Parallel Programming with OPENMP

Akhila Prabhakaran
Consultant Scientist/Technologist
Supercomputer Education and Research Centre
Indian Institute of Science

akhilap@iisc.ac.in

mailto:akhilap@iisc.ac.in

OPENMP: Motivation

Core Sequential program uses a single core/
_ processor while all other processors
S are idle.
Level 1 cache
. - Using OMP pragmas can enable
: utilizing all processors in parallel for a
P program.
coj Jc1 coj jc1 Cop Jc1 Coj Jc1
C2] 1C3 c2y |1c3 c2] |C3 c2] |C3
= L2 L2 L2 o instructions
° -
(4]

X
\Z Z/

AHOW3IN

OPENMP : Overview

* Collection of compiler directives and library functions for creating
parallel programs for shared-memory computers.

« The "MP" in OpenMP stands for "multi-processing”(shared-memory
parallel computing)

« Combined with C, C++, or Fortran to create a multithreading
programming language, in which all processes are assumed to share a
single address space.

 Based on the fork / join programming model: all programs start as a
single (master) thread, fork additional threads where parallelism is

desired (the parallel region), then join back together.

OPENMP: Timeline

2.5

1998 2002
C/IC++ C/C++
1.0 2.0
Fortran Fortran Fortran .
1.0 1.1 2.0
1997 1999 2000

2005

3.0

2008

3.1

4.0

2011

https://www.openmp.org/about/whos-using-openmp/

2013

2018

https://www.openmp.org/about/whos-using-openmp/

OpenMP: Goals

Standardization: Provide a standard among a variety
of shared memory architectures/platforms

Lean and Mean: Establish a simple and limited set of
directives for progframmin shared memory machines.
Significant parallelism can be implemented by using
just 3 or 4 directives.

Ease of Use: Provide capability to incrementally
parallelize a serial program. Provide the capability to
implement both coarse-grained and fine-grained
parallelism

Portability: Supports Fortran (77, 90, 95...), C, and
C++. Public forum for API and membership

OpenMP: Core Elements

parallel control
structures

governs flow of
control in the

program

parallel directive

OpenMP language

extensions

work sharing

distributes work
among threads

do/parallel do
and
section directives

data
environment

scopes
vanables

shared and
private
clauses

synchronization

coordinates thread
execution

critical and
atomic directives
barrier directive

runtime
functions, env.

variables

runtime environment

omp set num threads()
omp get thread num()
OMP_NUM THREADS

OMP SCHEDULE

OPENMP #pragma

Special preprocessor instructions.

Typically added to a system to allow behaviors
that aren't part of the basic C specification.
Compilers that don't support the pragmas ignore

them.

#pragma omp parallel

How many threads?

(OMP_NUM_THREADS)
Shared variables

#pragma omp parallel

{

PO - Thread O

P1—-Thread 1

}

oy . .) P2 — Thread 2
Code within the parallel region is executed in

parallel on all processors/threads.

P3 —Thread 3

w O —T O — = v <L

#pragma omp parallel

#include <iostream>
PROGRAM HELLO #include “omp.h”
int main() {
]
gg’ﬁ? f i’iﬁéiﬁé fld” #;f:fragma omp parallel
;%T%ﬁgp END PARALLEL std::cout << "Hello World\n”
}
END return O;
}
intel: ifort -openmp -0 hi.x hello.f intel: icc -openmp -0 hi.x hello.f
pgi: pgfortran -mp -o hi.x hello.f pgi: pgcpp -mp -0 hi.x hello.f
gnu: gfortran -fopenmp -0 hi.x hello.f gnu: g++ -fopenmp -0 hi.x hello.f

Export OMP_NUM_ THREADS=4
Jhi.x

Hello World - OpenMP

Program Hello

2 Fork: master thread

Runtime creates 3 additional "worker” 2 creates a feam of

threads at start of openmp region / B, par-a”el threads

A —)
~ N AN
Thread #0 Thread #1 Thread #2 Thread #3 Threads are numbered
5 from O (master thread)
Structured|block of code = toN-1

Implicit barrier at the end
of a parallel section.

Print * "hello” Print * "hello” Print * "hello” Print *,"hello” 1

master thread executes
sequentially until the

first parallel region is
encountered.

Parallelism added
incrementally until
performance goals are met.

Join: Team of threads complete the
statements in the parallel region,
synchronize and terminate

| 1211pJ40d | 1n11uanbas|

OPENMP: Basic functions

#include “omp.h” <€ OpenMP include file

void main() —

i Sample Output;
#pragma omp parallel £ hello(1) hello(0) world(1)
{ world(0)

int 1D = omp_get_thread_num(); hg|io (3) hello(2) world(3)
printf(“ hello(%d) ”, ID);

printf(“ world(%d) \n”, ID); world(2)

} Runtime library function to
} End of the Parallel region return a thread ID.
11

OPENMP: basic functions

Each thread has its own stack, so it will D TR S
have its own private (local) variables.
Each thread gets its own rank -

omp_get_thread num ———

iatrl
iserl
-

The number of threads in the team -
funcl:

omp_get_num_threads ez

funca:

In OpenMP, stdout is shared among the
threads, so each thread can execute

the printf statement.

