
Parallel Programming with OPENMP

Akhila Prabhakaran

Consultant Scientist/Technologist

Supercomputer Education and Research Centre

Indian Institute of Science

akhilap@iisc.ac.in

mailto:akhilap@iisc.ac.in

OPENMP: Motivation

Sequential program uses a single core/
processor while all other processors
are idle.

Using OMP pragmas can enable
utilizing all processors in parallel for a
program.

• Collection of compiler directives and library functions for creating

parallel programs for shared-memory computers.

• The “MP” in OpenMP stands for “multi-processing”(shared-memory

parallel computing)

• Combined with C, C++, or Fortran to create a multithreading

programming language, in which all processes are assumed to share a

single address space.

• Based on the fork / join programming model: all programs start as a

single (master) thread, fork additional threads where parallelism is

desired (the parallel region), then join back together.

OPENMP : Overview

OPENMP: Timeline

5.0

2018

https://www.openmp.org/about/whos-using-openmp/

https://www.openmp.org/about/whos-using-openmp/

OpenMP: Goals
Standardization: Provide a standard among a variety
of shared memory architectures/platforms

Lean and Mean: Establish a simple and limited set of
directives for programming shared memory machines.
Significant parallelism can be implemented by using
just 3 or 4 directives.

Ease of Use: Provide capability to incrementally
parallelize a serial program. Provide the capability to
implement both coarse-grained and fine-grained
parallelism

Portability: Supports Fortran (77, 90, 95…), C, and
C++. Public forum for API and membership

OpenMP: Core Elements

OPENMP #pragma
Special preprocessor instructions.
Typically added to a system to allow behaviors
that aren’t part of the basic C specification.
Compilers that don’t support the pragmas ignore
them.

#pragma omp parallel

Parallel Region

How many threads?
(OMP_NUM_THREADS)

P0 – Thread 0

P1 – Thread 1

P2 – Thread 2

P3 – Thread 3

Private
Stack

S
h
a
r
e
d

V
a
r
i
a
b
l
e
s

Private
Stack

Private
Stack

Private
Stack

Code within the parallel region is executed in
parallel on all processors/threads.

Shared variables
#pragma omp parallel
{

Variables (private)

}

#pragma omp parallel

Hello World - OpenMP

Structured block of code

Fork: master thread
creates a team of
parallel threads.

Join: Team of threads complete the
statements in the parallel region,
synchronize and terminate

master thread executes
sequentially until the
first parallel region is
encountered.
Parallelism added
incrementally until
performance goals are met.

Threads are numbered
from 0 (master thread)
to N-1

Implicit barrier at the end
of a parallel section.

OPENMP: Basic functions

Each thread has its own stack, so it will

have its own private (local) variables.

Each thread gets its own rank -

omp_get_thread_num

The number of threads in the team -

omp_get_num_threads

In OpenMP, stdout is shared among the

threads, so each thread can execute

the printf statement.

There is no scheduling of access to

stdout, output is non-deterministic.

OPENMP: basic functions

Create a 4 thread Parallel region :
Statements in the program that are enclosed by the parallel
region construct are executed in parallel among the various team
threads.

Each thread calls pooh(ID,A) for ID = 0 to 3

OPENMP: Run Time Functions

OpenMP Run Time Functions
Modify/check/get info about the number of threads

omp_get_num_threads() //number of threads in use

omp_get_thread_num() //tells which thread you are

omp_get_max_threads() //max threads that can be used

Are we in a parallel region? omp_in_parallel()

How many processors in the system? omp_get_num_procs()

Set explicit locks and several more...

OpenMP Environment Variables

OMP_NUM_THREADS: Sets the maximum number of threads in the parallel region,
unless overridden by omp_set_num_threads or num_threads.

USE SET command in Windows or printenv command
in linux to see current environment variables

https://docs.microsoft.com/en-us/cpp/parallel/openmp/reference/openmp-environment-variables?view=vs-2017
https://docs.microsoft.com/en-us/cpp/parallel/openmp/reference/openmp-functions?view=vs-2017
https://docs.microsoft.com/en-us/cpp/parallel/openmp/reference/openmp-clauses?view=vs-2017

OpenMP parallel regions

My Parallel Region (piece of code)

When should I
execute this code

in parallel?
if clause

Which variables
are local to each

thread?
private clause

Which variables are
shared across all

threads?
shared clause

Serial code – Variable declarations, functions etc.
int a,b,c = 0;
float x = 1.0;

Number of threads or
copies of the parallel

region to execute
num_threads

int i = 5;
int j = 10;
int a =threadNumber;

#pragma omp parallel num_threads 8 private(a) …..
{

}

OPENMP: Variable Scope
• In OpenMP, scope refers to the set of threads that can see a

variable in a parallel block.
• A general rule is that any variable declared outside of a

parallel region has a shared scope. In some sense, the
“default” variable scope is shared.

