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Introduction 

§ Parallelism everywhere  
Ø  Pipelining, Instruction-Level Parallelism 
Ø  Vector Processing 
Ø  Array processors/MPP 
Ø  Multiprocessor Systems 
Ø  Multicomputers/cluster computing 
Ø  Multicores 
Ø  Graphics Processing Units (GPUs) and  other 

Accelerators 



Basic Computer Organization 
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Pipelined Processor 
§ Pipelining instruction execution 

Ø Instrn. Fetch, Decode/Reg.Fetch, Execute, 
Memory and WriteBack 

§ Why pipelined exeuction? 
Ø Improves instruction throughput 
Ø Ideal : 1 instruction every cycle! 
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Pipelined Exeuction 

IF WB MEM EX ID 
IF WB MEM EX ID 

IF WB MEM EX ID 
IF WB MEM EX ID 

•  Execution time of instruction is still 5 cycles, 
but throughput is  now 1 instruction per cycle 

•  Initial pipeline fill time (4 cycles), after 
which 1 instruction completes every cycle 

time 

i1 

i2 

i3 

i4 



Memory Hierarchy 
•  (Pipelined) Instruction execution assumes fetching 

instruction and data from memory in single cycle. 
–  Memory access takes several processor cycles! 

•  Instruction-level parallelism requires multiple instrn. 
and data to be fetched in the same cycle. 

•  Memory hierarchy designed to address this! 
•  Memory hierarchy exploits locality of reference. 

–  Temporal Locality 
–  Spatial Locality 
–  Locality in instruction and data 
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Memory Hierarchy 
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Memory Hierarchy : Caches 

•  Avg. Memory Access Time 
(with one level of cache) 
AMAT = hit time of L1 +  

          miss-rate at L1 *  
                miss-penalty at L1 

•  Avg. Memory Access Time   
AMAT = hit time of L1 +  

          miss-rate at L1 *  
               (hit time of L2 +  

          miss-rate at L2 *  
                miss-penalty at L2) 
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Instruction Level Parallelism 
§ Multiple independent instructions issued/

executed together 
§ Why? 

Ø Improve throughput (Instrns. Per Cycle or 
IPC) beyond 1 

§ How independent instructions are 
identified? 
Ø Hardware – Superscalar processor 
Ø Compiler   – VLIW processor 
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Superscalar Overview 
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Parallelism in Processor 
•  Pipelined processor 
•  Instruction-Level Parallelism 
•  What next? Multicore processors 

–  Multiple processors in a single chip   

•  Why? 
–  To improve performance of a single program  
–  To execute multiple processes on different cores 
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Multicore Processors 
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Multicore Processor 
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Classification of Parallel 
Machines 

Flynn’s Classification: in terms of number of 
Instruction streams and Data streams 
Ø SISD: Single Instruction Single Data 
Ø SIMD: Single Instruction Multiple Data 
Ø MISD: Multiple Instruction Single Data 
Ø MIMD: Multiple Instruction Multiple Data 



SIMD Machines 

•  Vector Processors 
–  Single instruction on multiple data (elements of a 

vector – temporal) 
•  Array Processors 

–  Single instruction on multiple data (elements of a 
vector / array – spatial ) 

•  Modern Processors 
–  AVX / MMX instructions 

•  Graphic Processing Units 
–  Multiple SIMD Cores in each Streaming Processors  
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MIMD Machines 

Programming Models 
•  What programmer 

uses in coding applns. 
•  Specifies synch. And 

communication. 
•  Programming Models: 

–  Shared address 
space, e.g., OpenMP 

–  Message passing, 
e.g., MPI 

Parallel Architecture 
§  Shared Memory 

Ø  Centralized shared 
memory (UMA) 

Ø Distributed Shared 
Memory (NUMA) 

§  Distributed Memory  
Ø A.k.a. Message 

passing 
Ø  E.g., Clusters 
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UMA Architecture 
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NUMA Architecture   
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•  Reduce average latency 
–  automatic replication closer 

to processor 
•  What happens when store & 

load are executed  on 
different processors? 
⇒ Cache Coherence Problem 

P P P 

Caches in Shared Memory 
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Cache Coherence Solutions 

