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Slide Credits:
• https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf
• https://www.slideshare.net/deanchen11/scala-bay-spark-talk
• https://databricks-training.s3.amazonaws.com/slides/advanced-spark-training.pdf
• Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster 

Computing, M. Zaharia, et al., NSDI 2012
• http://spark.apache.org/docs/latest/programming-guide.html
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What is Big Data?

2020/01/23 4
Image credits: http://www.seekbig.in/1128-tnpsc-economics-questions/
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The term is fuzzy … Handle with care!

2020/01/23 5
Wordle of “Thought Leaders’” definition of Big Data, © Jennifer Dutcher, 2014
https://datascience.berkeley.edu/what-is-big-data/
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So…What is Big Data?

Data whose characteristics exceeds 
the capabilities of conventional

algorithms, systems and 
techniques to derive useful value.

2020/01/23 6

https://www.oreilly.com/ideas/what-is-big-data

Image Credits: https://community.uservoice.com/wp-content/uploads/benefits-of-effective-questions-800x448-300x168.jpg
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And, where does Big 
Data come from?
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Web & Social Media
▪ Web search, Social Networks & Micro-blogs
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http://static4.businessinsider.com/image/56b089cedd0895437c8b45ef-2390-1265/untitled.png
http://www.internetlivestats.com/twitter-statistics/
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Web & Social Media
▪ Social Networks & Micro-blogs
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https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
http://www.wsj.com/articles/facebook-profit-jumps-sharply-1478117646
http://newsroom.fb.com/company-info/

1.79 billion monthly active users as of September 30, 2016
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Enterprises & Government
▪ Online retail & eCommerce
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http://blogs.ft.com/beyond-brics/2014/02/28/online-
retail-in-india-learning-to-evolve/

http://www.peridotcapital.com/2014/04/amazon-sales-growth-projections-
for-next-two-years-appear-overly-optimistic.html
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Enterprises & Government: 
Finance
▪ Mobile Transactions & FinTech

2020/01/23 11http://www.pymnts.com/in-depth/2015/mobile-transactions/
Is Paytm the Xerox of mobile payments?, ETtech.com-03-Jan-2017

Since November 8, 2016, 
Paytm has surpassed its 

metrics -tripling 
transactions per day to 

7.5 million
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Internet of Everything

▪ Personal Devices
‣ Smart Phones, 

Fitbit

▪ Smart Appliances

▪ Smart Cities
‣ Power, Water, 

Transportation, 
Environment

▪ Smart Retail

▪ Millions of sensor 
data streams

2020/01/23 12smartx.cds.iisc.ac.in
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Why is Big Data 
Difficult?
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Data Analysis Lifecycle

Acquire

• Acquire Data

• Sensors, Web logs & crawls, Transactions

Goal

• Define Analytics

• Trends, Clusters, Outliers, Classification

Process

• Translate to Scalable Applications

• Develop algorithms, Map to abstractions, Implement on 
Platforms

2020/01/23 19
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Data Platforms

▪Acquire, manage, process Big Data

▪At large scales

▪To meet application needs

2020/01/23 20
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Distributed Systems
▪ Distributed Computing

‣ Clusters of machines
‣ Connected over network

▪ Distributed Storage
‣ Disks attached to clusters of machines
‣ Network Attached Storage

▪ How can we make effective use of multiple machines?

▪ Commodity clusters vs. HPC clusters
‣ Commodity: Available off the shelf at large volumes
‣ Lower Cost of Acquisition
‣ Cost vs. Performance

• Low disk bandwidth, and high network latency 
• CPU typically comparable (Xeon vs. i3/5/7)
• Virtualization overhead on Cloud

▪ How can we use many machines of modest capability?
212020/01/23
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Growth of Cloud Data Centers

22Cisco Global Cloud Index: Forecast and Methodology, 2015–2020, White Paper © 2016, Cisco2020/01/23
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Ideal Strong/Weak Scaling

23
Scaling Theory and Machine Abstractions, Martha A. Kim, October 10, 2012

Problem size 
is fixed

Problem size per 
processor is fixed

2020/01/23
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Scalability

▪ Strong vs. Weak Scaling

▪ Strong Scaling: How the performance varies with 
the # of processors for a fixed total problem size

▪ Weak Scaling: How the performance varies with 
the # of processors for a fixed problem size per 
processor
‣ Big Data platforms are intended for “Weak Scaling”

242020/01/23
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Ease of Programming

▪ Programming distributed systems is difficult
‣ Divide a job into multiple tasks

‣ Understand dependencies between tasks: Control, Data

‣ Coordinate and synchronize execution of tasks

‣ Pass information between tasks

‣ Avoid race conditions, deadlocks

▪ Parallel and distributed programming 
models/languages/abstractions/platforms try to 
make these easy
‣ E.g. Assembly programming vs. C++ programming

‣ E.g. C++ programming vs. Matlab programming

252020/01/23
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Availability, Failure

▪ Commodity clusters have lower reliability
‣ Mass-produced

‣ Cheaper materials

‣ Smaller lifetime (~3 years)

▪ How can applications easily deal with failures?

