
Evolution of Virtual Machines

Topic coverage

• Evolution of computing practices

• Why Virtual Machines?

• Motivation for Using Virtualization

• Data Center evolution

• Current day motivations for Virtual Machines.

Jan 09, 2020 2

Evolution of Computing Practices

1950s

1980s

Mid 1980s

1990

Mid 1990s

Early 2000
Later 2000

Warehouse Scale
Computers

2010s

Jan 09, 2020 3

Why Virtual Machines?

• In the mainframe era (1960 – early 1980s)

– Computer architecture change to support multi-
user, multi-programming and introduction of I/O
processors lead to dual-privilege processor
architectures.

– Introduced better system utilization but brought in
more complexities associated with testing and
development of new systems and system
software.

Jan 09, 2020 4

Jan 09, 2020 5

Idea of the Privileged Software

• The privileged software of the OS-kernel was built to
manage the system resources.

• The idea of multi-programming and multi-user is the
functionality provided by the Privileged software.

• System hardware has sufficient constructs to support
this idea of sharing through the Privileged software.

• Most of these sharing constructs happened to evolve
around the idea of time-multiplexing of a resource.
– Computing machinery was expensive so important to keep

it busy as much as possible!

Jan 09, 2020 6

Premise for System Design

• Till year 2000 most system designs adopted
approaches where single OS kernel is used for
managing the resources.

• The applications are built to the extended
machine functionality rather than the actual
machine!

Jan 09, 2020 7

Era of PCs and Network of Computers

• Dual state architectures sufficed for PCs and later
for applications built on Network of computers
and subsequently for Distributed systems and
Grid computing model.

• Many applications got built using the client-
server or distributed services model.

• In all such scenarios, independent systems with
their own privileged software topped with
necessary application runtime software for
distributed systems was sufficient to provide the
desired functionality.

Jan 09, 2020 9

Concerns of Server Sprawl

• As hardware became cheaper many applications
got built with their own hardware and associated
software tiers.

• This model ensured applications delivering
required performance.

• Increase in throughput or availability was mostly
handled using isolated duplicate or redundant
servers.

• With the advent of WWW this practise exploded
into server sprawl!

Jan 09, 2020 10

Symptoms of Server Sprawl

• Enterprise server utilizations below 10%!
• Huge IT Capex but the inability to host newer

applications due to mismatch of software
requirements!

• Applications-Platform coupling led to
unwarranted dependencies between unrelated
applications!
– Side-effects: failure of one application causes outages

on the other!

• Ever increasing Opex bills!
• Precursor to Green computing!

Jan 09, 2020 11

Re-emergence of Virtualization

• Improve server utilization with application
isolation.

• Enables co-hosting of multiple applications on
single platform, each with their independent
software and runtime environment – genesis for
server consolidation.

• Offers platform independence by way of Virtual
Machine encapsulation
– Enables application scalability with varying workload

demands
– Improved application availability by way of isolation

and elastic scaling capability
– Faster provisioning for newer applications

Jan 09, 2020 12

Cloud Setups
• Re-emergence of virtualization, service oriented

architectures, the world wide web (Internet?) and
utility computing paradigm enabled the
realization of Cloud setups and cloud computing.

• Grid computing ushered in loose coupling of
many, heterogeneous distributed systems
through middleware (resource aggregation) for
large-scale scientific computations with access
from anywhere.

• Enterprises realized the benefit of segregation
using virtualization with middleware for seamless
use of computing infrastructure.

Jan 09, 2020 13

Data Center Evolution
• Mainframes:

– Expensive hardware; virtualization enabled multi-user and multi-
tenanted OS for system development

• Distributed Systems and Grid Computing: (Scientific workloads)
– Multiple independent systems for increased throughput or availability

of applications.
– Limiting processor speeds forced users to use many cores for

improved application performance using parallel programming.

• Cloud Data centres: (Enterprise workloads)
– Server consolidation through virtualization yields improved server

utilization and reduced power and real-estate footprints.

• Hyperconverged data centres:
– Heterogeneous platforms with server virtualization results in resource

fragmentation
– Software defined data centers with commensurate hardware

interconnects enable flexible hardware compositions for better
utilization at data centers!

