

Big Data Platforms

Yogesh Simmhan

simmhan@iisc.ac.in

Slide Credits:

- https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf
- <https://www.slideshare.net/deanchen11/scala-bay-spark-talk>
- <https://databricks-training.s3.amazonaws.com/slides/advanced-spark-training.pdf>
- Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, M. Zaharia, et al., NSDI 2012
- <http://spark.apache.org/docs/latest/programming-guide.html>

©Department of Computational and Data Science, IISc, 2016

This work is licensed under a [Creative Commons Attribution 4.0 International License](#)

Copyright for external content used with attribution is retained by their original authors

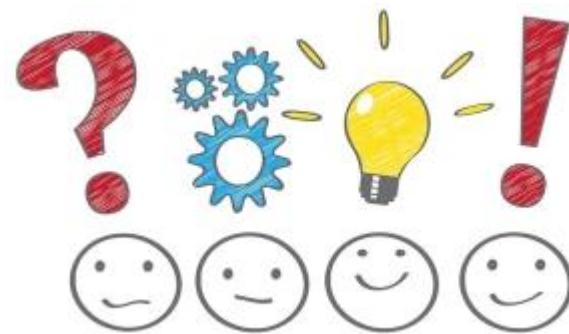
What is Big Data?

The term **is** fuzzy ... *Handle with care!*

So...What is Big Data?

Data whose **characteristics** exceeds the capabilities of conventional *algorithms, systems and techniques* to derive useful **value**.

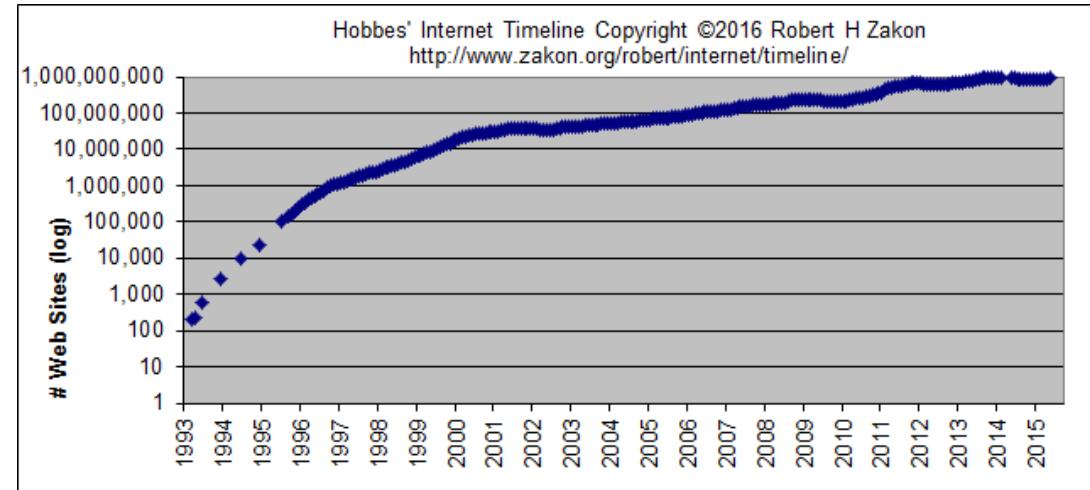
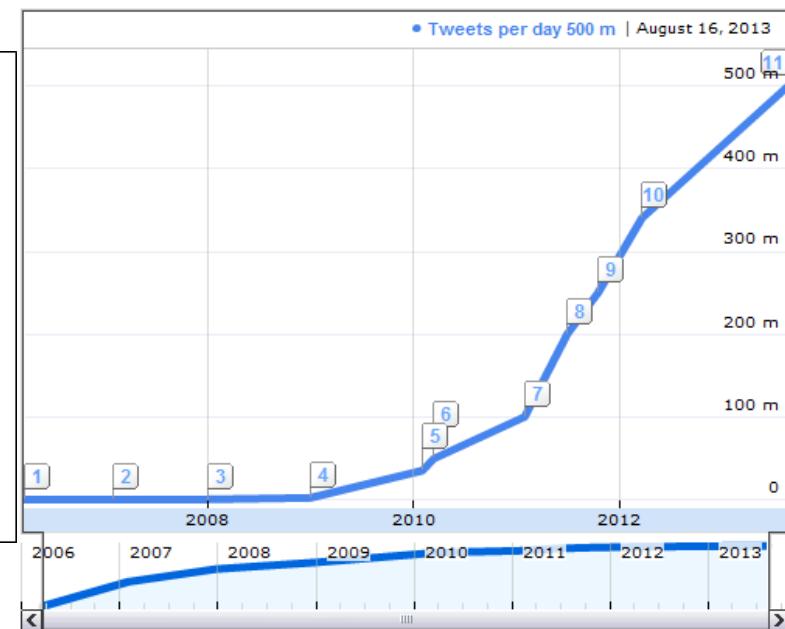
<https://www.oreilly.com/ideas/what-is-big-data>



And, where does Big Data come from?

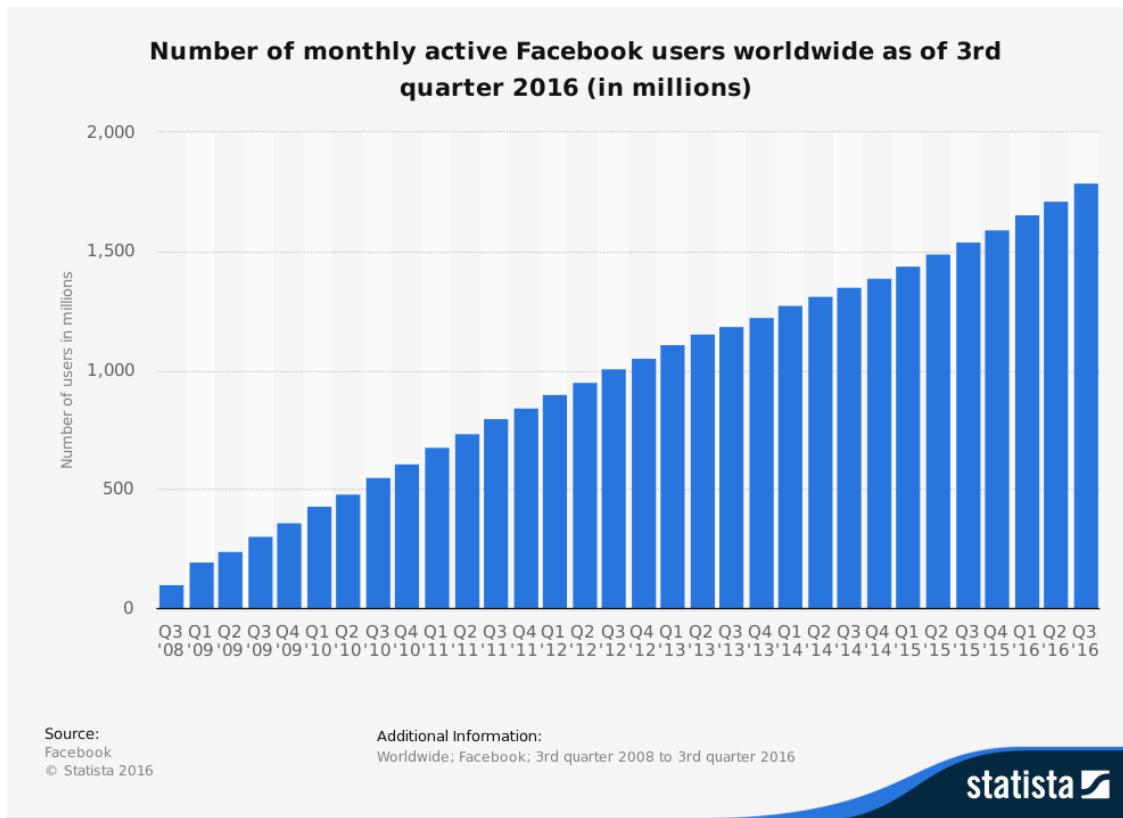
Web & Social Media

- Web search, Social Networks & Micro-blogs

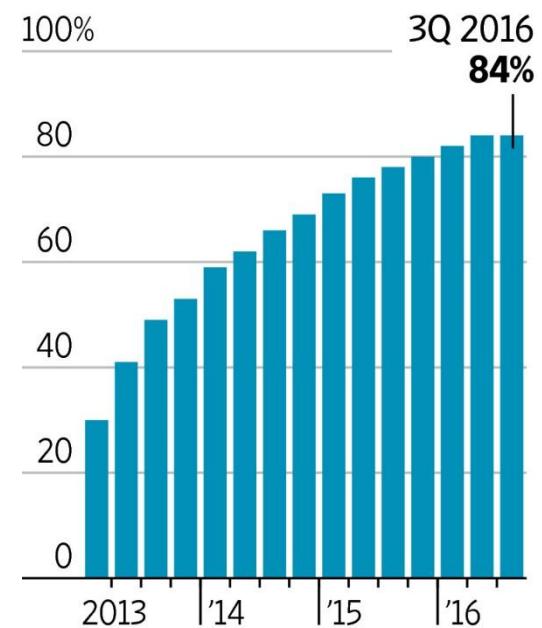


Web & Social Media

■ Social Networks & Micro-blogs



Facebook's mobile ad revenue as a share of total ad revenue



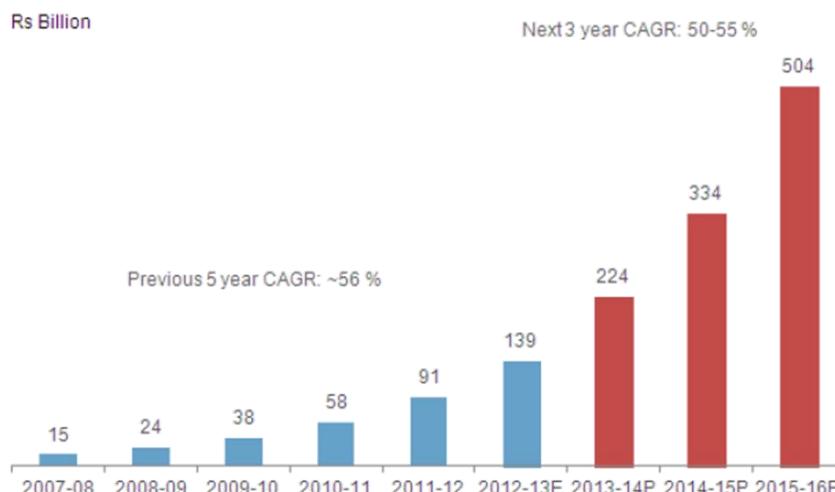
Source: the company
THE WALL STREET JOURNAL.