▪ How can we ensure availability in the presence of faults?

262020/01/23
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Early Technologies

▪ MapReduce is a distributed data-parallel programming 

model from Google

▪ MapReduce works best with a distributed file system, 

called Google File System (GFS)

▪ Hadoop is the open source framework implementation 

from Apache that can execute the MapReduce

programming model

▪ Hadoop Distributed File System (HDFS) is the open 

source implementation of the GFS design

▪ Elastic MapReduce (EMR) is Amazon’s PaaS

272020/01/23
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Platforms…Think in terms of Stacks

Cloudera

2020/01/23 28practicalanalytics.co
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Platforms…Think in terms of Stacks

BDAS

2020/01/23 29https://amplab.cs.berkeley.edu/software/
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Platforms…Think in terms of Stacks

HortonWorks

2020/01/23 30http://hortonworks.com/products/data-center/hdp/
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Apache Spark
Slides & Additional Reading Courtesy
https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf
Resilient Distributed Datasets, Matei Zaharia
http://spark.apache.org/docs/2.1.1/programming-guide.html
http://spark.apache.org/docs/latest/api/java/index.html
https://www.gitbook.com/book/jaceklaskowski/mastering-apache-spark/details
Apache Spark Internals, Pietro Michiardi, Eurecom
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https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf
http://spark.apache.org/docs/2.1.1/programming-guide.html
http://spark.apache.org/docs/latest/api/java/index.html
https://www.gitbook.com/book/jaceklaskowski/mastering-apache-spark/details
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Why Spark?

▪ Ease of language definition
‣ Typing, dataflows, 

‣ But Pig, Hive, HBase, etc. give you that

▪ Better performance using “In memory” compute
‣ Multiple stages part of same job

‣ Lazy evaluation, caching/persistence

2020/01/23 32
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In-memory computation
▪ Operate on data in (distributed) memory

‣ Allows many operations to be performed locally 

‣ Write to disk only when data sharing required across workers

▪ This is unlike others like Hadoop Map/Reduce

2020/01/23 33
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, M. Zaharia, et al., NSDI 2012
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RDD: The Secret Sauce

▪ RDD: Resilient Distributed Dataset
‣ Immutable, partitioned collection of tuples

‣ Operated on by deterministic transformations
• Object-oriented flavor

• RDD.operation() → RDD

▪ Recovery by re-computation
‣ Maintains lineage of transformations

‣ Recompute missing partitions if failure happens

‣ Not possible/not automatic in Pig

▪ Allows caching & persistence for reuse

2020/01/23 34
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, M. Zaharia, et al., NSDI 2012
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RDD Partitions
▪ RDD is internally a collection of partitions

‣ Each partition holds a list of items

▪ Partitions may be present on a different machine
‣ Partition is the unit of execution
‣ Partition is the unit of parallelism

▪ They are immutable
‣ Each transformation on an RDD generates a new RDD with 

different partitions
‣ Allows recovery of individual partitions

2020/01/23 36
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RDD Operations

2020/01/23 37

Allows 
composability 
into Dataflows
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A Sample Spark Program

m = sc.textFile("hdfs:///ml/movies.csv").cache()
[‘movieId,title,genres’]...
mcols = m.map(lambda l: l.split(",")).
mg = mcols.filter(lambda l: l[2] != 'genres’)
[‘92363’,‘Toy Story’,‘cartoon|action|children’]...
mgc = mg.map(lambda l: (len(l[2].split("|")), l))
[3,[‘92363’,‘Toy Story’,‘cartoon|action|children’]]...
maxgc = mgc.max()[0]
3
maxgcm = mgc.lookup(maxgc)
[3,[‘92363’,‘Toy Story’,‘cartoon|action|children’]]...