Jan 09, 2020 14

Mainframes

Jan 09, 2020 15

Grid Computing Architecture

Jan 09, 2020 16

Grid computing Logical Layers

Jan 09, 2020 17

Jan 09, 2020 18

Grid Computing Service Layers

Cloud Computing Architecture
Logical and Service Layers

Jan 09, 2020 19

OpenStack Cloud Architecture
Service Perspective

Jan 09, 2020 20

Data Centre Architecture
Fabric Connectivity Perspective

Jan 09, 2020 21 Source: https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCI_SRND_2_5a_book.pdf

Hyper-Converged Data Centres
• Integrated systems:

– Initial Cloud setups started with virtualized servers and storage
integrated using cloud stack.

– Simple conglomerations of existing hardware and software with SAN
based storage access

– Vendor lock-in with server and storage OEMs

• Converged Infrastructure:
– Server and storage components converged to a single appliance (VM)
– Unified and simplified management and faster deployment
– Resource ratios (cpu:storage:network) fixed and hence inflexible and

have performance utilization conflicts.
– Legacy applications still need to be re-provisioned or migrated to cloud

infrastructure

• Hyper-converged Infrastructure:
– Consolidation of required functionality into a single infrastructure

stack implemented on simple, efficient and elastic resource pool
– Software Defined Data Centers (SDDCs) enable the idea of

convergence of hardware along-with functionalities like backup,
replication, deduplication, elasticity, network gateways, high speed
storage access through SSD cache and drive arrays, etc.

Jan 09, 2020 22

Convergence Characteristics

Jan 09, 2020
23

Current-day Motivations for using
Virtualization

1. Multi-Hypervisor Virtual Machines: Enabling an Ecosystem of Hypervisor-level
Services

Abstract: Public cloud software marketplaces already offer users a wealth of choice in
operating systems, database management systems, financial software, and virtual
networking, all deployable and configurable at the click of a button. Unfortunately,
this level of customization has not extended to emerging hypervisor-level services,
partly because traditional virtual machines (VMs) are fully controlled by only one
hypervisor at a time. Currently, a VM in a cloud platform cannot concurrently use
hypervisor-level services from multiple third-parties in a compartmentalized manner.
We propose the notion of a multi-hypervisor VM, which is an unmodified guest that
can simultaneously use services from multiple coresident, but isolated, hypervisors.
We present a new virtualization architecture, called Span virtualization, that leverages
nesting to allow multiple hypervisors to concurrently control a guest’s memory, virtual
CPU, and I/O resources. Our prototype of Span virtualization on the KVM/QEMU
platform enables a guest to use services such as introspection, network monitoring,
guest mirroring, and hypervisor refresh, with performance comparable to traditional
nested VMs.
https://www.usenix.org/conference/atc17/technical-sessions/presentation/gopalan

Jan 09, 2020 25

https://www.usenix.org/conference/atc17/technical-sessions/presentation/gopalan
https://www.usenix.org/conference/atc17/technical-sessions/presentation/gopalan
https://www.usenix.org/conference/atc17/technical-sessions/presentation/gopalan

Current-day Motivations for using
Virtualization

2. Preemptive, Low Latency Datacenter Scheduling via Lightweight Virtualization
Abstract: Data centers are evolving to host heterogeneous workloads on shared clusters to reduce the
operational cost and achieve higher resource utilization. However, it is challenging to schedule
heterogeneous workloads with diverse resource requirements and QoS constraints. On the one hand,
latency-critical jobs need to be scheduled as soon as they are submitted to avoid any queuing delays. On
the other hand, best-effort long jobs should be allowed to occupy the cluster when there are idle
resources to improve cluster utilization. The challenge lies in how to minimize the queuing delays of
short jobs while maximizing cluster utilization. Existing solutions either forcibly kill long jobs to
guarantee low latency for short jobs or disable preemption to optimize utilization. Hybrid approaches
with resource reservations have been proposed but need to be tuned for specific workloads.
In this paper, we propose and develop BIG-C, a container-based resource management framework for
Big Data cluster computing. The key design is to leverage lightweight virtualization, a.k.a, containers to
make tasks preemptable in cluster scheduling. We devise two types of preemption
strategies: immediate and graceful preemptions and show their effectiveness and tradeoffs with
loosely-coupled MapReduce workloads as well as iterative, in-memory Spark workloads. Based on the
mechanisms for task preemption, we further develop a preemptive fair share cluster scheduler. We
have implemented BIG-C in YARN. Our evaluation with synthetic and production workloads shows that
low-latency and high utilization can be both attained when scheduling heterogeneous workloads on a
contended cluster.
https://www.usenix.org/conference/atc17/technical-sessions/presentation/chen-wei

