Parallelization Principles

R. Govindarajan
SERC, IISc
govind@iisc.ac.in

Overview

" TIntroduction
" Parallelization Steps

" Example
» Shared Address Space
> Distributed Address Space

Acknowledgments:

Slides for this tutorial are taken from presentation materials
available with the book “Parallel Computing Architecture: A
Hardware/Software Approach” (Culler, Singh and Gupta,
Morgan Kaufmann Pub.) and the associated course material.
They have been suitably adapted.

Parallel Programming

" Shared, global, address space, hence
called Shared Address Space

» Any processor can directly reference any
memory location

» Communication occurs implicitly as result of
loads and stores

" Message Passing Architecture
» Memory is private to each node
» Processes communicate by messages

Definitions

" Speedup = Zxec. Time in
UniProcesor /Exec. Time in n processors

" Efficiency = Speedup /n

" Amdahl's Law:

»For a program with s part sequential
execution, speedup is limited by 1/s .

Understanding Amdahl’s Law

Example: 2-phase calculation

> sweep over n x ngrid and do some independent
computation
» sweep again and add each value to global sum

concurrency
I—

n2 n2 Time
(a) Serial

> Serial Execution Time = h2*n?= 2n?2

Understanding Amdahl’s Law

Parallel Execution time:
> Time for first phase = n?/p
» Second phase serialized at global variable = n?;
» Speedup = (2n4/(n?*n4/p)) or at most 2

Improved Parallel Execution
» Localize the sum in p procs and then do serial sum.

> Speedup = (2n%/(2n%/p + p)) & p

<> <4 - <> ra—»

N Q_‘ Q_' .
n2 /p n2 Time (}: (}: p Time

(b) Naive Parallel (¢) Parallel

=
=

concurrency
concurrency

—

—_

Definitions

" Task

»Arbitrary piece of work in parallel computation

»Executed sequentially; concurrency is only across
tasks

»>Fine-grained vs. coarse-grained tasks

" Process (thread)
»Abstract entity that performs the tasks
»Communicate and synchronize to perform the tasks

" Processor
» Physical engine on which process executes

Tasks involved in Parallelizaton

" Tdentify work that can be done in parallel
» work includes computation, data access and I/0

" Partition work and perhaps data among
processes

" Manage data access, communication and
synchronization

Parallelizing Computation vs. Data

" Computation is decomposed and assighed
(partitioned) - task decomposition

» Task graphs, synchronization among tasks

" Partitioning Data is often a natural view
too - data or domain decomposition
»Computation follows data: owner computes
»Grid example; data mining;

Domain Decomposition: Example

" Some computation Moooooooo0o0o
performed on all elts. of 0000000O0O0O©0
the array 0000000000

0 00O0O0O0O0OO0 O

0000000000

for i=z1 fo m 0000000000
forj:lfon 000CO0O00O0O0O0O0
. . : 0 00O0O0O0O0O0O0 O
alij] = ali]+ vi] 0000000000
0000000000

10

Steps in Creating a Parallel Program

" Decomposition of computation into tasks
= Assignment of tasks to processes

" Orchestration of data access, communication,
and synchronization.

" Mapping processes to processors

11

Steps in Creating a Parallel Program

Partitioning
|
| |
D A O M
e Q S r a
c Q S C p
0] OO [h p
m g e [
o O s n | "
o O O m t g
— — e — P — I —
i > n a
t -, t t -
i) i P2 %
0 QO ©
n OO n
Sequential Tasks Processes FELEL Processors
computation program

12

Decomposition

" Tdentify concurrency

" Break up computation into tasks to be divided among
processes
» Tasks may become available dynamically
»No. of available tasks may vary with time

" Goal: Expose available parallelism = enough tasks to
keep all processors busy

13

Assignment

" Specifies how to group tasks together for a process

> Balance workload, reduce communication and
management cost

" Structured approaches usually work well

»Code inspection (parallel loops) or understanding of
application

» Static versus dynamic assignment

" Both decomposition and assignment are usually
independent of architecture or programming model

»But cost and complexity of using primitives may
affect decisions

14

Orchestration

" Goals
»Reduce cost of communication and synch.
»>Preserve locality of data reference
» Schedule tasks to satisfy dependences early
»Reduce overhead of parallelism management

" Choices depend on Programming Model,
Communication abstraction, and efficiency of
primitives

" Architecture should provide appropriate
primitives efficiently

15

Mapping

" Two aspects:
» Which process runs on which particular processor?
» Will multiple processes run on same processor?