1.79 billion monthly active users as of September 30, 2016

Enterprises & Government

■ Online retail & eCommerce

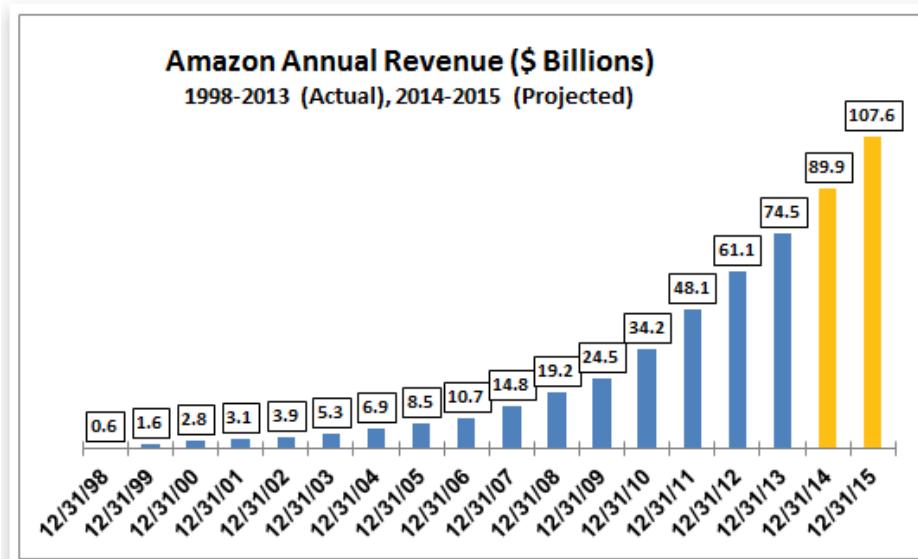
Online retail market size and growth



Source: CRISIL Research

<http://blogs.ft.com/beyond-brics/2014/02/28/online-retail-in-india-learning-to-evolve/>

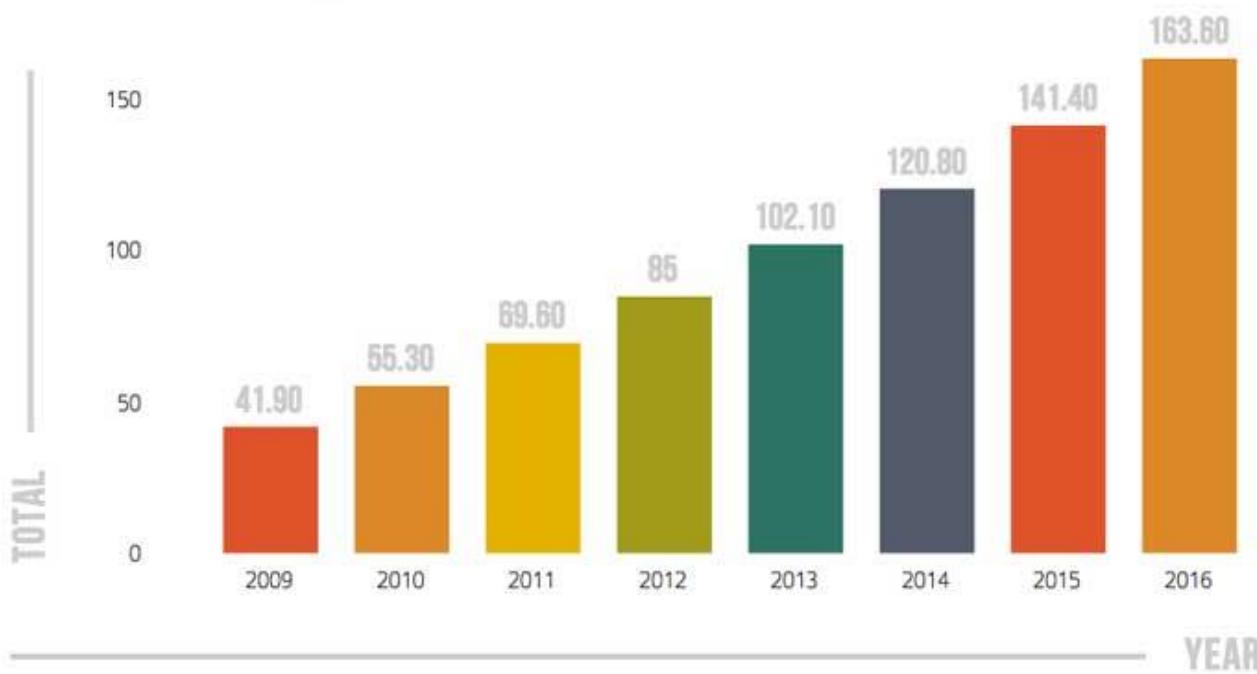
Amazon Annual Revenue (\$ Billions)
1998-2013 (Actual), 2014-2015 (Projected)



Enterprises & Government: Finance

■ Mobile Transactions & FinTech

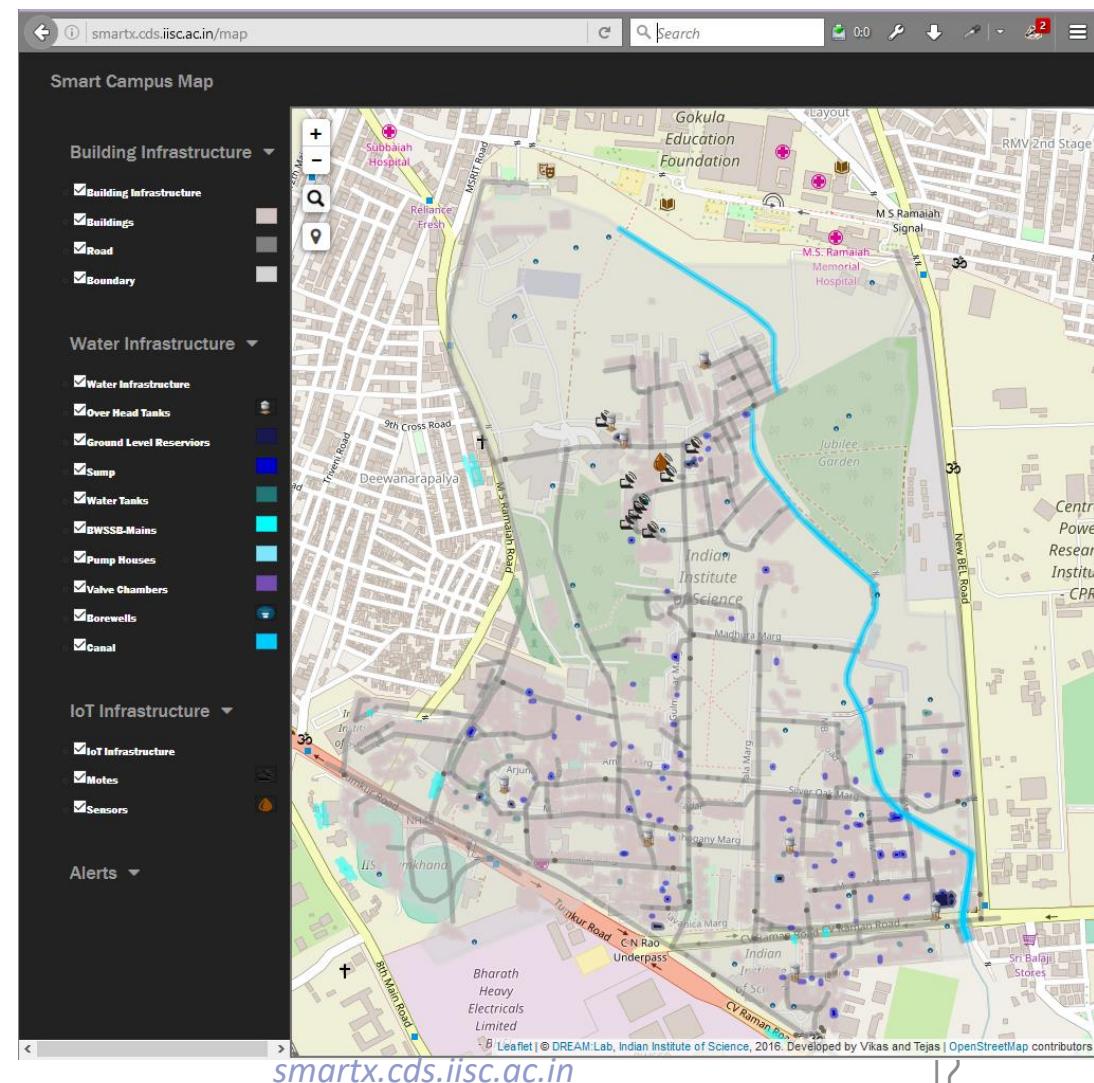
ASIA/PACIFIC (USERS IN MILLIONS)