Jan 09, 2020 26

https://www.usenix.org/conference/atc17/technical-sessions/presentation/chen-wei
https://www.usenix.org/conference/atc17/technical-sessions/presentation/chen-wei
https://www.usenix.org/conference/atc17/technical-sessions/presentation/chen-wei
https://www.usenix.org/conference/atc17/technical-sessions/presentation/chen-wei
https://www.usenix.org/conference/atc17/technical-sessions/presentation/chen-wei
https://www.usenix.org/conference/atc17/technical-sessions/presentation/chen-wei
https://www.usenix.org/conference/atc17/technical-sessions/presentation/chen-wei
https://www.usenix.org/conference/atc17/technical-sessions/presentation/chen-wei
https://www.usenix.org/conference/atc17/technical-sessions/presentation/chen-wei
https://www.usenix.org/conference/atc17/technical-sessions/presentation/chen-wei
https://www.usenix.org/conference/atc17/technical-sessions/presentation/chen-wei
https://www.usenix.org/conference/atc17/technical-sessions/presentation/chen-wei
https://www.usenix.org/conference/atc17/technical-sessions/presentation/chen-wei

Current-day Motivations for using
Virtualization

3. Lightweight Virtualization (LV) for IoT Edge Computing:
Edge computing deals with building viable software
constructs to handle IoT data near source. This paper
discusses and compares the applicability of two LV
technologies, containers and unikernels, as platforms
for enabling the scalability, security, and manageability
required by such pervasive applications.

 R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar and J. Ott,
"Consolidate IoT Edge Computing with Lightweight
Virtualization," in IEEE Network, vol. 32, no. 1, pp. 102-111,
Jan.-Feb. 2018.

doi: 10.1109/MNET.2018.1700175

Jan 09, 2020 27

Current-day Motivations for using
Virtualization

4. Understanding Security Implications of Using Containers in the Cloud
Abstract: Container technology is being adopted as a mainstream platform for IT
solutions because of high degree of agility, reusability and portability it offers.
However, there are challenges to be addressed for successful adoption. First, it is
difficult to establish the full pedigree of images downloaded from public registries.
Some might have vulnerabilities introduced unintentionally through rounds of updates
by different users. Second, non-conformance to the immutable software deployment
policies, such as those promoted by the DevOps principles, introduces vulnerabilities
and the loss of control over deployed software. In this study, we investigate containers
deployed in a production cloud to derive a set of recommended approaches to
address these challenges. Our analysis reveals evidences that (i), images of unresolved
pedigree have introduced vulnerabilities to containers belonging to third parties; (ii),
updates to live public containers are common, defying the tenet that deployed
software is immutable; and (iii), scanning containers or images alone is insufficient to
eradicate vulnerabilities from public containers. We advocate for better systems
support for tracking image provenance and resolving disruptive changes to containers,
and propose practices that container users should adopt to limit the vulnerability of
their containers.
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tak

Jan 09, 2020 28

https://www.usenix.org/conference/atc17/technical-sessions/presentation/tak
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tak
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tak
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tak
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tak
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tak
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tak
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tak
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tak
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tak
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tak

Current-day Motivations for using
Virtualization

5. Unikernels: Unikernels are single-purpose appliances that
are compile-time specialised into standalone kernels, and
sealed against modification when deployed to a cloud
platform. In return they offer significant reduction in
image sizes, improved efficiency and security, and should
reduce operational costs.

Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. 2013. Unikernels: library operating systems for
the cloud. SIGARCH Comput. Archit. News 41, 1 (March 2013), 461-
472. DOI: https://doi.org/10.1145/2490301.2451167

