

TALK OUTLINE

Why debuggers?

What can they do to help you enhance your program

development?

Parallel program debugging

What are profilers and why you could need them?

M A I L T O : J L A K S H M I @ I I S C . A C . I N 2

PROGRAM DEBUGGING

Why do we need debuggers?

Programming errors not detectable by compilation or

linking

Such errors cause change in runtime behavior

M A I L T O : J L A K S H M I @ I I S C . A C . I N 3

WHAT IS A DEBUGGER?

M A I L T O : J L A K S H M I @ I I S C . A C . I N 4

“A software tool that is used to detect the source of

program or script errors, by performing step-by-step

execution of application code and viewing the

content of code variables.”

-MSDN

1/22/2020

WHAT IS A DEBUGGER? (CON'T)

A debugger is not an IDE

 Though the two can be integrated, they are separate

entities.

A debugger loads in a program (compiled executable,

or interpreted source code) and allows the user to

trace through the execution.

Debuggers typically can do disassembly, stack traces,

variable and expression watches, and more.

M A I L T O : J L A K S H M I @ I I S C . A C . I N 5

OTHER FORMS OF DEBUGGING

Periodic printf/cout/print/write … etc.

 Statements with relevant information

Assert statements

Desk Checking or Code Walkthroughs!

M A I L T O : J L A K S H M I @ I I S C . A C . I N 6

WHY USE A DEBUGGER?

No need for precognition of what the error might be.

Flexible

 Allows for “live” error checking – no need to re-write and

re-compile when you realize a certain type of error may

be occurring

 Dynamic

 Can view the entire relevant scope

M A I L T O : J L A K S H M I @ I I S C . A C . I N 7

RELUCTANCE TO USING A DEBUGGER

With simple errors, may not want to bother with

starting up the debugger environment.

 Obvious error

 Simple to check using prints/asserts

Hard-to-use debugger environment

Error occurs in optimized code

Changes execution of program (error doesn’t occur

while running debugger)

M A I L T O : J L A K S H M I @ I I S C . A C . I N 8

DEBUGGERS FOR COMPILED LANGUAGES

Debuggers are special programs that can

 Read your executables and connect with the source code

 Maintain runtime order, scope and variables of your

program as it is being executed

 Generally, would like information about source code (not

normally included in compiled executables)

 Work on a lower level

Need special “debug” executables.

M A I L T O : J L A K S H M I @ I I S C . A C . I N 10

FUNCTIONS OF A DEBUGGER

 Disassembly

 Execution Tracing/Stack tracing

 Symbol watches

M A I L T O : J L A K S H M I @ I I S C . A C . I N 11

DISASSEMBLY

 Most basic form of debugging

 Translating machine code into assembly

instructions that are more easily understood by the

user.

 Typically implementable as a simple lookup table

 No higher-level information (variable names, etc.)

M A I L T O : J L A K S H M I @ I I S C . A C . I N 12

EXECUTION TRACING

 Follows the program through the execution.

Users can step through line-by-line, or use

breakpoints.

 Typically allows for “watches” on – registers,

memory locations, symbols

 Allows for tracing up the stack of runtime

errors (back traces)

 Allows user to trace the causes of unexpected

behavior and fix them

M A I L T O : J L A K S H M I @ I I S C . A C . I N 13

SYMBOL INFORMATION

 Problem – a compiler/assembler translates

variable names and other symbols into

internally consistent memory addresses

 How does a debugger know which location is

denoted by a particular symbol?

 We need a “debug” executable.

M A I L T O : J L A K S H M I @ I I S C . A C . I N 14

DEBUG VS. RELEASE BUILDS

Debug builds usually are not optimized

Debug executables contain:

 program's symbol tables

 location of the source file

 line number tags for assembly instructions.

M A I L T O : J L A K S H M I @ I I S C . A C . I N 15

DEBUGGING PARALLEL PROGRAMS

Parallel programs introduce additional issues
like deadlocks and race conditions

Timing

Synchronization

Side-effects
Error behavior may not be repeatable!

Error location too may change in different runs!

Debugging Parallel Programs

16 M A I L T O : J L A K S H M I @ I I S C . A C . I N

https://groups.csail.mit.edu/cag/ps3/lectures/6.189-lecture9-debugging.pdf
https://groups.csail.mit.edu/cag/ps3/lectures/6.189-lecture9-debugging.pdf

TIMING YOUR CODE

/usr/bin/time –p a.out

real 9.95 user 9.86 sys 0.06

You can also time a portion of your code by using

clock() system call!

17 M A I L T O : J L A K S H M I @ I I S C . A C . I N

PROFILERS
What are profilers?

Profilers are tools that help you analyze where your program

spent its time or put its code in memory while in execution.

Time Profilers:

Tells you where your program spent its time

Tells you which functions called which other functions while it

was executing

Space Profilers:

Also called “heap profiling” or “memory profiling”

Space profiling is useful to help you reduce the amount of

memory your program uses.

18 M A I L T O : J L A K S H M I @ I I S C . A C . I N

HOW DO THEY WORK – TIME PROFILER?