• When a variable can be seen/read/written by all threads in a
team, it is said to have shared scope;

• A variable that can be seen by only one thread is said to have
private scope. Each thread has a copy of the private variable.

• Loop variables in an omp for are private
• Local variables in the parallel region are private
• Change default behavior by using the clause default(shared)

or default(private)

OpenMP: Data Scoping
Challenge in Shared Memory Parallelization => Managing Data Environment

Scoping

OpenMP Shared variable : Can be Read/Written by all Threads in the team.

OpenMP Private variable : Each Thread has its own local copy of this variable

int i;
int j;
#pragma omp parallel private(j)
{

int k;
i = …….

j = ……..
k = …

}

Private

Shared

Loop variables in an omp for are private;

Local variables in the parallel region are private.

Alter default behaviour with the {default}
clause:
#pragma omp parallel default(shared)
private(x)
{ ... }
#pragma omp parallel default(private) shared
(matrix)
{ ... }

OpenMP: private Clause

• Reproduce the private variable for each thread.
• Variables are not initialized.
• The value that Thread1 stores in x is different from

the value Thread2 stores in x

OpenMP: firstprivate Clause

• Creates private memory location for iper for each
thread.

• Copy value from master thread to each memory location
• While initial value is same, it can be changed by threads

and subsequently Thread 0 Thread 1 and 2.. Might have
different values of the firstprivate variable

OpenMP: Clauses & Data Scoping
Schedule Clause

Data
Sharing/Scope

Matrix Vector Multiplication

#pragma omp parallel num_threads(4)
for (i=0; i < m; i++)
{ y[i] =0.0;

for (j=0; j < SIZE; j++)
y[i] += (A[i][j] * x[j]);

}

Is this reasonable?

Matrix Rows = N (= 8)
Number of Threads = T (=4)
Number of Rows processed by thread = N/T
Thread 0 => rows 0,1,2,3,…(N/T – 1)
Thread 1 => rows N/T, N/T+1…… 2*N/T - 1
Thread t => rows t, t+1, t+2, …. (t*N/T -1)

#pragma omp parallel shared(A,x,y,SIZE) \
private(tid,i,j,istart,iend)
{

tid = omp_get_thread_num();
int nid = omp_get_num_threads();
istart = tid*SIZE/nid;
iend = (tid+1)*SIZE/nid;

for (i=istart; i < iend; i++)
{

for (j=0; j < SIZE; j++)
y[i] += (A[i][j] * x[j]);

printf(" thread %d did row %d\t
y[%d]=%.2f\t",tid,i,i,y[i]);

}
} /* end of parallel construct */

Matrix Vector Multiplication

Matrix Rows = N (= 8)
Number of Threads = T (=4)
Number of Rows processed by thread = N/T
Thread 0 => rows 0,1,2,3,…(N/T – 1)
Thread 1 => rows N/T, N/T+1…… 2*N/T - 1
Thread t => rows t, t+1, t+2, …. (t*N/T -1)

omp_set_num_threads(4)
#pragma omp parallel shared(A,x,y,SIZE)
{

#pragma omp for
for (int i=0; i < SIZE; i++)
{

for (int j=0; j < SIZE; j++)
y[i] += (A[i][j] * x[j]);

}
} /* end of parallel construct */

Matrix Vector Multiplication

#pragma omp for must be inside a
parallel region (#pragma omp parallel)

No new threads are created but
the threads already created in the
enclosing parallel region are used.

The system automatically parallelizes
the for loop by dividing the iterations
of the loop among the threads.

User can control how to divide the
loop iterations among threads by
using the schedule clause.

User controlled Variable Scope

OpenMP takes care of partitioning
the iteration space for you.
Threads are assigned independent
sets of iterations.
There is no implied barrier upon
entry to a work-sharing construct,
There is an implied barrier at the end
of a work sharing construct

#pragma omp for
#pragma omp parallel for

Data parallelism
Large amount of data elements and each data element
(or possibly a subset of elements) needs to be processed
to produce a result. When this processing can be done in
parallel, we have data parallelism (for loops)

Task parallelism
A collection of tasks that need to be completed. If
these tasks can be performed in parallel, we have a task
parallel job

OpenMP: Work Sharing

Work Sharing: omp for

Computing ∏ by method of Numerical Integration

Divide the interval (x axis) [0,1] into N parts.
Area of each rectangle is x * y [x = 1/N, y = 4/ (1+x2)] =[1/N] *4/ (1+x2)
Approximation of x as midpoint of the interval before computing Y