Jan 09, 2020 29

Current-day Motivations for using
Virtualization

6. KylinX: A Dynamic Library Operating System for Simplified and Efficient Cloud
Virtualization

Abstract:Unikernel specializes a minimalistic LibOS and a target application into a
standalone single-purpose virtual machine (VM) running on a hypervisor, which is
referred to as (virtual) appliance. Compared to traditional VMs, Unikernel appliances
have smaller memory footprint and lower overhead while guaranteeing the same level
of isolation. On the downside, Unikernel strips off the process abstraction from its
monolithic appliance and thus sacrifices flexibility, efficiency, and applicability.
This paper examines whether there is a balance embracing the best of both Unikernel
appliances (strong isolation) and processes (high flexibility/efficiency). We present
KylinX, a dynamic library operating system for simplified and efficient cloud
virtualization by providing the pVM (process-like VM) abstraction. A pVM takes the
hypervisor as an OS and the Unikernel appliance as a process allowing both page-level
and library-level dynamic mapping. At the page level, KylinX supports pVM fork plus a
set of API for inter-pVM communication (IpC). At the library level, KylinX supports
shared libraries to be linked to a Unikernel appliance at runtime. KylinX enforces
mapping restrictions against potential threats. KylinX can fork a pVM in about 1.3 ms
and link a library to a running pVM in a few ms, both comparable to process fork on
Linux (about 1 ms). Latencies of KylinX IpCs are also comparable to that of UNIX IPCs.
https://www.usenix.org/conference/atc18/presentation/zhang-yiming

Jan 09, 2020 30

https://www.usenix.org/conference/atc18/presentation/zhang-yiming
https://www.usenix.org/conference/atc18/presentation/zhang-yiming
https://www.usenix.org/conference/atc18/presentation/zhang-yiming

7. Cntr: Lightweight OS Containers
Abstract:Container-based virtualization has become the de-facto standard for deploying applications in
data centers. However, deployed containers frequently include a wide-range of tools (e.g., debuggers)
that are not required for applications in the common use-case, but they are included for rare occasions
such as in-production debugging. As a consequence, containers are significantly larger than necessary
for the common case, thus increasing the build and deployment time.
Cntr provides the performance benefits of lightweight containers and the functionality of large
containers by splitting the traditional container image into two parts: the “fat” image — containing the
tools, and the “slim” image — containing the main application. At run-time, Cntr allows the user to
efficiently deploy the “slim” image and then expand it with additional tools, when and if necessary, by
dynamically attaching the “fat” image.
To achieve this, Cntr transparently combines the two container images using a new nested namespace,
without any modification to the application, the container manager, or the operating system. We have
implemented Cntr in Rust, using FUSE, and incorporated a range of optimizations. Cntr supports the full
Linux filesystem API, and it is compatible with all container implementations (i.e., Docker, rkt, LXC,
systemd-nspawn). Through extensive evaluation, we show that Cntr incurs reasonable performance
overhead while reducing, on average, by 66.6% the image size of the Top-50 images available on Docker
Hub.
https://www.usenix.org/conference/atc18/presentation/thalheim

Jan 09, 2020 31

Current-day Motivations for using
Virtualization

https://www.usenix.org/conference/atc18/presentation/thalheim

Current-day Motivations for using
Virtualization

8. A Retargetable System-Level DBT Hypervisor
Abstract: System-level Dynamic Binary Translation (DBT) provides the capability to boot an Operating
System (OS) and execute programs compiled for an Instruction Set Architecture (ISA) different to that of
the host machine. Due to their performance-critical nature, system-level DBT frameworks are typically
hand-coded and heavily optimized, both for their guest and host architectures. While this results in
good performance of the DBT system, engineering costs for supporting a new, or extending an existing
architecture are high. In this paper we develop a novel, retargetable DBT hypervisor, which includes
guest specific modules generated from high-level guest machine specifications. Our system simplifies
retargeting of the DBT, but it also delivers performance levels in excess of existing manually created DBT
solutions. We achieve this by combining offline and online optimizations, and exploiting the freedom of
a Just-in-time (JIT) compiler operating in a bare-metal environment provided by a Virtual Machine. We
evaluate our DBT using both targeted micro-benchmarks as well as standard application benchmarks,
and we demonstrate its ability to outperform the de-facto standard Qemu DBT system. Our system
delivers an average speedup of 2.21x over Qemu across SPEC CPU2006 integer benchmarks running in a
full-system Linux OS environment, compiled for the 64-bit ARMv8-A ISA, and hosted on an x86-64
platform. For floating-point applications the speedup is even higher, reaching 6.49x on average. We
demonstrate that our system-level DBT system significantly reduces the effort required to support a
new ISA, while delivering outstanding performance.
https://www.usenix.org/conference/atc19/presentation/spink

Jan 09, 2020 32

https://www.usenix.org/conference/atc19/presentation/spink

Summary

• Evolution of computing practices
– Usage Perspective

– System Architecture perspective

• Why Virtual Machines?

• Motivation for Using Virtualization

• Data Center evolution
– Why it is relevant to understand system

virtualization

• Current day motivations for Virtual Machines

Jan 09, 2020 33

Questions?

Thankyou!

Jan 09, 2020 34

