WorkSharing, Schedule,

O pe N M P Pa rt 2 Synchronization and

OMP best practices

Recap of Part 1

v' What is OPENMP?
v’ Fork/Join Programming model
v' OPENMP Core Elements
v’ #pragma omp parallel OR Parallel construct
v’ run time variables
v environment variables
v’ data scoping (private, shared...)
v work sharing constructs
#pragma omp for
v' compile and run openmp program in c++ and fortran
v' work sharing constructs
schedule clause
sections
tasks
» synchronization

OpenMP Parallel Programming

= Start with a parallelizable algorithm
Loop level parallelism /tasks

= ITmplement Serially : Optimized Serial Program
= Test, Debug & Time to solution

= Annotate the code with parallelization and Synchronization
directives

= Remove Race Conditions, False Sharing
= Test and Debug
= Measure speed-up (T-serial/T-parallel)

Installing and running C/C++/Fortran
Programs on multicore machines

The GNU Project https://gcc.gnu.org/install/binaries.html
MacOS:

The Homebrew package manager : https://brew.sh/
MacPorts https://www.macports.org/

MS Windows

The Cygwin project https://sourceware.org/cygwin/
MinGW and mingw-wé4 projects http://www.mingw.org/
http://mingw-w64.0org/doku.php

Linux machines come pre-installed with gnu binaries
gcc --version
gfortran --version

https://gcc.gnu.org/install/binaries.html
https://brew.sh/
https://www.macports.org/
https://sourceware.org/cygwin/
http://www.mingw.org/
http://mingw-w64.org/doku.php

Environment Variables

LINUX /UNIX bash /Cygwin:
List all environment variables: printenv
Update environment variable : export OMP_NUM_THREADS=5

LINUX/UNIX csh
List all environment variables: printenv
Update environment variable : setenv OMP_NUM_THREADS 5

Windows/DOS
List all environment variables: set
Update environment variable : set (/A) OMP_NUM_THREADS= 5

OSX
List all environment variables: env
Update environment variable : export OMP_NUM_THREADS= 5

Compiling and running OPENMP Code
Locally

$g++ -fopenmp Program.cpp -o <output_name>
$9for’rmn -fopenmp Program.f95 -o <output_name>
$./<output_name>

OpenMP environment variables

Display OPENMP environment upon execution of the program
Sexport OMP_DISPLAY_ENV=TRUE (bash)
Ssetenv OMP_DISPLAY_ENV TRUE (csh)

OPENMP DISPLAY ENVIRONMENT BEGIN
_OPENMP = '201307'
OMP_DYNAMIC = 'FALSE'
OMP_NESTED = 'FALSE'
OMP_NUM_THREADS = '32°
OMP_SCHEDULE = 'DYNAMIC'
OMP_PROC_BIND = 'FALSE’
OMP_PLACES = "'
OMP_STACKSIZE = '140729178218216'
OMP_WAIT POLICY = 'PASSIVE'
OMP_THREAD LIMIT = '4294967295'
OMP_MAX_ACTIVE_LEVELS = '2147483647'
OMP_CANCELLATION = 'FALSE'
OMP_DEFAULT_DEVICE = '@’

OPENMP DISPLAY ENVIRONMENT END

Running OpenMP code

Controlling the number of threads at runtime
= The default humber of threads = number of online processors
on the machine.
= Cshell : setenv OMP_NUM_THREADS number
Bash shell: export OMP_NUM_THREADS = number
= Runtime OpenMP function omp_set_num_threads(4)
= Clause in #pragma for parallel region

Execution Timing #include omp.h

stime = omp_get_wtime();
longfunction();

etime = omp_get_wtime();
total = etime-stime;

Compiling and running OPENMP Code

On SahasraT

$ssh <username>@sahasrat.serc.iisc.ernet.in
$password:

Copy the code onto the home area
Create make files for compiling code (clearing binaries, compiling,
linking and creating executable)