= Space-sharing
»Machine divided into subsets, only one app at a time ina
subset

»Processes can be pinned to processors, or left to OS
" System allocation

" Real world
»User specifies some aspects, system handles some

16

High-level Goals

Table 2.1 Steps in the Parallelization Process and Their Goals

Architecture-

Step Dependent? Major Performance Goals
Decomposition Mostly no Expose enough concurrency but not too much
Assignment Mostly no Balance workload
Reduce communication volume
Orchestration Yes Reduce noninherent communication via data
locality

Reduce communication and synchonization cost
as seen by the processor

Reduce serialization at shared resources

Schedule tasks to satisfy dependences early

Mapping Yes Put related processes on the same processor if
necessary
Exploit locality in network topology

17

Example: 6Grid Solver

" Gauss-Seidel (near-neighbor) sweeps to
convergence
>interior n x n points of (n+2) x (n+2) updated in each
sweep
»>difference from previous value computed

»accumulate partial diffs into global diff at end of
every sweep

»check if it has converged
= o within a tolerance parameter
> updates array and iterate

18

Grid solver (Simple Version)

fori=1ton
e o006 0 00 00 O for j=1ton
@ OO0 0 O0O0O0OO0 @ (
@ OO0 0 O0O0OO0OO0 @ . B
® 00090000 B[I,J]f 0.-2*(4[',\].]*
® 0O 0O 050<0 0O O O @ ALi-1,j]+ ALi+1,j]+
@ OO0 06 00O0O0 @ Ali j-11+ A[i j+1]);
@ OO 00 OC O OO0 @ diff += abs(B[i,j] - A[i.j]):
@ OO0 0 00 OO0 @ }
@ 000 0O0O0O0O0 @ fori=11on
© @ @ @ 0 06 0 @ 0 O for j=1ton

Ali,j]=B[i,j]:

19

Sequential Version

1. intn; /*size of matrix: (n + 2-by-n + 2) elements*/
2. float **A, diff = O;

3. main()

4. begin

B. read(n) ; /*read input parameter: matrix size*/

6. A <— malloc (a 2-d array of (n+2) x (n+2) doubles);
7. B < malloc (a 2-d array of (n+2) x (n+2) doubles);

8. initialize(A); /*initialize the matrix A somehow™/
9. Solve (A); /*call the routine to solve equation™/
10. end main

20

Sequential Version (contd.)

10. procedure Solve (A) /*solve the equation system*/

11. float **A; /*A is an (n + 2)-by-(n + 2) array*/

12. begin

13. int i, j, done = O;

14, float diff = O, temp:

15. while (ldone) do /*outermost loop over sweeps™/

16. diff = O; /*initialize maximum difference to 0*/

17. for i < 1 to n do/*sweep over non-border points of grid*/
18. for j < 1 tondo

19. Bi,j] < 0.2 * (A[i,j] + Ali.j-1] + A[i-1,j] +

20. Ali,j+11 + A[i+1,j]); /*compute average*/
21. diff += abs(B[i.j] - A[i,j]):

22. end for

23. end for

24. if (diff/(n*n) < TOL) then done = 1;

25. else Copy_Array (A < B)

26. end while

27. end procedure

Decomposition & Assignment

fori=1ton " Decomposition
for j=1ton > Both i and j loops can be
(parallelized - no data
dependences
Bli.jl=0.2* (A[i,j]+ » Each grid point can be a
Ali-1,j1+ A[i+1,j]+ task
Ali j-11+ A[i j+1]); > To compute diff, some
diff += abs(B[i,j] - A[ij]): coordination would be
el
} r.equme |
I P [. " Assignment

for j=1ton > Each grid point
Ali.j1= B[i.j]: » Each row or column
> A group of rows or columns

22

Grid solver (Update-in-place Version)

foriz1lton
0O 00 000000 0 0 for j=1ton
O 000 O0O0O0 OO0 O
OO0 O0OO0OO0OO0 OO0 O { .
0 000900000 temp = A[ijI.
O O O @&50<® O O O O Ali,jl1=0.2* (A[i,j]+
O 00000000 0 Ali-1,j1+ ALi+1,j]+
00 0O0O0O0O0O0OO0 O Ali,j-11+ A[i j+1]).
0 00000000 O diff += abs(temp - A[i,j]).
O 00 00000 0 0 }
O 000000 OO0 0 O

23

Decomposition & Assignment

" Decomposition
> Dependence on both
i and j loops
> Each grid point can be
a task
> Need point-to-point
synchronization --
Very expensive
" Assignment

» Grid points along
diagonal form a task

» Restructure loop and
global synchronization

> Load imbalance
24

Exploiting Application Knowledge

" Reorder grid traversal: red-

black ordering

" Red sweep and black sweep
are each fully parallel:

" Global synch between them
(conservative but convenient)

" Different ordering of
updates: may converge
slower

I T
:

Red-Black Parallel Version

10. procedure Solve (A) /*solve the equation system*/

11. float **A; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, done = O;
14, float diff = O, temp:
15. while (ldone) do /*outermost loop over sweeps™/
16. diff = O; /*initialize maximum difference to 0*/
17. forall i < 1 to n step 2 do/*sweep black points of grid*/
18. forall j < 2 to n+1 step 2 do
19. temp = A[i,j]; /*save old value of element*/
20. Ali,jl < 0.2 * (A[i,j] + A[i.j-1] + A[i-1,j] +
21. Ali,j+11 + Ali+1,j1): /*compute average*/
22. diff += abs(A[i,j] - temp):
23. end forall
24. end forall
24a /% similarlym Ensure
25. if (diff/(n*n) < TOL) then done = 1; computation for
26. end while all black points
27. end procedure
are completel

26

Red-Black Parallel Version (contd.)

" Decomposition into elements: degree of concurrency
n?/2; 2 global synchronizations per n“ computation
® forall loop to express the parallelism.

" Too fine-grain parallelism = group tasks to form a
process.

" Decompose into rows? Computation vs.
communication overhead?

27

Assignment

= Static assignment: decomposition into rows

- Block assignment of rows: Rows i*(n/p), ..., (i+1)*(n/p) - 1
are assigned to process i/

- Cyclic assignment of rows: process / is assigned rows
I, I+p, I+2p ...

= Dynamic assignment
= get a row index, work on the row, get a new row, ..

= Concurrency? Volume of Communication?

28

Assignment (contd.)

000 00000000
000 0000 OVNOOO o
000 00000000
000 0000000
000 0000000
000 0000000
o000 0000000
000 0000000
000 00000000
o000 00000000
000 0000000
000 00000000

§

PO
—t—

1 | | |
AN
g o o

™
o

Orchestration

" Different for different programming
models/architectures

»Shared address space
= Naming: global addr. Space
= Synch. through barriers and locks
»Distributed Memory /Message passing
= Non-shared address space
= Send-receive messages + barrier for synch.

30

Shared Memory Version

1.

2a.
2b.

3.
4.
5.

ba.

6.

6a.

7.
8.

8a.

9.

int n, nprocs; /* matrix: (n + 2-by-n + 2) elts.*/

float **A, diff = O;

LockDec (diff_lock):;

BarrierDec (barrierl);

main()

begin
read(n) ;: /*read input parameter: matrix size*/
Read (nprocs):

A < g_malloc (a 2-d array of (n+2) x (n+2) doubles);

Create (nprocs -1, Solve, A);

initialize(A); /*initialize the matrix A somehow™/
Solve (A); /*call the routine to solve equation*/
Wait_for_End (nprocs-1);

end main

31

Shared Memory Version

10. procedure Solve (A) /*solve the equation szls'rem*/
-by-

11. float **A; /*A is an (n + 2) */
12. begin * No red-black, simply ignore
13. int i, j, pid, done = O; dependences within sweep
i::a float mYdr':;B;g?;“PJ_ 1 + (n/nprocsypid: | Simpler asynchronous ver'sioln,
14b V] & Gl o i e may take longer to convergel
15. while (/done) do /*outermost loop over sweeps™/
16. mydiff = diff = 0; /*initialize local difference to 0*/
16a. Barrier (barrierl, nprocs); £)
17. for i < mybeg to myend do/*sw -
ig f°f‘T\i <1 ;0[."_]do / d value of ol Why do we need

: emp = A[i,j]. /*save old value of ele - e
20. ATl < O3 ™ (ALLI] + Al j-11 + AL [is barrier:
21. Ali,j+1] + A[i+1,j]): /*co Y,
22. mydiff += abs(A[i,j] - temp);
23. end for
24. end for
24a [] D\
24b. Reduce (mydif, diff):; /
24c
24d. barrier (barrierl, nprocs): WhY do we neoe d
25. if (diff/(n*n) < TOL) then done = 1; this barrier?
26. end while "y

27. end procedure

Shared Memory Program : Remarks

" done condition evaluated redundantly by all
" Each process has private mydiff variable

" Most interesting special operations are for
synchronization provided by LOCK-UNLOCK around
criticalsection

> Set of operations we want to execute atomically

»accumulations into shared diff have to be mutually
exclusive

" Good global reduction?