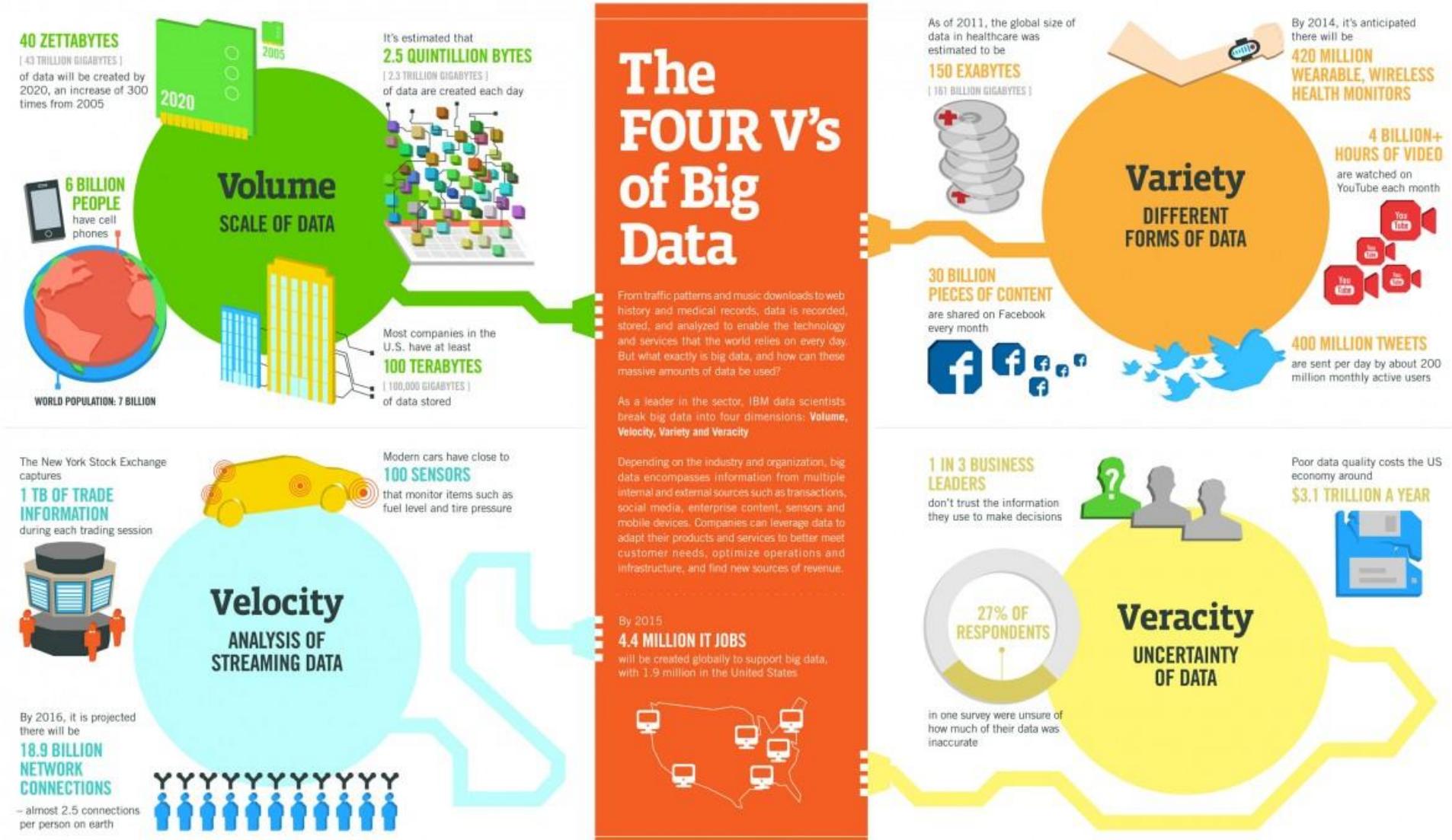
Since November 8, 2016, Paytm has surpassed its metrics -tripling *transactions per day* to 7.5 million

Internet of Everything

- Personal Devices
 - ▶ Smart Phones, Fitbit
- Smart Appliances
- Smart Cities
 - ▶ Power, Water, Transportation, Environment
- Smart Retail
- Millions of sensor data streams



Why is Big Data Difficult?

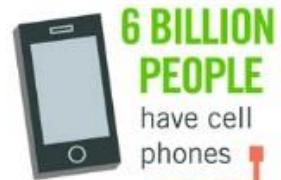
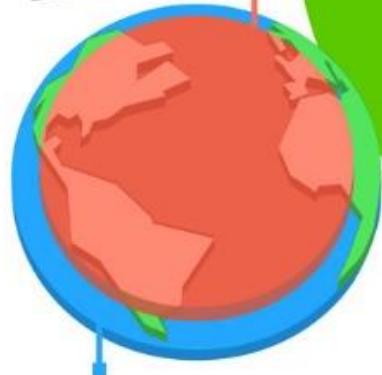


40 ZETTABYTES

[43 TRILLION GIGABYTES]

of data will be created by 2020, an increase of 300 times from 2005.

Volume SCALE OF DATA

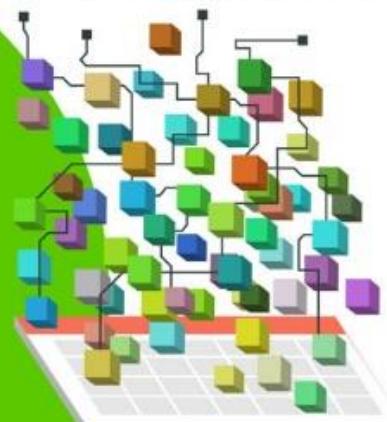


It's estimated that

2.5 QUINTILLION BYTES

[2.3 TRILLION GIGABYTES]

of data are created each day



Most companies in the U.S. have at least

100 TERABYTES[100,000 GIGABYTES]
of data stored

The New York Stock Exchange
captures

1 TB OF TRADE

Modern cars have close to

100 SENSORS

that monitor items such as

The FOUR of Big Data

From traffic patterns and medical history and medical records to stored, and analyzed to enable and services that the world. But what exactly is big data? massive amounts of data in

As a leader in the sector, we break big data into four categories: Velocity, Variety and Veracity.

Depending on the industry, big data encompasses information from both internal and external sources.

WORLD POPULATION: 7 BILLION

Most companies in the U.S. have at least **100 TERABYTES** [100,000 GIGABYTES] of data stored

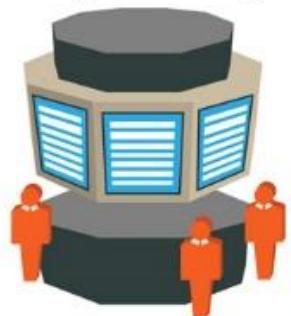
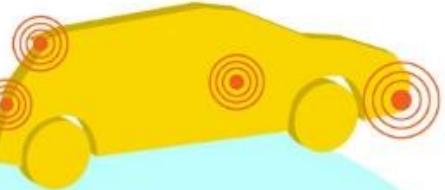
and services that the v
But what exactly is big
massive amounts of data

As a leader in the sec
break big data into fo
Velocity, Variety and Ver

The New York Stock Exchange captures

1 TB OF TRADE INFORMATION

during each trading session



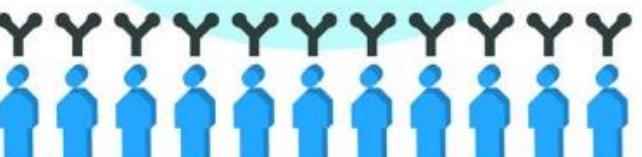
Modern cars have close to **100 SENSORS** that monitor items such as fuel level and tire pressure

Velocity ANALYSIS OF STREAMING DATA

By 2016, it is projected there will be

18.9 BILLION NETWORK CONNECTIONS

– almost 2.5 connections per person on earth



By 2015

4.4 MILLION IT JO

will be created globally with 1.9 million in the

DATA V'S big data

and music downloads to web records, data is recorded, to enable the technology world relies on every day. data, and how can these data be used?

ector, IBM data scientists our dimensions: **Volume**, **Velocity**

industry and organization, big formation from multiple sources such as transactions, user content, sensors and

As of 2011, the global size of data in healthcare was estimated to be

150 EXABYTES

[161 BILLION GIGABYTES]

**30 BILLION
PIECES OF CONTENT**

are shared on Facebook every month

**1 IN 3 BUSINESS
LEADERS**

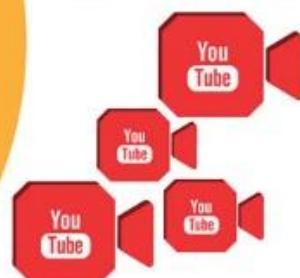
don't trust the information

By 2014, it's anticipated there will be

**420 MILLION
WEARABLE, WIRELESS
HEALTH MONITORS**

**4 BILLION+
HOURS OF VIDEO**

are watched on YouTube each month



400 MILLION TWEETS

are sent per day by about 200 million monthly active users

Variety
DIFFERENT
FORMS OF DATA

Poor data quality costs the US economy around

\$3.1 TRILLION A YEAR

every month
world relies on every day.
ata, and how can these
be used?

or, IBM data scientists
er dimensions: **Volume**,
ity

try and organization, big
rmation from multiple
ces such as transactions,
content, sensors and
es can leverage data to
ervices to better meet
imize operations and
ew sources of revenue.