Run make

Create a job script to submit the job in batch mode
qsub jobscript

qstat

Check output

2020JanOPENMP

Exercise 1 - HelloWorld

Exercise 2 — Data Scoping

Exercise 3 — Compute Pl

Exercise 4- Schedule Clause
Exercise 5- Schedule Clause

Exercise 6 — Matrix Multiplication
Exercise 7 — Jacobi Iteration

Exercise 8 — Mandelbrot Set

Svi <code>.cpp
Smake
Smodule load pbs

Smodule load craype-haswell
Sqsub jobscript

Sqstat

Svi jobscript

Recap of Part 1

v' What is OPENMP?
v’ Fork/Join Programming model
v' OPENMP Core Elements
v’ #pragma omp parallel OR Parallel construct
v’ run time variables
v environment variables
v’ data scoping (private, shared...)
v work sharing constructs
#pragma omp for
v' compile and run openmp program in c++ and fortran
v' work sharing constructs
schedule clause
sections
tasks
» synchronization

Schedule Clause

How is the work is divided among threads?
Directives for work distribution

Although the OpenMP standard does not specify how a loop should be partitioned
most compilers split the loop in N/p (N #iterations, p #threads) chunks by default. This
Is called a static schedule (with chunk size N/p)

For example, suppose we have a loop with 1000 iterations and 4 omp threads.
The loop is partitioned as follows:

1000

THREAD 1 THREAD 2 THREAD 3 THREAD 4

1 250 500 750 1000

Schedule Clause: Types

A schedule kind is passed to an OpenMP loop schedule clause:
* Provides a hint for how iterations of the corresponding
OpenMP loop should be assigned to threads in the team of
the OpenMP region surrounding the loop.
* Five kinds of schedules for OpenMP loop1:
static
dynamic
guided
auto
runtime
* The OpenMP implementation and/or runtime defines how to
assign chunks to threads of a team given the kind of schedule
specified by as a hint.

Schedule Clause

STATIC: Iterations of a loop are divided into chunks of size ceiling(iterations/threads). Each
thread is assigned a separate chunk.

STATIC, N: Iterations of a loop are divided into chunks of size N. Each chunk is assigned o a
thread in round-robin fashion. N >= 1 (integer expression)

DYNAMIC: Iterations of a loop are divided into chunks of size 1.

Chunks are assigned to threads on a first-come, first-serve basis as threads become available.
This continues until all work is completed.

DYNAMIC, N: Same as above, all chunks are set to size N

GUIDED: Chunks are made progressively smaller until a chunk size of one is reached. The first
chunk is of size ceiling(iterations/threads). Remaining chunks are of

size ceiling(iterations_remaining/threads).Chunks are assigned to threads on a first-come,
first-serve basis as threads become available. This continues until all work is completed.
GUIDED, N: Minimum chunk size is N

AUTO: Delegated the decision of the scheduling to the compiler and/or runtime system
RUNTIME: Scheduling policy is determined at run time. OMP_SCHEDULE/
OMP_SET_SCHEDULE

Schedule Clause

STATIC iterations are divided into pieces at compile time (default)

SCHEDULE (STATIC, 6)
26 iter on 4 processors

DYNAMIC iterations assigned to processors as they finish, dynamically.
This requires synchronization after each chunk iterations.

GUIDED pieces reduce exponentially in size with each dispatched piece

SCHEDULE (GUIDED, 4)
26 iter on 4 processors

O | R

RUNTIME schedule determined by an environment variable OMP SCHEDULE
With RUNTIME itis illegal to specify chunk. Example:

setenv OMP SCHEDULE “dynamic, 47

Work Sharing: sections

bob

SECTIONS directive is a non-iterative alice
work-sharing construct. \ /

e boss
It specifies that the enclosed

section(s) of code are to be divided
among the threads in the team.

Each SECTION is executed ONCE by a :)
thread in the t a = alice();
read in the team. b = bob();

s = boss(a, b);

c = cy();
printf ("%6.2f\n", bigboss(s,c));

Work Sharing: sections

llel t] :
{pragma omp parallel sections Slice tols

#pragma omp section
double a = alice(); \ /
#pragma omp section
doubleb = bob();

#pragma omp section
doublec = cy();
}

boss

double s = boss(a, b);
printf ('%6.2f\n", bigboss(s,c));

OpenMP: lastprivate Clause - review

!'SOMP DO PRIVATE (I) !SOMP SECTIONS
LASTPRIVATE (B) LASTPRIVATE (B)

DO 1 = 1, 1000 ! SOMP ;ECT;ON

5 =1 ! SOMP SECTION
ENDDO 5=

!'SOMP END DO | SOMP SECTION
!—value of B here 1is D = 6

1000 ! SOMP END SECTIONS

Creates private memory location for each thread.