There is no scheduling of access to

stdout, output is non-deterministic.

OPENMP: Run Time Functions

Create a 4 thread Parallel region :

Statements in the program that are enclosed by the parallel
region construct are executed in parallel among the various team
threads.

Each thread double A[1000]; f Runtime functit:_un to
executes a | Kol IR GIGCEEEY) | request a certain
copy of the | EiERIUER MU R EIEE number of threads
o N~_
code within | K
the int ID = omp_get thread _num();

structured pooh(ID,A); BN Runtime function

block returning a thread 1D

Each thread calls pooh(ID,A) for ID = 0 to 3

OpenMP Run Time Functions

Modify/check/get info about the number of threads
omp_get_num_threads() //number of threads in use
omp_get_thread_num() //tells which thread you are
omp_get_max_threads() //max threads that can be used

Are we in a parallel region? omp_in_parallel()

How many processors in the system? omp_get_num_procs()

Set explicit locks and several more...

USE SET command in Windows or printenv command

in linux to see current environment variables

OpenMP Environment Variables

OMP _NUM THREADS: Sets the maximum number of threads in the parallel region,
unless overridden by omp set num threads or num threads.

https://docs.microsoft.com/en-us/cpp/parallel/openmp/reference/openmp-environment-variables?view=vs-2017
https://docs.microsoft.com/en-us/cpp/parallel/openmp/reference/openmp-functions?view=vs-2017
https://docs.microsoft.com/en-us/cpp/parallel/openmp/reference/openmp-clauses?view=vs-2017

OpenMP parallel regions

Serial code — Variable declarations, functions etc. When ShF’UId |
intabcz0 execute this code

float x = 1.0; in parallel?
: if clause

#pragma omp parallel num_threads 8 private(a)

{

My Parallel Region (piece of code) Which variables

- are local to each
=% thread?

intj =10; private clause
int a =threadNumber;

Number of threads or Which variables are
copies of the parallel shared across all

region to execute threads?
num threads shared clause

OPENMP: Variable Scope

* In OpenMP, scope refers to the set of threads that can see a
variable in a parallel block.

A general rule is that any variable declared outside of a
parallel region has a shared scope. In some sense, the
“default” variable scope is shared.

* When a variable can be seen/read/written by all threads in a
team, it is said to have shared scope;

A variable that can be seen by only one thread is said to have
private scope. Each thread has a copy of the private variable.

* Loop variables in an omp for are private

* Local variables in the parallel region are private

* Change default behavior by using the clause default(shared)
or default(private)

OpenMP: Data Scoping

Challenge in Shared Memory Parallelization => Managing Data Environment
Scoping
OpenMP Shared variable : Can be Read/Written by all Threads in the team.

OpenMP Private variable : Each Thread has its own local copy of this variable

Loop variables in an omp for are private;

int i;

: : . : int j;
Local variables in the parallel region are private. #pragma omp parallel private()
Alter default behaviour with the {default} { -
clause: S
#pragma omp parallel default(shared) b .ﬁ:\‘ Shared
private(x) .
{..}
#pragma omp parallel default(private) shared
(matrix) }
{..}

OpenMP: private Clause

void* work(float* c, int N) {
float x, y; int 1i;
#pragma omp parallel for private(x,y)
for(i=0; i<N; i++) {
x = a[i]; y = b[i];
c[i] = x + y;

}

* Reproduce the private variable for each thread.

* Variables are not initialized.

* The value that Threadl stores in x is different from
the value Thread?2 stores in x

OpenMP: firstprivate Clause

iper = 0 iper = 0;
|$omp parallel do & #pragma omp parallel for \
1Somp firstprivate (iper) firstprivate (iper)
do i = 1, imax for(i = 0; i < imax; i++) {
iper = iper + 1 iper = iper + 1;
J{1) = 1iper j[i] = iper:
enddo }

« Creates private memory location for iper for each
thread.