S
o support big data,
United States

400 MILLION TWEETS
are sent per day by about 200
million monthly active users

1 IN 3 BUSINESS LEADERS

don't trust the information
they use to make decisions

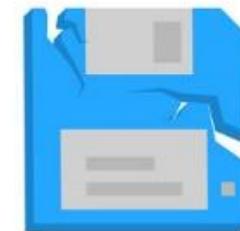
**27% OF
RESPONDENTS**

in one survey were unsure of
how much of their data was
inaccurate

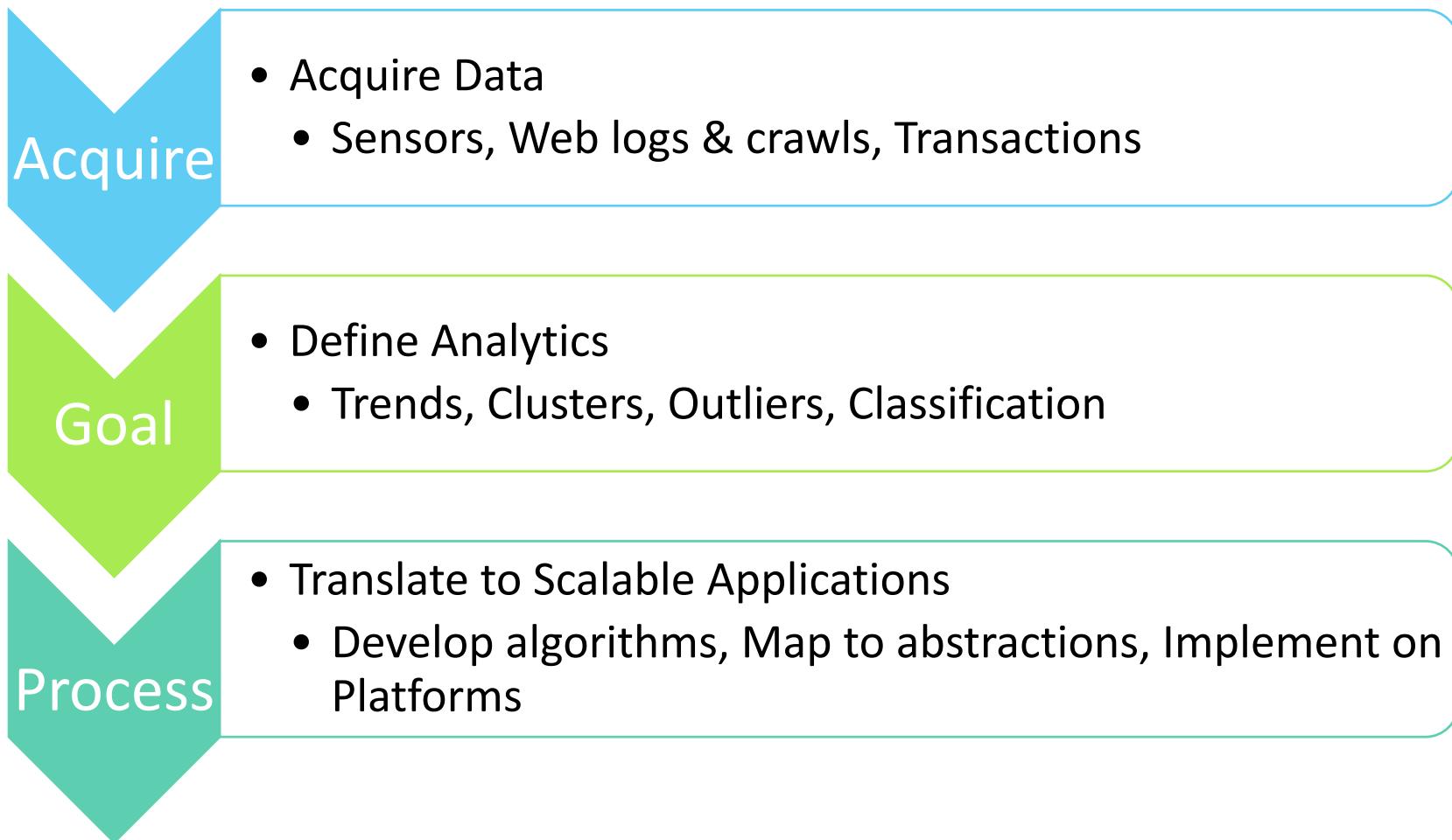
Veracity UNCERTAINTY OF DATA

Poor data quality costs the US
economy around

\$3.1 TRILLION A YEAR



Data Analysis Lifecycle



Data Platforms

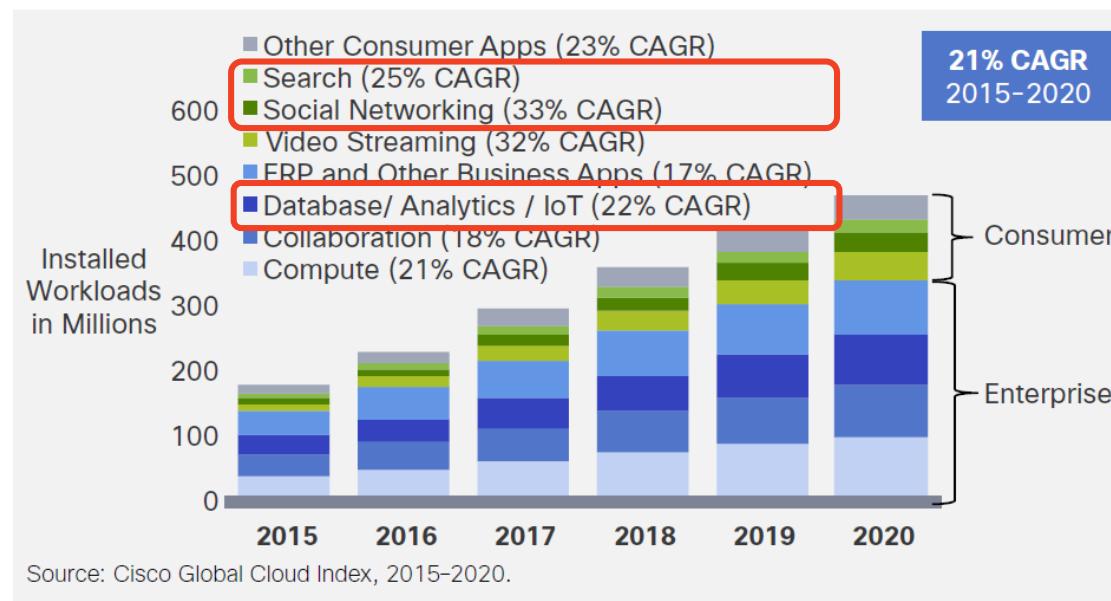
- Acquire, manage, process Big Data
- At large scales
- To meet application needs

Distributed Systems

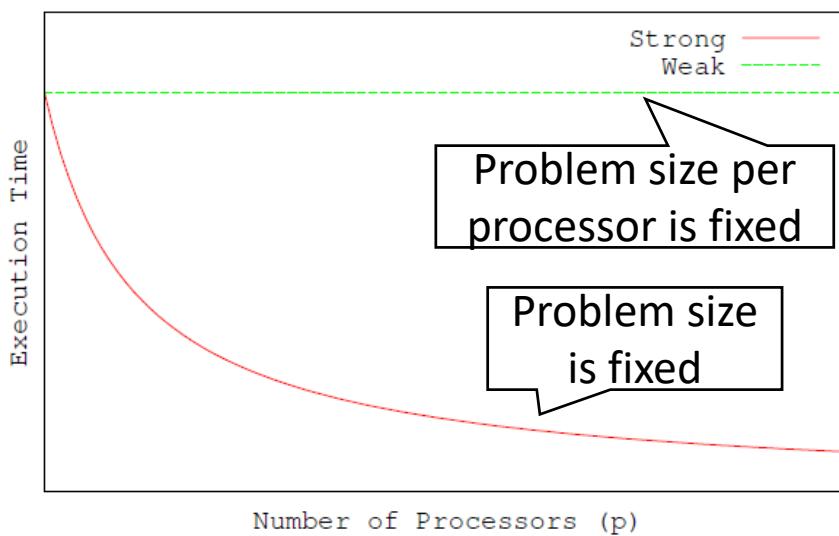
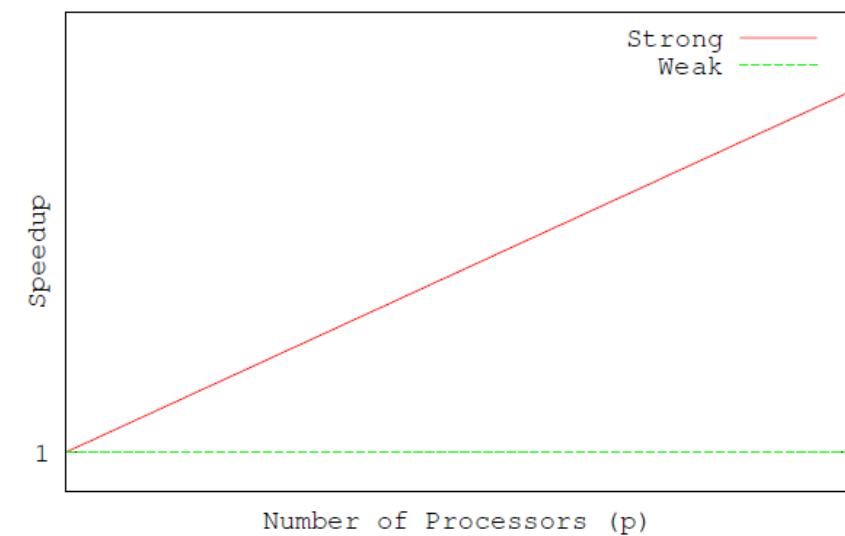
- Distributed Computing
 - ▶ Clusters of machines
 - ▶ Connected over network
- Distributed Storage
 - ▶ Disks attached to clusters of machines
 - ▶ Network Attached Storage
- *How can we make effective use of multiple machines?*
- **Commodity** clusters vs. **HPC** clusters
 - ▶ Commodity: Available off the shelf at large volumes
 - ▶ Lower Cost of Acquisition
 - ▶ Cost vs. Performance
 - Low disk bandwidth, and high network latency
 - CPU typically comparable (Xeon vs. i3/5/7)
 - Virtualization overhead on Cloud
- *How can we use many machines of modest capability?*