Does not initialize the private variable.

The sequentially last iteration of the associated loops, or the
lexically last section construct [...] to the original list item.

#pragma omp task

'Somp task

Thread q

Generate
tasks

Execute tasks

On encountering a task construct, a new task is
generated.

Unlike sections, the moment of execution of any task
is upto the runtime system and is non-deterministic.

Thread

Work Sharing: tasks

Work Sharing: tasks

#pragma omp task [clauses]......

Tasks allow to parallelize irregular problems (Unbounded loops &
Recursive algorithms)

A task has - Code to execute — Data environment (It owns its data)
— Internal control variables — An assigned thread that executes the
code and the data

Each encountering thread packages a new instance of a task (code
and data)

Some thread in the team executes the task at some later time

All tasks within a team have to be independent and there is no
implicit barrier.

Work Sharing: tasks

Fibonacci series:

f(1)=1 Static int fib(int n){
f(2)=1 i id:
(n) = f(n-1) + f(n-2) ek
if(n < 2)
/* serial code to compute Fibonacci */ return n;
int fib(int n) #pragma omp task shared (i) private (id)
{ {
inti, j; e
if(n < 2) return n; ' = fib(n-1);
i = fib(n-1); }
j = fib(n-2); #pragma omp task shared (j) private (id)
return (i+j); {
oo j = fib(n-2);
int main()}{ : . . .
int n = 8; } No implicit barrier
printf(“fib(%d) = %d\n”, n, fib(n); return (i+); USE #pragma omp taskwait
} }

Binary Tree Representation
A node of a binary tree is represented by a structure containing a data part
and two pointers to other structures of the same type.

ROOT

|

m 1. struct node
T - <
3. int data;
/ \ 4. struct node *left;
m m 5. struct node *right;
6.0 1;
T
PN
NULL NULL NULL NULL

Applications of Trees

*Binary Search Trees(BSTs) are used to quickly check whether an element is present in a
set or not.

*Heap is a kind of tree that is used for heap sort.

*A modified version of tree called Tries is used in modern routers to store routing
information.

*Most popular databases use B-Trees and T-Trees, which are variants of the tree structure.
*Compilers use a syntax tree to validate the syntax of every program you write.

Tree Traversals (Inorder, Preorder and Postorder)

Unlike linear data structures (Array, Linked List, Queues, Stacks, etc) which have only one logical way to
traverse them, trees can be traversed in different ways. Following are the generally used ways for

traversing trees.

Example Tree

Depth First Traversals:

(a) Inorder (Left, Root, Right) : 4251 3
(b) Preorder (Root, Left, Right): 12453
(c) Postorder (Left, Right, Root): 452 31

Breadth First or Level Order Traversal: 12345

Given a tree:

O (C)

Work
Sharing: tasks o o ° e
»H O O O M ® C

* We would like to traverse it as quickly as possible.
* We are assuming that we do not need to traverse it in order.
* We just need to visit all nodes.

* This is common in graph algorithms, such as searching.

« If the tree is binary and is balanced, then the maximum depth of the
tree is log.(# of Nodes)

+ Strategy at a node:

1. follow one descendent node - This “f:’ ;F“'?.d“e re- ot
arranged, depending on

2. follow the other descendent node you de trying to do

3. process the node you're at o

Work

Sharing: tasks e o
O () () ()
OO O O®W O C

Tree Traversal Algorithms

Without this, thread #0 has to do everything

L

#pragma omp parallel o

Hpragma omp single

Work Traverse(root);

Sharing: tasks

#pragma omp taskwait

oY
Without this, each thread does a full traversal - bad idea! |

Put this here if you want to wait for all nodes to be traversed
before proceeding