▪ Movielens dataset, movies.csv
‣ movieId,title,genres

https://grouplens.org/datasets/movielens/

2020/01/23 38
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What is the average number of ratings 
given by users? What is the average value of 
the ratings given by users?
m = sc.textFile("hdfs:///user/ml/movies.csv").cache()

r = sc.textFile("hdfs:///user/ml/ratings.csv").cache()

rv = r.map(lambda l : l.split(",")[2]).filter(lambda l 
: l != 'rating')

rvs = rv.reduce(lambda a, b: float(a) + float(b)) # 
sum of ratings

rvc = rv.count() # ratings count

print 'Avg rating value is', rvs/rvc

rc = r.count() - 1 # number of ratings

rud = r.map(lambda l : l.split(",")[0]).distinct()

ruc = (rud.count()-1) # number of distinct users

print 'Avg ratings per user is', rc/ruc

2020/01/23 39
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For movies with more than 1 genre, what are the 
most and least likely pair of genres to occur 
together?

me = m.map(lambda l : l if l.find("\"") == -1 else l.partition("\"")[0] + 
l[l.find("\"")+1:l.rfind("\"")-1].replace(",", ";") + 
l.rpartition("\"")[2])

mg = me.map(lambda l:l.split(",")).filter(lambda l : l[2] != 'genres')

mgf = mg.flatMap(lambda l : zip([l[0]]*len(l[2].split("|")), 
l[2].split("|")))

mgj = mgf.join(mgf).filter(lambda (m,g) : g[0] != g[1])

mgpc = mgj.map(lambda (m,g) : ('+'.join(sorted(g)),1))

msgp = mgpc.reduceByKey(lambda a, b: a + b).map(lambda (gp,s) : (s,gp))

gpmax = msgp.max()

gpmin = msgp.min()

print 'Genres pairs most likely to occur are',gpmax[1],'with a 
freq',gpmax[0]

print 'Genres pairs least likely to occur are',gpmin[1],'with a 
freq',gpmin[0]

2020/01/23 40
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Creating RDD

▪ Load external data from distributed storage

▪ Create logical RDD on which you can operate

▪ Support for different input formats
‣ HDFS files, Cassandra, Java serialized, directory, gzipped

▪ Can control the number of partitions in loaded RDD
‣ Default depends on external DFS, e.g. 128MB on HDFS

41

m = sc.textFile("hdfs:///ml/movies.csv").cache()

2020/01/23
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RDD Operations
▪ Transformations

‣ From one RDD to one or more RDDs

‣ Lazy evaluation upon “action”…use with care

‣ Executed in a distributed manner

▪ Actions
‣ Perform aggregations on RDD items

‣ Return single (or distributed) results to “driver” code

‣ RDD.collect() brings RDD partitions to single driver 
machine

422020/01/23
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RDD and PairRDD
▪ RDD is logically a collection of items with a generic 

type

▪ PairRDD is a 2-tuple, like a “Map”, where each item 
in the collection is a <key,value> pair
‣ But can have duplicate keys

▪ Transformation functions use RDD or PairRDD as 
input/output

432020/01/23



CDS.IISc.ac.in  |  Department of Computational and Data Sciences

Transformations

44https://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD

Implicit in 
PySpark

Also removes 
duplicates

2020/01/23
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Transformations on 
PairRDD

452020/01/23
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Aggregation: Average number 
of ratings given by users

[userId,movieId,rating,timestamp]

rv = r.map(lambda l: l.split(",")[2])

rfv = rv.filter(lambda l: 

l != 'rating’)

[rating]...

rvs = rfv.reduce(lambda a, b: 

float(a) + float(b))

rvc = rfv.count()

print rvs/rvc

2020/01/23 46

Action

Action
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Actions

472020/01/23
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Samples: Per-key average

sumCount = 

rdd.mapValues(x -> (x,1)). 

reduceByKey((x, y) -> 

(x[0]+y[0], x[1]+y[1]))

2020/01/23 48
https://www.safaribooksonline.com/library/view/learning-spark/9781449359034/ch04.html
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RDD Persistence & Caching

▪ RDDs can be reused in a dataflow
‣ Branch, iteration

▪ But it will be re-evaluated each time it is reused!

▪ Explicitly persist RDD to reuse output of a dataflow 
path multiple times

▪ Multiple storage levels for persistence
‣ Disk or memory

‣ Serialized or object form in memory

‣ Partial spill-to-disk possible

‣ Cache indicates “persist” to memory

492020/01/23
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Distributed Execution

2020/01/23 51
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Execution Dependency

2020/01/23 52

NARROW DEPENDENCY: Each partition of the 
parent RDD is used by at most one partition of 
the child RDD. Task can be executed locally and 

we don’t have to shuffle.

WIDE DEPENDENCY: Multiple child 
partitions may depend on one partition of 
the parent RDD. We have to shuffle data 
unless the parents are hash-partitioned
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Lazy Execution

2020/01/23 53
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From DAG to RDD lineage

54
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-rdd-transformations.html

2020/01/23