Growth of Cloud Data Centers

Figure 17. Global Data Center Workloads by Applications



Ideal Strong/Weak Scaling



Scalability

- Strong vs. Weak Scaling
- **Strong Scaling:** How the performance varies with the # of processors for a *fixed total problem size*
- **Weak Scaling:** How the performance varies with the # of processors for a *fixed problem size per processor*
 - ▶ Big Data platforms are intended for “Weak Scaling”

Ease of Programming

- Programming distributed systems is difficult
 - ▶ Divide a job into multiple tasks
 - ▶ Understand dependencies between tasks: Control, Data
 - ▶ Coordinate and synchronize execution of tasks
 - ▶ Pass information between tasks
 - ▶ Avoid race conditions, deadlocks
- Parallel and distributed programming models/languages/abstractions/platforms try to make these easy
 - ▶ E.g. Assembly programming vs. C++ programming
 - ▶ E.g. C++ programming vs. Matlab programming

Availability, Failure

- Commodity clusters have lower reliability
 - ▶ Mass-produced
 - ▶ Cheaper materials
 - ▶ Smaller lifetime (~3 years)
- *How can applications easily deal with failures?*
- *How can we ensure availability in the presence of faults?*

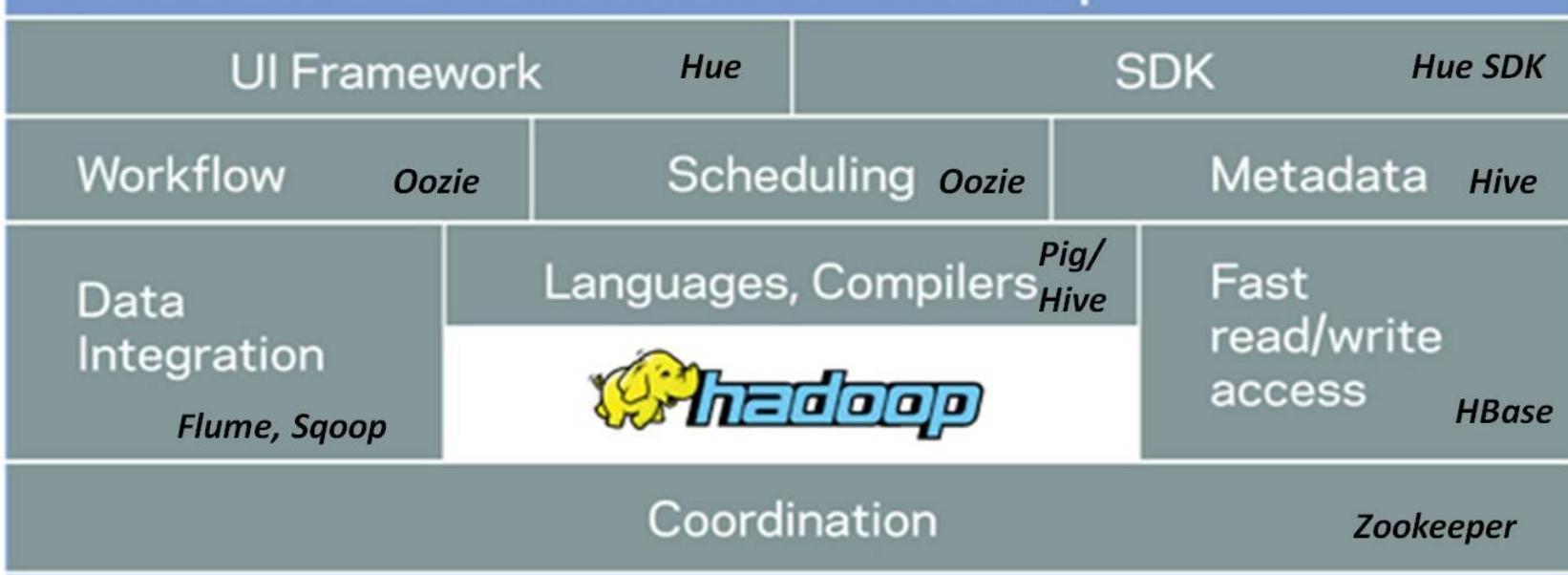
Early Technologies

- **MapReduce** is a distributed data-parallel programming model from Google
- MapReduce works best with a distributed file system, called **Google File System (GFS)**
- **Hadoop** is the open source framework implementation from Apache that can execute the MapReduce programming model
- **Hadoop Distributed File System (HDFS)** is the open source implementation of the GFS design
- **Elastic MapReduce (EMR)** is Amazon's PaaS