Work

Sharing: tasks

Parallelizing a Binary Tree Traversal with Tasks

void
Traverse(Node *n)
{
if(n->left = NULL)
{
#pragma omp task private(n) untied
Traverse(n->left);
}

if(n->right = NULL)
{

#pragma omp task private(n) untied
Traverse(n->right),
} Fut this hare if you
want to wait for both
branches to be laken
#pragma omp taskwait «— | pefore processing the

parent

Process(n);

Work

Sharing: tasks

Parallelizing a Binary Tree Traversal with Tasks

Threads: Traverse(A);

o]2 |E

OpenMP: Synchronization

+ Data dependencies and Task Dependencies

« Need for finer control over how variables are shared.

 Ensure that threads do not interfere with each other. (the output should not
depend on how the individual threads are scheduled)

* In particular, the programmer must manage threads so that they read the
correct values of a variable and that multiple threads do not try to write o a

variable at the same time.

« MASTER, CRITICAL, BARRIER, FLUSH, TASKWAIT, ORDERED, NOWAIT

Data Dependencies

OpenMP assumes that there is NO data-
dependency across jobs running in parallel

When the omp parallel directive is placed around
a code block, it is the programmer’s
responsibility to make sure data dependency is
ruled out

Synchronization Constructs

1) Mutual Exclusion (Data Dependencies)
Critical Sections : Protect access to shared & modifiable data,
allowing ONLY ONE thread to enter it at a given time
#pragma omp critical
#pragma omp atomic - special case of critical, less overhead
Locks

float dot prod(float* a, float* b, int N)

{
float sum = 0.0;
#pragma omp parallel for shared(sum)
Only one thread for(int i=0; i<N; i++) {
updates thisata [|#pragma omp critical
time sum += a[i] * b[i];
¥

return sum;

Synchronization Constructs

To impose order constraints and protect shared data.
Achieved by Mutual Exclusion & Barriers

2) Barriers (Task Dependencies)
Implicit : Sync points exist at the end of
parallel -necessary barrier - cant be removed
for - can be removed by using the nowait clause
sections - can be removed by using the nowait clause
single - can be removed by using the nowait clause

Explicit : Must be used when ordering is required
H#pragma omp barrier
each thread waits until all threads arrive at the barrier

Work Sharing: single

 The SINGLE directive specifies that the enclosed code
is to be executed by only one thread in the team.

* May be useful when dealing with sections of code that
are not thread safe (such as |/0O)

1$OMP SINGLE [clause ...]
PRIVATE (List)
FIRSTPRIVATE (Llist)
block

1$OMP END SINGLE [NOWAIT]

#pragma omp single [clause ...] newline private (List)
firstprivate (list) nowait structured _blocR

Synchronization: Barrier

#pragma omp parallel private(id)

iId=omp_get_thread num();
A[id] = big_calc1(id);
#pragma omp barrier

#pragma omp for
for(i=0;I<N;i++)

{

{
T
}
}

#pragma omp for nowait
for(i=0;i<N;i++)
{

B[i]=big_calc2(C, i);

}
A[id] = big_calc4(id);

OPENMP Synchronization: review

PRAGMA

DESCRIPTION

#pragma omp taskwait
ISOMP TASKWAIT

#pragma omp critical
ISOMP CRITICAL
ISOMP END CRITICAL

#pragma omp critical
ISOMP ATOMIC
ISOMP END ATOMIC

#pragma omp barrier
ISOMP BARRIER
ISOMP END BARRIER

Specifies a wait on the completion of child tasks generated
since the beginning of the current task

Code within the block or pragma is only executed on one
thread at a time.

Provides a mini-CRITICAL section. specific memory location
must be updated atomically (Atomic statements)

Synchronizes all threads in a team; all threads pause at the
barrier, until all threads execute the barrier.

‘u rial ()

Speedup(P) =
ffu;nt d (P)
Computing
Efficiency of
Parallel Code S » ! P
Efficiency(P) = peedup(l)

P

Performance in OPENMP programs

Easy to write OpenMP but hard to write an efficient program!