33

Message Passing Version

" Cannot declare A to be global shared array

»compose it from per-process private arrays

»usually allocated in accordance with the assignment of
work -- owner-compute rule

= process assighed a set of rows allocates them locally

" Structurally similar o SPMD Shared Memory
Version
" Orchestration different

»data structures and data access/naming
»communication
»synchronization

" Ghost rows
34

Data Layout and Orchestration

00000000000
e0ccc0c0c0co0ooe0 et eTeeees
00000000000 T
000000000000 >0 © © © © © 0 000 00O
©0 0606060606000 00 0000000000 0 O
000000000 00O "0 0000000000 O
00000000000 00 00000000O0CO0
00000000000 00000000000 O
000000000000“.>
00000000000

0 00000000 0 0

=X BN BN BN BN BN BN BN BN BN BN BN

00000000000

O 000000000 0 O0-
Data partition allocated per processor
Add ghost rows to hold boundary data ©0 000000000 0

1
Send edges to neighbors
Receive into ghost rows

Compute as in sequential program

35

Messa_ge Passin_g Version

1. int n, nprocs; /* matrix: (n + 2-by-n + 2) elts.*/

2. float **myA;

3. main()

4. begin

5. read(n) ;: /*read input parameter: matrix size*/

5a. read (nprocs);

/* 6. A < g_malloc (a 2-d array of (n+2) x (n+2) doubles); */
6a. Create (nprocs -1, Solve, A):

/* 7. initialize(A); */ /*initialize the matrix A somehow™/
8. Solve (A); /*call the routine to solve equation*/

8a. Wait_for_End (nprocs-1);
9. end main

36

Message Passin_g Version

10.
11.
12.
13.
14

14a.
14b.
14c.

14d.

15.
16.

16a.
16b.
16¢.
16d.

16e.

procedure Solve (A) /*solve the equation system*/

float A[n+2][n+2]; /*A is an (n + 2)-by-(n + 2) array*/

begin

int i, j, pid, done = O;
float mydiff, temp;
myend = (n/nprocs) ;
myA = malloc (array of ((n/nprocs)+2) x (n+2) floats):
If (pid == 0)
Initialize (A)
GetMyArray (A, myA); /* get n x (n+2) elts. from proess O */
while (ldone) { /*outermost loop over sweeps™/
mydiff = 0. /*initialize local difference to 0*/
if (pid != 0) then
SEND (&myA[1,0] , n*sizeof(float), (pid-1), row):
if (pid != nprocs-1) then
SEND (&myA[myend,0], n*sizeof(float), (pid+1), row);
if (pid != 0) then
RECEIVE (&myA[0,0], n*sizeof(float), (pid -1), row);
if (pid != nprocs-1) then
RECEIVE (&myA[myend+1,0], n*sizeof(float), (pid -1), row):

37

Message Passing Version - Solver

12 .begin

15. while (Idone) do /*outermost loop over sweeps*/

17. for i< 1 to myend do/*sweep for all points of grid*/

18. for j <~ 1 to ndo

19. temp = myAl[i,j]: /*save old value of element*/
20. myA[i,j] < O. 2 * (myA[i,j] + myA[n}' 1] +myA[i-1,j] +
21. myA[i,j+1] + myA[i+1,j]) *compute average™*/
22. m dlff += abs(myAl[i,j] - temp):

23. end

24. end for

24a if (pid != 0) then

24b . SEND (mydif, sizeof (float), O, DIFF);

24c. RECEIVE (done, sizeof(int), O, DONE);

24d. else

24e. for k € 1 to nprocs-1 do

24f . RECEIVE (tempdiff, sizeof(float), k , DIFF);
24g. mydiff += tempdiff;

24h. Endfor

24i. if (diff/(n*n) < TOL) then done = 1;

24j. for k € 1 to nprocs-1 do

24k . SEND (done, sizeof(float), k , DONE);

26. end while

27 .end procedure 38

Message Passing Version : Remarks

" Communication in whole rows, not element at a time

" Code similar, but indices/bounds in local rather than global
space
" Synchronization through sends and receives
» Update of global diff and event synch for done condition
» Could implement locks and barriers with messages

" Can use REDUCE and BROADCAST library calls to simplify
code

= Communication done at beginning of iteration,
synchronization only between neighboring processes

39

Orchestration: Summary

® Shared address space
» Shared and private data explicitly separate
»Communication implicit in access patterns
» Synchronization via atomic operations on shared data

» Synchronization explicit and distinct from data
communication

" Message passing
»Data distribution among local address spaces needed
»No explicit shared structures (implicit in comm. patterns)
»Communication is explicit

» Synchronization implicit in communication (at least in
synch. case)

40