Platforms...Think in terms of Stacks

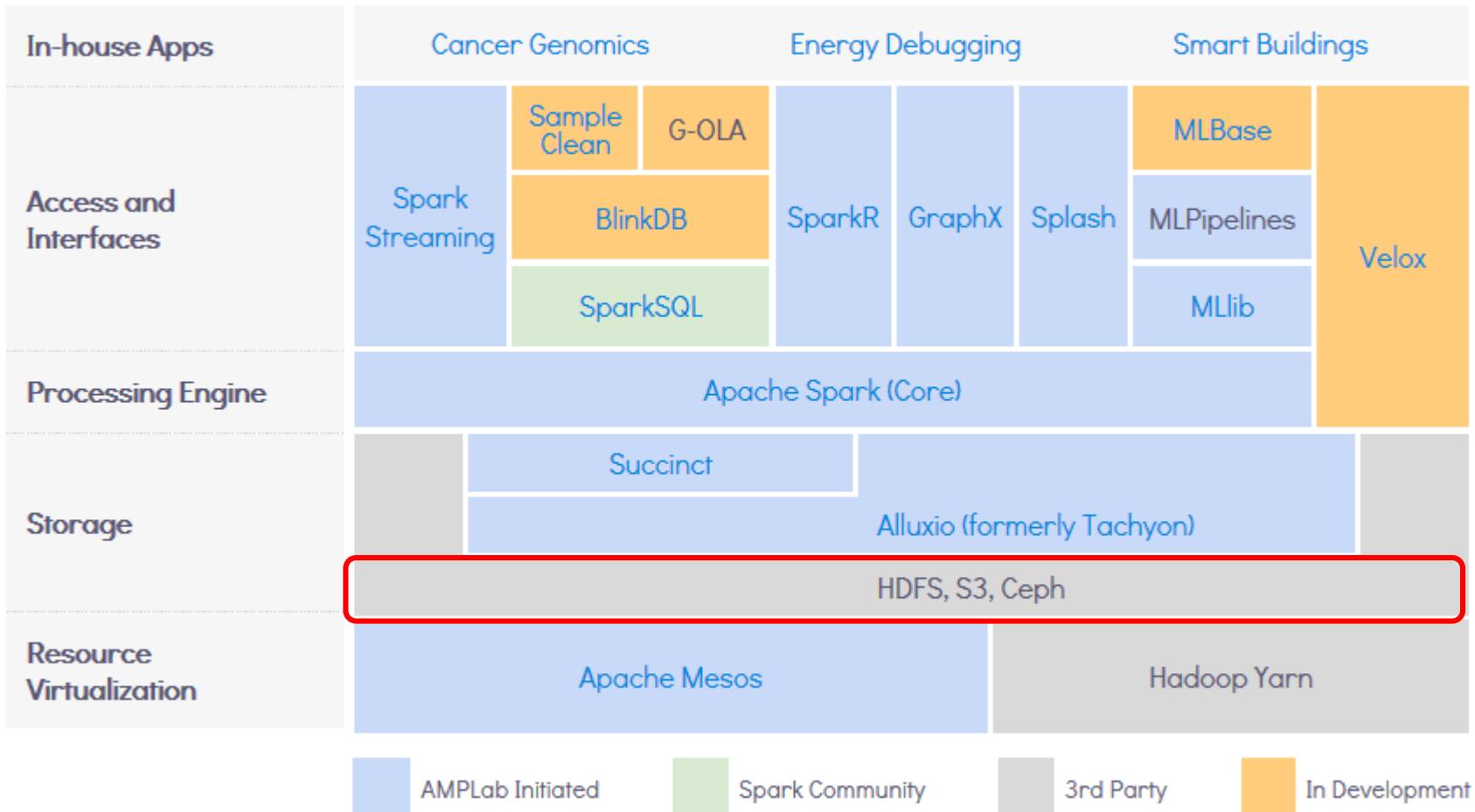
Cloudera

Cloudera's Distribution for Hadoop



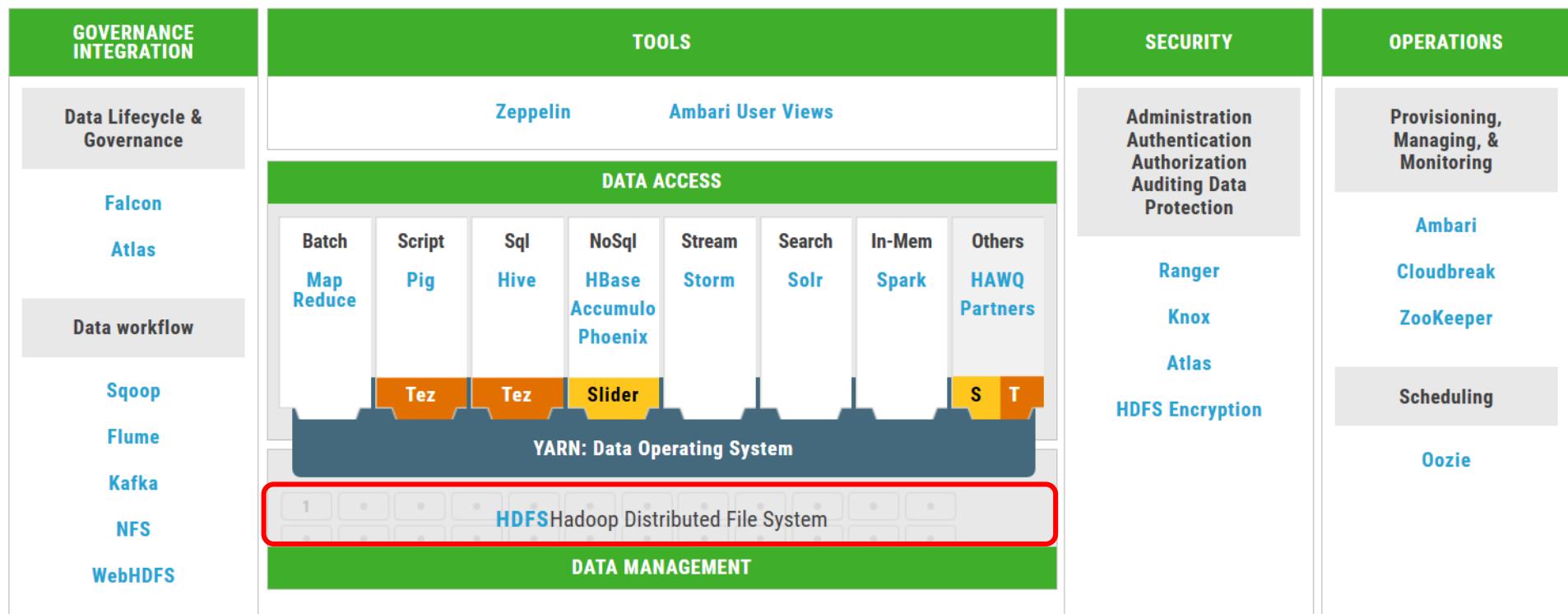
Platforms...Think in terms of Stacks

BDAS



Platforms...Think in terms of Stacks

HortonWorks



Apache Spark

Slides & Additional Reading Courtesy

https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf

Resilient Distributed Datasets, Matei Zaharia

<http://spark.apache.org/docs/2.1.1/programming-guide.html>

<http://spark.apache.org/docs/latest/api/java/index.html>

<https://www.gitbook.com/book/jaceklaskowski/mastering-apache-spark/details>

Apache Spark Internals, Pietro Michiardi, Eurecom

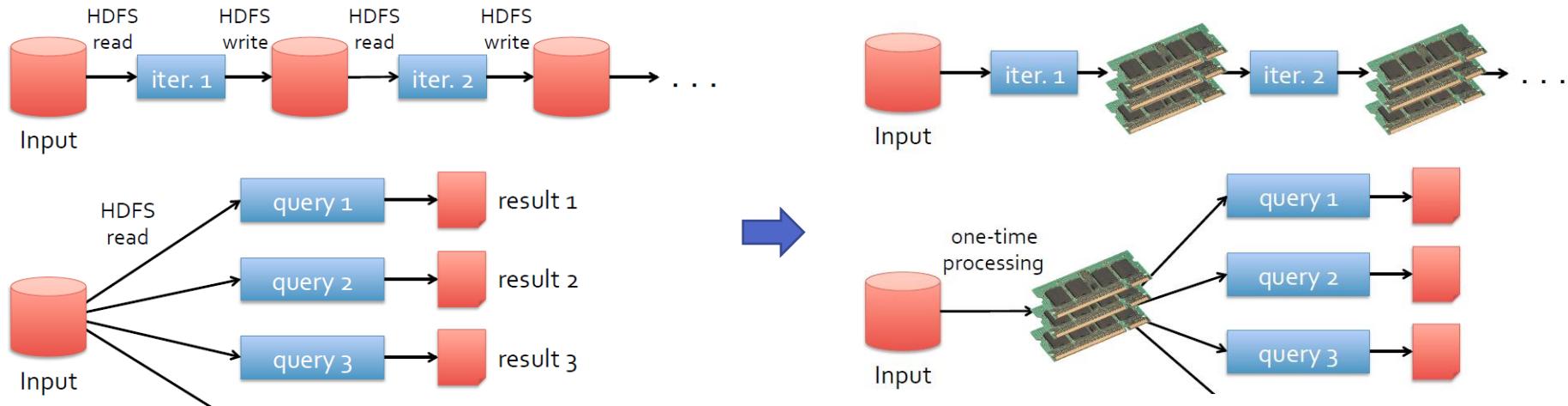
Why Spark?

- Ease of language definition
 - ▶ Typing, dataflows,
 - ▶ But Pig, Hive, HBase, etc. give you that

- Better performance using “In memory” compute
 - ▶ Multiple stages part of same job
 - ▶ Lazy evaluation, caching/persistence

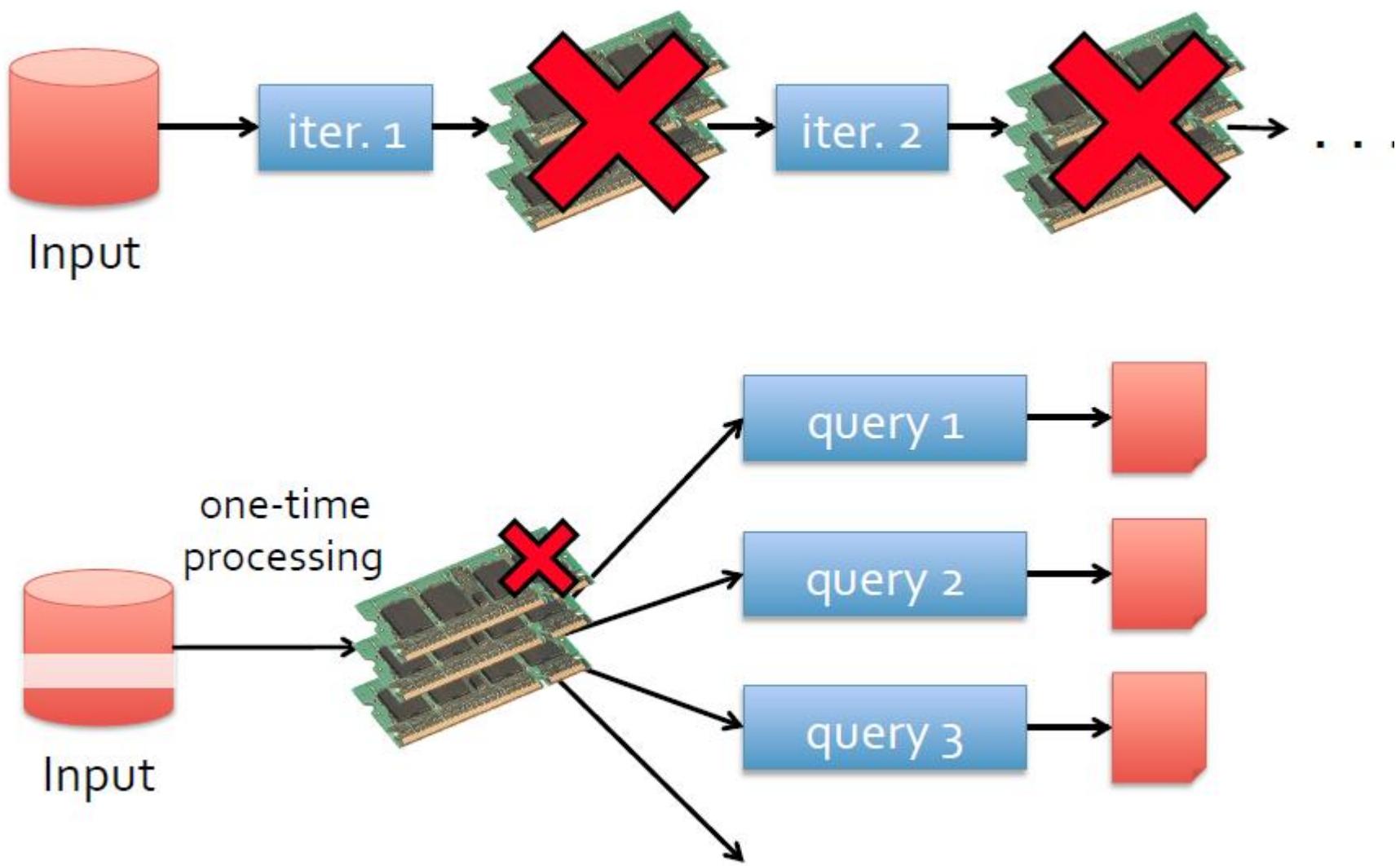
In-memory computation

- Operate on data in (distributed) memory
 - ▶ Allows many operations to be performed locally
 - ▶ Write to disk only when data sharing required across workers
- This is unlike others like Hadoop Map/Reduce