•  Snoopy Protocol: shared bus interconnect where 
all cache controllers monitor all bus activity  
–  Cache controllers to take corrective action based on 

traffic in the interconnect network 

–  Corrective action: update or invalidate a cache block 

•  Directory Based Protocols: Cache controllers 
maintain info. of shared copies of cache block 
–  Send invalidation/update message to copies 
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NUMA Architecture   
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Distributed Memory 
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§  Processors and Memory modules connected to 
each other through Interconnect Network 

§  Indirect interconnects: nodes are connected to 
interconnection medium, not directly to each 
other 
Ø Shared bus, multiple bus, crossbar, MIN 

§  Direct interconnects: nodes are connected 
directly to each other 
Ø Topology: linear, ring, star, mesh, torus, hypercube 
Ø Routing techniques: how the route taken by the 

message from source to destination is decided 

Interconnection Network 
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Accelerators and   
Manycore Architectures  
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Accelerator – Fermi S2050 
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Combining CPU and GPU Arch.  
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What is a Supercomputer? 

•  A hardware and software system that provides 
close to the maximum performance than can 
currently be achieved. 

•  What was a supercomputer a few (5) years ago,  
is probably an order of magnitude slower system 
compared to today’s supercomputer system! 

 
Therefore, we use the term “high performance 
computing” also to refer to Supercomputing! 
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Era of Supercomputing 

•  Introduction of Cray 1 in 1976 
ushered era of Supercomputing 
– Shared memory, vector processing 
– Good software environment 
– A few 100 MFLOPS peak 
– Cost about $5 million 
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Performance of Supercomputer 

•  What are the top 10 or top 500 computers? 
–  www.top500.org 
–  Updated every 6 months 
–  Measured using Rmax of Linpack   (solving Ax = b )  

•  What is the trend? 
Year Performance (GFLOPS) 

#1 #500 
1993 59.7 0.422 
2018 143,500,000  874,800 

~2,397,824 
processors! 2,403,685 x Impr.!! 



How building 
blocks are put 
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The TOP 500 (Nov. 2019) 

Top 500 List : www.top500.org  

Rank Site Manufacturer Computer Country Cores Rmax 
[Pflops] 

Power 
[MW] 

1 Oak Ridge National 
Labs, DOE/SC/ORNL IBM Summit: IBMPower9 22c, 

Nvidia V100,Mellanox EDR USA 2,414,592  148.60 10.1 

2  DOE/NSA/LLNL IBM Sierra: IBMPower9 22c, 
Nvidia V100,Mellanox EDR USA 1,572,480 94.64 7.43 

3 
National 

SuperComputer Center 
in Wux 

NRCPC Sunway TaihuLight Sunway 
SW26010, 260C, 1.45 GHz  China 10,649,600 93.01 15.37 

4 
National 

SuperComputer Center 
in Tianjin 

NUDT 
Tianhe-2, NUDT TH MPP, 

 Xeon E5 2691 and Xeon Phi  
31S1 

China 4,981,760 61.44 18.48 

5 
Texas Advanced 

Computing Centre 
(TACC) 

DELL 
Fronterra, Dell C6420, Intel 

Xeon 8280 28c 2.7GHz, 
Infiniband HDR 

USA 448,448 23.52 2.38 

6 Swiss National 
Supercomputing Cray 

PizDaint  Cray XC-50, 
Xeon E5-2690,  12C (2.6GHz)  

+ NVIDIA Tesla P100 
USA 387,872 21.23 2.30 

7 DOE/NNSA/LANL/SNL Cray Cori, Cray XC-40, Intel Xeon 
E52698, 16c,  Aries USA 979,072 20.16 7.58 

8 AIST, Japan Fujitsu Intel Xeon 6148, 20c, Tesla 
V100 SXM2, Infiniband EDR Japan 391,680 19.88 1.65 
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Supercomputing Systems  & 
Applications are Challenging! 
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Cosmic millennium --  
Astrophysics 

Climate and Weather Modeling 

Computational Fluid Dynamics 

Social Network Analysis 