Time profiler:

Profiling works by changing how every function in your

program is compiled so that when it is called, it will

stash away some information about where it was called

from.

From this, the profiler can figure out what function

called it, and can count how many times it was called

19 M A I L T O : J L A K S H M I @ I I S C . A C . I N

HOW DO THEY WORK – SPACE PROFILER?

Space Profiler:

Stops execution and examines the stack

Stops execution when a page of memory is allocated

Collects Data about which function asked for the

memory

20 M A I L T O : J L A K S H M I @ I I S C . A C . I N

HOW DO THEY WORK – PROFILED DATA?

 After the data is collected by the profiler, an

interpreter must be run to display the data in an

understandable format

 Can be text-based or graphical

21 M A I L T O : J L A K S H M I @ I I S C . A C . I N

WHY DO I NEED A TIME PROFILER?

Find where the program is spending most of it’s time

 That’s where you should focus optimization efforts

The program performs the proper functions, but is

too slow

 Important in real time systems

 Important to web applications

The program is too large or too complex to analyze

by reading the source

22 M A I L T O : J L A K S H M I @ I I S C . A C . I N

WHY DO I NEED A SPACE PROFILER?

 The program needs to use a fixed amount of memory

 The program is too large to conceive of the overall

memory usage or how often memory requests are

made

 Profilers can show the memory usage of libraries

used by your program

23 M A I L T O : J L A K S H M I @ I I S C . A C . I N

SOME PROFILER EXAMPLES – GPROF

gprof – OpenSource Profiler

(http://www.thegeekstuff.com/2012/08/gpro

f-tutorial/)

compile programs with the –pg option

execute program to generate data

 run gprof to interpret the profiled data

24 M A I L T O : J L A K S H M I @ I I S C . A C . I N

GPROF SAMPLE DATA – FLAT PROFILE

25

Each sample counts as 0.01 seconds.

 % cumulative self self total

 time seconds seconds calls ms/call ms/call name

 33.34 0.02 0.02 7208 0.00 0.00 open

 16.67 0.03 0.01 244 0.04 0.12 offtime

 16.67 0.04 0.01 8 1.25 1.25 memccpy

 16.67 0.05 0.01 7 1.43 1.43 write

 16.67 0.06 0.01 mcount

 0.00 0.06 0.00 236 0.00 0.00 tzset

 0.00 0.06 0.00 192 0.00 0.00 tolower

M A I L T O : J L A K S H M I @ I I S C . A C . I N

GPROF SAMPLE DATA – CALL GRAPH

26

index % time self children called name

 0.00 0.05 1/1 main [2]

[3] 100.0 0.00 0.05 1 report [3]

 0.00 0.03 8/8 timelocal [6]

 0.00 0.01 1/1 print [9]

 0.00 0.01 9/9 fgets [12]

 0.00 0.00 12/34 strncmp <cycle 1> [40]

 0.00 0.00 8/8 lookup [20]

 0.00 0.00 1/1 fopen [21]

 0.00 0.00 8/8 chewtime [24]

 0.00 0.00 8/16 skipspace [44]

M A I L T O : J L A K S H M I @ I I S C . A C . I N

SOME PROFILER EXAMPLES –

SPACE

Massif (http://valgrind.org/docs/manual/ms-

manual.html)

Space Profiler for C and C++

Provides relative space data on 5 different areas:

 Heap blocks

 Heap administration blocks

 Stack sizes

 Code size

 Data size

27 M A I L T O : J L A K S H M I @ I I S C . A C . I N

MASSIF SAMPLE DATA - BASIC

==1012== Total spacetime: 917,098,589 ms.B

==1012== heap: 0.0%

==1012== heap admin: 0.0%

==1012== stack(s): 0.0%

==1012== static code: 44.4%

==1012== static data: 55.3%

28 M A I L T O : J L A K S H M I @ I I S C . A C . I N

MASSIF SAMPLE DATA – SPACE-TIME GRAPH

29 M A I L T O : J L A K S H M I @ I I S C . A C . I N

READING LIST – DEBUGGING &

PROFILING PARALLEL CODES

Debugging and Profiling basics
(https://cvw.cac.cornell.edu/Profiling/debugging_
distributed)

Profiling and optimizing serial and parallel codes
(https://portal.tacc.utexas.edu/c/document_libra
ry/get_file?uuid=fc609b77-b727-4bff-81a4-
d30caa4013d4&groupId=13601)

Identifying bottlenecks in parallel codes
(http://www.it.northwestern.edu/bin/docs/resear
ch/bottlenecks-in-HPC.pdf)

M A I L T O : J L A K S H M I @ I I S C . A C . I N 30

https://cvw.cac.cornell.edu/Profiling/debugging_distributed
http://www.it.northwestern.edu/bin/docs/research/bottlenecks-in-HPC.pdf
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
http://www.it.northwestern.edu/bin/docs/research/bottlenecks-in-HPC.pdf

M A I L T O : J L A K S H M I @ I I S C . A C . I N 31