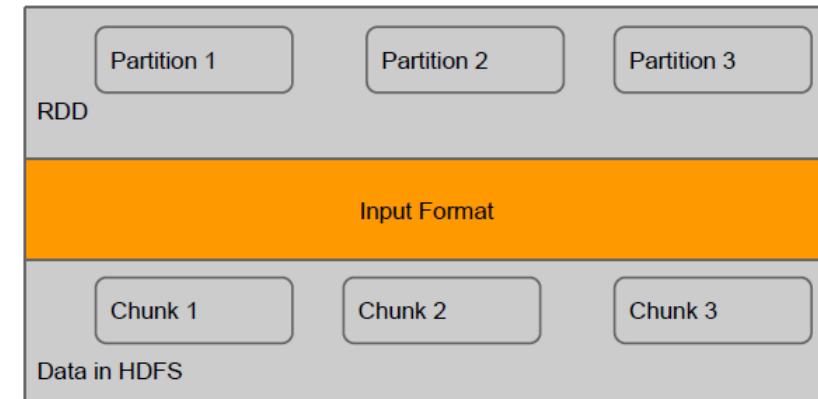
RDD: The Secret Sauce

- RDD: Resilient Distributed Dataset
 - ▶ Immutable, partitioned collection of tuples
 - ▶ Operated on by *deterministic* transformations
 - Object-oriented flavor
 - RDD.operation() → RDD
- Recovery by re-computation
 - ▶ Maintains *lineage* of transformations
 - ▶ Recompute missing partitions *if failure happens*
 - ▶ Not possible/not automatic in Pig
- Allows caching & persistence for *reuse*



RDD Partitions

- RDD is internally a collection of partitions
 - ▶ Each partition holds a list of items
- Partitions may be present on a different machine
 - ▶ Partition is the *unit of execution*
 - ▶ Partition is the *unit of parallelism*
- They are immutable
 - ▶ Each transformation on an RDD generates a new RDD with different partitions
 - ▶ *Allows recovery of individual partitions*



RDD Operations

Transformations (define a new RDD)	map filter sample groupByKey reduceByKey sortByKey	flatMap union join cogroup cross mapValues
Actions (return a result to driver program)		collect reduce count save lookupKey

Allows
composability
into Dataflows

A Sample Spark Program

- Movielens dataset, **movies.csv**
 - ▶ movieId,title,genres

```
m = sc.textFile("hdfs:///ml/movies.csv").cache()  
[‘movieId,title,genres’]...  
mcols = m.map(lambda l: l.split(",")).  
mg = mcols.filter(lambda l: l[2] != 'genres')  
[‘92363’, ‘Toy Story’, ‘cartoon|action|children’]...  
mgc = mg.map(lambda l: (len(l[2].split("|")), 1))  
[3,[‘92363’, ‘Toy Story’, ‘cartoon|action|children’]]...  
maxgc = mgc.max()[0]  
3  
maxgcm = mgc.lookup(maxgc)  
[3,[‘92363’, ‘Toy Story’, ‘cartoon|action|children’]]...
```

What is the average number of ratings given by users? What is the average value of the ratings given by users?

```
m = sc.textFile("hdfs:///user/ml/movies.csv").cache()
r = sc.textFile("hdfs:///user/ml/ratings.csv").cache()

rv = r.map(lambda l : l.split(",")[2]).filter(lambda l : l != 'rating')
rvs = rv.reduce(lambda a, b: float(a) + float(b))      # sum of ratings
rvc = rv.count()      # ratings count
print 'Avg rating value is', rvs/rvc

rc = r.count() - 1 # number of ratings
rud = r.map(lambda l : l.split(",")[0]).distinct()
ruc = (rud.count()-1)      # number of distinct users
print 'Avg ratings per user is', rc/ruc
```


For movies with more than 1 genre, what are the most and least likely pair of genres to occur together?

```
me = m.map(lambda l : l if l.find("") == -1 else l.partition("")[0] +  
l[l.find("")+1:l.rfind("")-1].replace(",",";") +  
l.rpartition("")[2])  
  
mg = me.map(lambda l:l.split(",")).filter(lambda l : l[2] != 'genres')  
mgf = mg.flatMap(lambda l : zip([l[0]]*len(l[2].split("|")),  
l[2].split("|")))  
  
mgj = mgf.join(mgf).filter(lambda (m,g) : g[0] != g[1])  
mgpc = mgj.map(lambda (m,g) : ('+'.join(sorted(g)),1))  
msgp = mgpc.reduceByKey(lambda a, b: a + b).map(lambda (gp,s) : (s, gp))  
gpmax = msgp.max()  
gpmin = msgp.min()  
  
print 'Genres pairs most likely to occur are',gpmax[1],'with a  
freq',gpmax[0]  
print 'Genres pairs least likely to occur are',gpmin[1],'with a  
freq',gpmin[0]
```


Creating RDD

- Load external data from distributed storage
- Create logical RDD on which you can operate
- Support for different input formats
 - ▶ HDFS files, Cassandra, Java serialized, directory, gzipped
- Can control the number of partitions in loaded RDD
 - ▶ Default depends on external DFS, e.g. 128MB on HDFS

```
m = sc.textFile("hdfs:///ml/movies.csv").cache()
```


RDD Operations

■ Transformations

- ▶ From one RDD to one or more RDDs
- ▶ Lazy evaluation upon “action”...*use with care*
- ▶ Executed in a distributed manner

■ Actions

- ▶ Perform aggregations on RDD items
- ▶ Return single (or distributed) results to “driver” code
- ▶ **RDD.collect()** brings RDD partitions to single driver machine

RDD and PairRDD

- RDD is logically a collection of items with a generic type
- PairRDD is a 2-tuple, like a “Map”, where each item in the collection is a $\langle \text{key}, \text{value} \rangle$ pair
 - ▶ But can have *duplicate keys*
- Transformation functions use RDD or PairRDD as input/output

Transformations

Transformation	Meaning
<code>map(func)</code>	Return a new distributed dataset formed by passing each element of the source through a function <i>func</i> .
<code>filter(func)</code>	Return a new dataset formed by selecting those elements of the source on which <i>func</i> returns true.
<code>flatMap(func)</code>	Similar to map, but each input item can be mapped to 0 or more output items (so <i>func</i> should return a Seq rather than a single item).
<code>sample(withReplacement, fraction, seed)</code>	Sample a fraction <i>fraction</i> of the data, with or without replacement, using a given random number generator seed.
<code>union(otherDataset)</code>	Return a new dataset that contains the union of the elements in the source dataset and the argument.
<code>intersection(otherDataset)</code>	Return a new RDD that contains the intersection of elements in the source dataset and the argument. Also removes duplicates
<code>distinct([numTasks]))</code>	Return a new dataset that contains the distinct elements of the source dataset.

Transformations on PairRDD

aggregateByKey(zeroValue)(seqOp, combOp, [numTasks])

When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values for each key are aggregated using the given combine functions and a neutral "zero" value. Allows an aggregated value type that is different than the input value type, while avoiding unnecessary allocations. Like in `groupByKey`, the number of reduce tasks is configurable through an optional second argument.

join(otherDataset, [numTasks])

When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (V, W)) pairs with all pairs of elements for each key. Outer joins are supported through `leftOuterJoin`, `rightOuterJoin`, and `fullOuterJoin`.

Aggregation: Average number of ratings given by users

[userId, movieId, rating, timestamp]

```
rv = r.map(lambda l: l.split(",")[-1])  
rfv = rv.filter(lambda l:  
                 l != 'rating')
```

[rating]...

```
rvs = rfv.reduce(lambda a, b:  
                  float(a) + float(b))
```

Action

```
rvc = rfv.count()
```

Action

```
print rvs/rvc
```


Actions

<code>reduce(func)</code>	Aggregate the elements of the dataset using a function <i>func</i> (which takes two arguments and returns one). The function should be commutative and associative so that it can be computed correctly in parallel.
<code>collect()</code>	Return all the elements of the dataset as an array at the driver program. This is usually useful after a filter or other operation that returns a sufficiently small subset of the data.
<code>count()</code>	Return the number of elements in the dataset.
<code>countByKey()</code>	Only available on RDDs of type (K, V). Returns a hashmap of (K, Int) pairs with the count of each key.
<code>first()</code>	Return the first element of the dataset (similar to <code>take(1)</code>).
<code>take(n)</code>	Return an array with the first <i>n</i> elements of the dataset.
<code>takeSample(withReplacement, num, [seed])</code>	Return an array with a random sample of <i>num</i> elements of the dataset, with or without replacement, optionally pre-specifying a random number generator seed.

