi,pi,h,sum,x,pi_frac,tt0,tt1,ttf;
 FILE *ifp;
 MPI_Status Stat;
 MPI_Request request;

 n = 1;
 tag = 1;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);

 tt0 = MPI_Wtime();
 if (myid == 0) {
 ifp = fopen("ex4.in","r");
 fscanf(ifp,"%d",&n);
 fclose(ifp);
 //printf("number of intervals = %d\n",n);
 }
 /* Global communication. Process 0 "broadcasts" n to all other processes */
 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

Root reads input
and broadcast to

all

Each process calculates its section of the integral and adds up
results with MPI_Reduce

…
 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = myid*n/numprocs+1; i <= (myid+1)*n/numprocs; i++) {
 x = h * ((double)i - 0.5);
 sum += (4.0 / (1.0 + x*x));
 }
 mypi = h * sum;

 pi = 0.; /* It is not necessary to set pi = 0 */

 /* Global reduction. All processes send their value of mypi to process 0
 and process 0 adds them up (MPI_SUM) */
 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

 ttf = MPI_Wtime();
 printf("myid=%d pi is approximately %.16f, Error is %.16f time = %10f\n",
 myid, pi, fabs(pi - PI25DT), (ttf-tt0));

 MPI_Finalize();
 return 0;
}

Thank you...

Non-blocking send and receive
Point to point:
 MPI_Isend(buf,count,datatype,dest,tag,comm,request,ierr)
 MPI_Irecv(buf,count,datatype,source,tag,comm,request,ierr)
The functions MPI_Wait and MPI_Test are used to complete a nonblocking communication
 MPI_Wait(request,status,ierr)
 MPI_Test(request,flag,status,ierr)
MPI_Wait returns when the operation identified by “request” is complete. This is a non-local operation.
MPI_Test returns “flag = true” if the operation identified by “request” is complete. Otherwise it returns
“flag = false”. This is a local operation.
MPI-3 standard introduces “non-blocking collective calls”

MPI + OpenMP
• By default, MPI assumes no threaded execution.
• MPI_Init(int *argc, char ***argv) old.
• MPI_Init_thread(int *argc,char ***argv,int required,

int *provided)
• required = MPI Thread Support level
• Levels of MPI Thread Support
•

Support Levels Description

MPI_THREAD_SINGLE Only one thread will execute

MPI_THREAD_FUNNELED Process may be multi-threaded, but only the main
thread will make MPI calls (calls are “funneled”
to main thread). *Default*

MPI_THREAD_SERIALIZE Process may be multi-threaded, and any thread
can make MPI calls, but threads cannot execute
MPI calls concurrently; they must take turns
(calls are “serialized”).

MPI_THREAD_MULTIPLE Multiple threads may call MPI, with no
restriction.