Xi + Xi+1

2

static long num_steps = 100000;
double step;
void main ()
{

int i; double x, pi, sum = 0.0;
step = 1.0 / (double) num_steps;
for (I = 0; I <= num_steps; i++)
{

x = (I + 0.5) * step;
sum = sum + 4.0 / (1.0 + x*x);

}
pi = step * sum

}

Serial Code

1. Computation of the areas of
individual rectangles

2. Adding the areas of rectangles.

There is no communication among
the tasks in the first collection, but
each task in the first collection
communicates with task 2

task1

task2

static long num_steps = 100000;
double step;
void main ()
{

int i; double x, pi, sum = 0.0;
step = 1.0 / (double) num_steps;
for (I = 0; I <= num_steps; i++) {

x = (I + 0.5) * step;
sum = sum + 4.0 / (1.0 + x*x);

}
pi = step * sum

}

Computing ∏ by method of Numerical Integration

#include <omp.h>
#define NUM_THREADS 4
static long num_steps = 100000;
double step;
void main ()
{

int i; double x, pi, sum = 0.0;
step = 1.0 / (double) num_steps;

omp_set_num_threads(NUM_THREADS);
#pragma omp parallel for shared(sum)
private(x)

for (I = 0; I <= num_steps; i++) {
x = (I + 0.5) * step;
sum = sum + 4.0 / (1.0 + x*x);

}
pi = step * sum

}

Serial Code Parallel Code

Race Condition

#pragma omp parallel for
shared(global_result) private(x, myresult)

for (I = 0; I <= num_steps; i++) {
x = (I + 0.5) * step;
myresult = 4.0 / (1.0 + x*x);
global_result += myresult;

}

Unpredictable results when two
(or more) threads attempt to
simultaneously execute:
global_result += myresult

Handling Race Conditions

Mutual Exclusion:
Only one thread at a time executes the
statement

Pretty much sequential

Thread 0
Global_result +=2

Thread1
Global_result +=3

Thread2
Global_result +=4

Handling Race Conditions

Use synchronization to protect data conflicts.
Mutual Exclusion (#pragma omp critical)
Mutual Exclusion (#pragma omp atomic)

Synchronization could be expensive so:
Change how data is accessed to minimize the need for
synchronization.

omp_set_num_threads(NUM_THREADS);
#pragma omp parallel for shared(sum)
private(x)

for (I = 0; I <= num_steps; i++) {
x = (I + 0.5) * step;
#pragma omp critical
sum = sum + 4.0 / (1.0 + x*x);

}

Mutual Exclusion:
Only one thread at a time
executes the statement
sum = sum + 4.0 / (1.0 + x*x);

OpenMP: Reduction

sum = 0;
set_omp_num_threads(8)
#pragma omp parallel for
reduction (+:sum)
for (int i = 0; i < 16; i++)
{

sum += a[i]
}

Thread0 => iteration 0 & 1
Thread1 => iteration 2 & 3
………

One or more variables that are private to each thread are subject of reduction
operation at the end of the parallel region.

#pragma omp for reduction(operator : var)
Operator: + , * , - , & , | , && , ||, ^

Combines multiple local copies of the var from threads into a single copy at master.

Thread local/private

static long num_steps = 100000;
double step;
void main ()
{

int i; double x, pi, sum = 0.0;
step = 1.0 / (double) num_steps;
for (I = 0; I <= num_steps; i++) {

x = (I + 0.5) * step;
sum = sum + 4.0 / (1.0 + x*x);

}
pi = step * sum

}

Computing ∏ by method of Numerical Integration

#include <omp.h>
#define NUM_THREADS 4
static long num_steps = 100000;
double step;
void main ()
{

int i; double x, pi, sum = 0.0;
step = 1.0 / (double) num_steps;

omp_set_num_threads(NUM_THREADS);
#pragma omp parallel for reduction(+:sum)
private(x)

for (I = 0; I <= num_steps; i++) {
x = (I + 0.5) * step;
sum += 4.0 / (1.0 + x*x);

}
pi = step * sum

}

Serial Code Parallel Code

omp for Parallelization

for (int i = 2; i < 10; i++)
{

x[i] = a * x[i-1] + b
}

Can all loops be parallelized?
Loop iterations have to be independent.

Simple Test: If the results differ when the code is executed
backwards, the loop cannot by parallelized!

Between 2 Synchronization points, if atleast 1 thread
writes to a memory location, that atleast 1 other thread
reads from => The result is non-deterministic

What is OPENMP?
Fork/Join Programming model
OPENMP Core Elements

#pragma omp parallel OR Parallel construct
run time variables
environment variables
data scoping (private, shared…)
work sharing constructs

#pragma omp for
*compile and run openmp program in c++ and fortran

sections
tasks

schedule clause
synchronization

Recap