Samples: Per-key average

key	value
panda	0
pink	3
pirate	3
panda	1
pink	4

mapValues

key	value
panda	(0, 1)
pink	(3, 1)
pirate	(3, 1)
panda	(1, 1)
pink	(4, 1)

reduceByKey

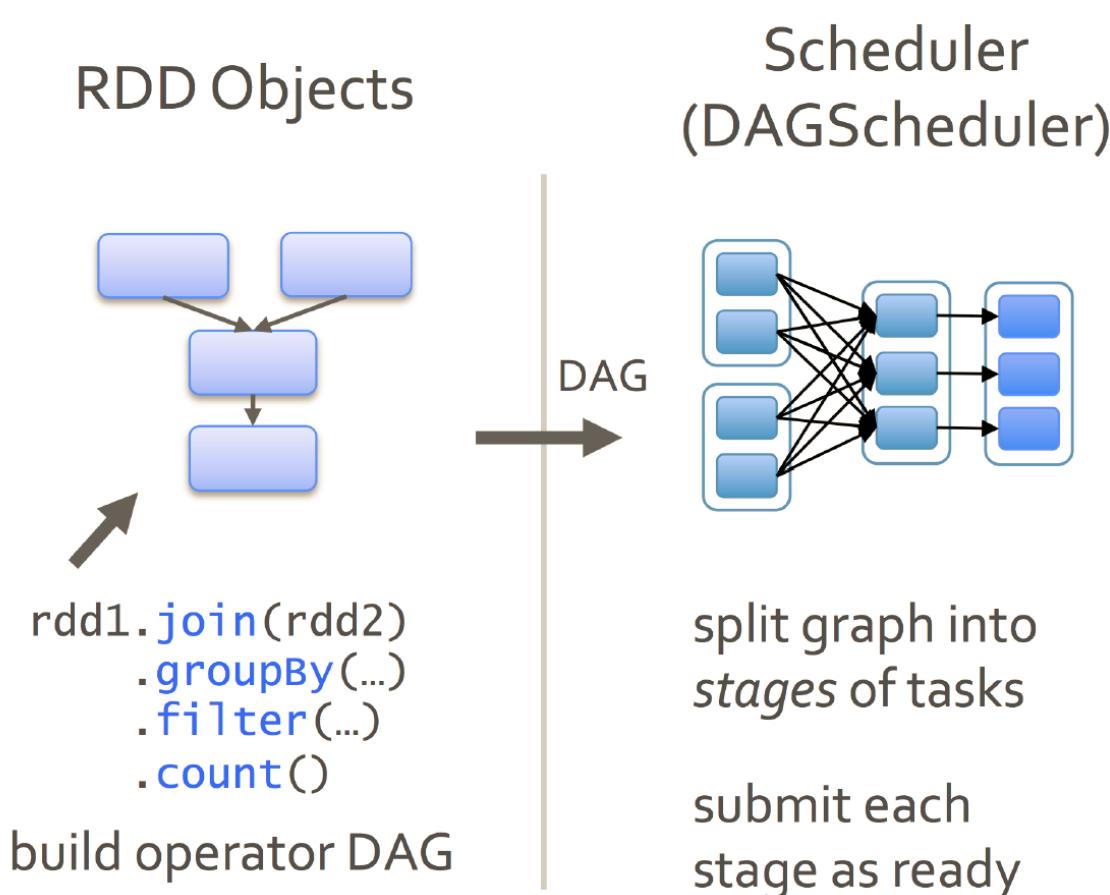
key	value
panda	(1, 2)
pink	(7, 2)
pirate	(3, 1)

sumCount =
rdd.mapValues(x -> (x,1)).
reduceByKey((x, y) ->
(x[0]+y[0], x[1]+y[1]))

RDD Persistence & Caching

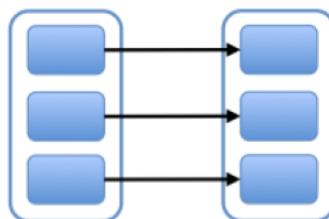
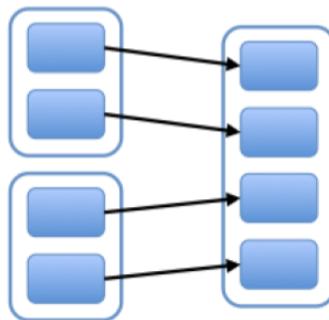
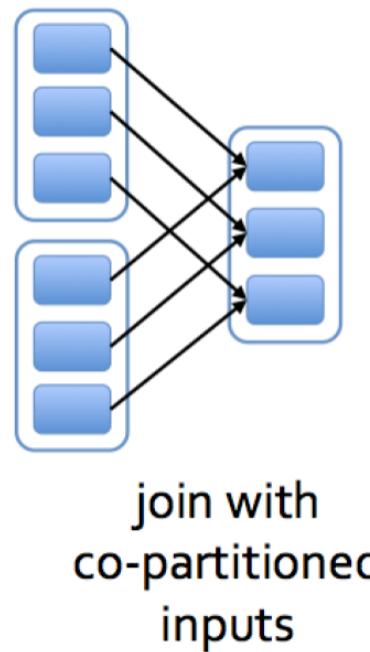
- RDDs can be reused in a dataflow
 - ▶ Branch, iteration
- But it will be re-evaluated each time it is reused!
- Explicitly persist RDD to reuse output of a dataflow path multiple times
- Multiple storage levels for persistence
 - ▶ Disk or memory
 - ▶ Serialized or object form in memory
 - ▶ Partial spill-to-disk possible
 - ▶ *Cache* indicates “persist” to memory

Distributed Execution

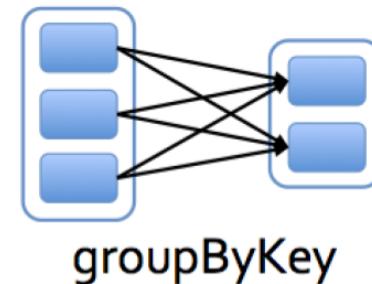
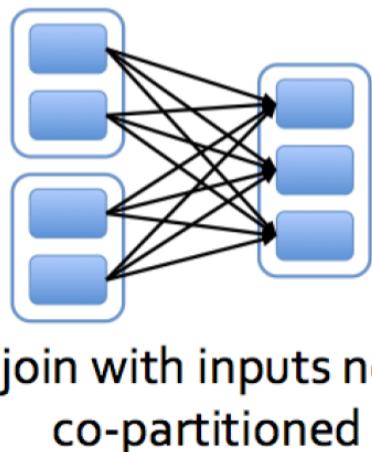


Execution Dependency

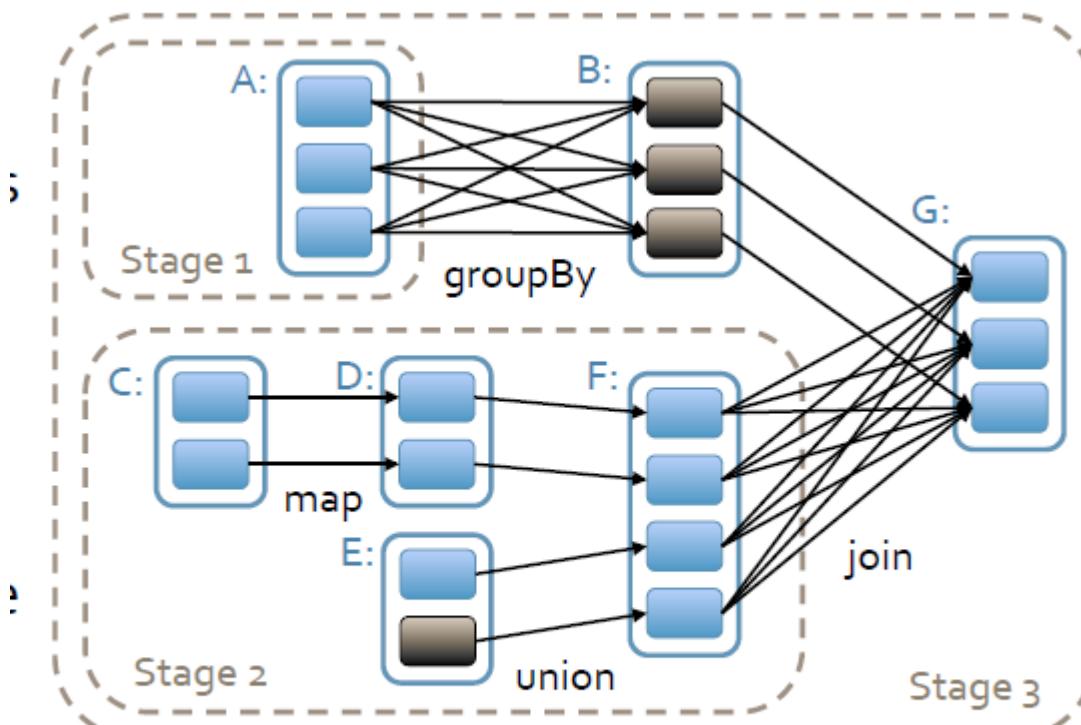
NARROW DEPENDENCY: Each partition of the parent RDD is used by at most one partition of the child RDD. Task can be executed locally and we don't have to shuffle.



WIDE DEPENDENCY: Multiple child partitions may depend on one partition of the parent RDD. We have to shuffle data *unless the parents are hash-partitioned*



Lazy Execution



From DAG to RDD lineage