 Copy value from master thread to each memory location

* While initial value is same, it can be changed by threads
and subsequently Thread O Thread 1 and 2.. Might have

different values of the firsTEriva’re variable

OpenMP: Clauses & Data Scoping

Schedule Clause

ffpragma omp for [clause .. newline
schedule (type [,chunk])
ordered

Private (list)

firstprivate (list)
/ lastprivate (list)
_ shared (list)

reduction (operator: list)
collapse (n)
nowailit

Data
Sharing/Scope

for loop

Matrix Vector Multiplication

Vi = djoXo + dj1 X1+ +djp—1Xn—1

aoo 0] t d).n—1 YO
aro il dl.n—1 X0 Yl
X1
i djl din—1 DL | i = aioXo 4 ain X1 4 - din—1Xn—1
An—1
Am—1,0 | dm—1,1 | =" | dm—1,n—1 Ym—1

for (i=0; i < m; i++)

for (1 = 0: 1
v[i] = 0.0: { yl[i] =0.0;
_ L . for (j=0; j < SIZE; j++)
for = (: < n:) .)
or (J y[i] += (A[i1[3] * x[31);
yli] += ;

Is this reasonable?

Matrix Vector Multiplication

Matrix Rows = N (= 8)

Number of Threads =T (=4)

Number of Rows processed by thread = N/T
Thread 0 =>rows 0,1,2,3,...(N/T — 1)

Thread 1 =>rows N/T, N/T+1 2*N/T -1
Thread t => rows t, t+1, t+2, (t*N/T -1)

#pragma omp parallel shared(A,x,y,SIZE) \
private(tid,i,j,istart,iend)
{
tid = omp_get_thread num();
int nid = omp_get num_threads();
istart = tid*SIZE/nid;
iend = (tid+1)*SIZE/nid;

for (i=istart; i < iend; i++)
{
for (j=0; j < SIZE; j++)
yli] += (AL]G] * x[1);

printf(" thread %d did row %d\t
y[%d]=%.2f\t",tid,i,i,y[i]);
}

} /* end of parallel construct */

Matrix Vector Multiplication

omp_set_num_threads(4)
#pragma omp parallel shared(A,x,y,SIZE)

{

for (int i=0; i < SIZE; i++)

{
for (int j=0; j < SIZE; j++)
ylil += (ALi][j] * x[j1);

}

} /* end of parallel construct */

Matrix Rows = N (= 8)

Number of Threads =T (=4)

Number of Rows processed by thread = N/T
Thread 0 =>rows 0,1,2,3,...(N/T - 1)

Thread 1 =>rows N/T, N/T+1...... 2*N/T -1
Thread t => rows t, t+1, t+2, (t*N/T -1)

#pragma omp for must be inside a
parallel region (#pragma omp parallel)

No new threads are created but
the threads already created in the
enclosing parallel region are used.

The system automatically parallelizes
the for loop by dividing the iterations
of the loop among the threads.

User can control how to divide the
loop iterations among threads by
using the schedule clause.

User controlled Variable Scope

#pragma omp for l
#pragma omp parallel for

#pragma omp parallel

// assume N=12
#pragma omp parallel
#pragma omp for
for(l1 =1, 1 < N+1, 1++)
c[i] = a[i] + b[i];

#pragma omp for

i=9

i=10

1
2
3
4

@ ~N O N

OpenMP takes care of partitioning
the iteration space for you.

Threads are assigned independent
sets of iterations.

There is no implied barrier upon
entry to a work-sharing construct,
There is an implied barrier at the end
of a work sharing construct

OpenMP: Work Sharing

Data parallelism

Large amount of data elements and each data element
(or possibly a subset of elements) needs to be processed
to produce a result. When this processing can be done in
parallel, we have data parallelism (for loops)

Task parallelism

A collection of tasks that need to be completed. If
these tasks can be performed in parallel, we have a task
parallel job

Work Sharing: omp for

* Sequential code to add two vectors
for(i=0;i<N;i++) {c[i] = b[i] + a[i];}

« OpenMP implementation 1 (not desired) A worksharing for construct to add vectors
#pragma omp parallel ?pragma omp parallel
{ #pragma omp for
int id, i, Nthrds, istart, iend; {
id = omp_get_thread num(); for(i=0; i<N; i++) {c[i]=b[i]+a[i];}
Nthrds = omp_get_num_threads(); b
istart = id*N/Nthrds; ;
iend = (id+1)*N/Nthrds;
if(id == Nthrds-1) iend = N; #pragma omp parallel for
for(l = istart; i<iend; i++) {c[i] = b[i]+alil;} {
}, for(i=0; i<N; i++) {c[i]=b[i]+a[i];}
} 26

Computing TT by method of Numerical Integration

Mathematicallv we know:

f (]+13) e

And this can be approximated
as a sum of the area of rectangles:

et

+
F
—
<=
-3

F(x)

N

YF(x)Ax = &

=1
Where each rectangle has a width
of Ax and a height of F(x) at the

middle of interval i.

Divide the interval (x axis) [0,1] into N parts.
Area of each rectangle is x * y [x=1/N, y = 4/ (1+x?)] =[1/N] *4/ (1+x?)
Approximation of x as midpoint of the interval before computing Y

Serial Code

static long num _steps = 100000;
double step;
void main ()
{

int i; double x, pi, sum = 0.0;

step = 1.0 / (double) num_steps;

for (I = 0; I <= num_steps; i++)

{

= (I + 0.5) * step; taskil
sum = sum + 4.0 / (1.0 + x*X

} _

pli = step * sum a5l
}

There is no communication among
the tasks in the first collection, but
each task in the first collection
communicates with task 2

1. Computation of the areas of
individual rectangles
2. Adding the areas of rectangles.

Computing TT by method of Numerical Integration

| #include <omp.h>
#Hdefine NUM_THREADS 4

static long num_steps = 100000; static long num_steps = 100000;
double step; double step;
void main () E/Oid main ()
{ - .
int i} double X, pl, sum = OO, int i; double X, P!, sum = 0.0;

step = 1.0 / (double) num_steps;
omp_set_num_threads(NUM_THREADS):
#pragma omp parallel for shared(sum)

step = 1.0 / (double) num_steps:;
for (I = O; I <= num_steps; i++) {

x = (I+0.5) * step; private(x)
sum = sum + 4.0 / (1.0 + x*x); for (I = 0; T <= num_steps; i++) {
} X = iI - o.5i B s’rei'l
pi = step * sum
} }

pi = step * sum

}

Serial Code Parallel Code

Race Condition

#pragma omp parallel for
shared(global_result) private(x, myresult)
for (I = O; I <= num_steps; i++) {
x=(I+0.5)* step;
myresult = 4.0 / (1.0 + x*x);
global_result += myresult;

Unpredictable results when two
(or more) threads attempt to
simultaneously execute:
global_result += myresult

What is the new value of
global result??

Handling Race Conditions

Thread O
Global_result +=2

Mutual Exclusion:
Only one thread at a time executes the
statement

Threadl

Global _result +=3 .
Pretty much sequential

Thread2
Global _result +=4

Handling Race Conditions

omp_set_num_threads(NUM_THREADS);
#pragma omp parallel for shared(sum)

private(x) Mutual Exclusion:
for (I =0; I <= num_steps; i++){ Only one thread at a time
x = (L+05)= step: executes the statement

#pragma omp critical (T sum = sum + 4.0 / (1.0 + x*x);

sum = sum + 4.0 / (1.0 + x*x);

}

Use synchronization to protect data conflicts.

Mutual Exclusion (#pragma omp critical)

Mutual Exclusion (#pragma omp atomic)
Synchronization could be expensive so:
Change how data is accessed to minimize the need for
synchronization.

OpenMP: Reduction

Ol I T
115 190
sum = O; 2 ol -
set_omp_num_threads(8) £h 28 vLLL =
#pragma omp parallel for =
reduction (+:sum) 61 [:
for (inti=0;i<16; i++) 114 704
{ 811 ¥ = EEY,
. 106 .
sum += a[i] T8 T
} [12] §[13] = + 117
ThreadO => iteration 0 & 1 =
......... steps sleps

Thread local/private

One or more variables that are private to each thread are subject of reduction
operation at the end of the parallel region.

#pragma omp for reduction(operator : var)

Operator: + ,*, -, &, |,6&&, |l °
Combines multiple local copies of the var from threads into a single copy at master.

Computing TT by method of Numerical Integration

| #include <omp.h>
#define NUM_THREADS 4

static long num_steps = 100000; static long num_steps = 100000;
double step; double step;
void main () E/Oid main ()
{ - .
int i; double x, pi, sum = 0.0; int i; double x, pi, sum = 0.0;

step = 1.0 / (double) num_steps;
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel for reduction(+:sum)

step = 1.0 / (double) num_steps:;
for (I = O; I <= num_steps; i++) {

x = (I+0.5)* step: private(x)
sum =sum+ 4.0/ (10 + X*X); for (I =0: I«= num_steps:; i.|..|.){
} x = (I+0.5)* step;
pi = step * sum sum += 4.0 / (1.0 + x*x);
} }

pi = step * sum

}

omp for Parallelization

Can all loops be parallelized?
Loop iterations have to be independent.

Simple Test: If the results differ when the code is executed
backwards, the loop cannot by parallelized!

for (inti=2;i<10; i++)

{

}

Between 2 Synchronization points, if atleast 1 thread
writes to a memory location, that atleast 1 other thread
reads from => The result is non-deterministic

X[i]=a*x[i-1] +b

Recap

What is OPENMP?
Fork/Join Programming model
OPENMP Core Elements
#pragma omp parallel OR Parallel construct
run time variables
environment variables
data scoping (private, shared...)
work sharing constructs
#pragma omp for
*compile and run openmp program in c++ and fortran
sections
tasks
schedule clause
synchronization