6 main causes of poor performance:
- Sequential code
- Communication
- Load imbalance
- Synchronization
- Parallel Overhead

- Caching issues in multicore performance (False Sharing)

Sequential code

In OpenMP, all code outside of parallel regions and inside
MASTER, SINGLE and CRITICAL directives is sequential.

- This code should be as small as possible.

Communication

* On Shared memory machines, communication = increased
memory access costs.

* It takes longer to access data in main memory or another
processor's cache than it does from local cache.

« Memory accesses are expensivel

* Unlike message passing, communication is spread throughout
the program. - Much harder to analyse and monitor.

Load Balancing: Gaussian Elimination

Conversion of a Matrix into its Upper Triangular Equivalent
Simple Data Partitioning method for parallel processing -

1D vertical strip partitioning

Each process owns N/P columns of data

The = represents outstanding work in successive K iterations

B Busy
g. M [dle
0 0 0 0 @
.10 .10 0
110 10 3
0 Olo 0lo|0 I olo
After i=1 After i=2 After i=3 After i=n-1

When eliminating a column, processors to the left of are idle

Each processor is active for only part of the computation

Load Balancing

Important aspect of performance
For regular workloads (e.g. vector addition), load balancing is not
an issue
For less regular workloads, care needs to be taken in distributing
the work over the threads
Examples of irregular workloads:

multiplication of ftriangular matrices

parallel searches in a linked list or trees

recursive algorithms that involve the use of tasks
Schedule clause could be used for various iteration scheduling
algorithms
Can be addressed by pipelined processing.

Several Data & Task Decomposition and mapping techniques (Beyond
the scope of this talk)

Some simple techniques to avoid overheads.

Parallel Overhead

The amount of time required to coordinate parallel threads,
as opposed to doing useful work.

Thread start-up time

Synchronization

Software overhead imposed by parallel compilers, libraries,
tools, operating system, etc.

Thread termination time

Overheads of Parallel Directives

(microsecond)

Overhead

160 T T T T T T __.

PARALLEL FOR ---#-- -
140 [BARRIER O .

SINGLE - »
REDUCTION --& -
120 -
1m = '.'. =
80 - g .

Number of Threads

REDUCTION

PARALLEL FOR
PARALLEL

SINGLE

BARRIER
FOR

Overheads of Scheduling

crosecond)

Overhead (mi

1000

100

10 |

*. T

Chunksiz

Optimize the use of barriers

#pragma omp parallel default(mome) \
shared(n,a,b,c,d,sum) private(i)
{
#ipragma omp for nowait
for (i=0; i<n; i++)
ali] += blil;

#pragma omp for nowait
for (i=0; i<n; i++)
c[i] += d[i];

#pragma omp barrier

#pragma omp for nowait reduction(+:sum)
for (i=0; i<n; i++)
sum += a[i] + c[i];
} /+#*-- End of parallel region --*/

Prefer Atomic to Critical &
Avoid Large critical regions

#pragma omp parallel

{ HE Busy

M [dle
® [n Critical

#pragma omp critical

{

awmn

}

Maximize Parallel Regions

#pragma omp parallel

|
#ipragma omp for /#-- Work-sharing loop 1 --#/
{......}
#ipragma omp for /#-- Work-sharing loop 2 --#/
{......}
#pragma omp for /+-- Work-sharing loop N --#/
{ civass }

}

Single parallel region enclosing all work sharing for loops.

Avoid Parallel Regions in inner loops

for (i=0; i<n; i++)
for (j=0; j<n; j++)
#pragma omp parallel for
for (k=0; k<n; k++)

Figure 5.25: Parallel region embedded in a loop nest - The overheads of the
parallel region are incurred n* times.

#ipragma omp parallel
for (i=0; i<n; i++)
for (j=0; j<n; j++)
#pragma omp for
for (k=0; k<n; k++)

Figure 5.26: Parallel region moved outside of the loop nest - The parallel
construct overheads are minimized.

Caching issues in multicore performance

Core

Level 1 cache
cop Jcl coj 11 Copl |1 coj Ic1
c2] ICc3 c2] |c3 c2] |c3 c2y |c3
L2 L2 L2 L2
Memory

Architecture

Core Core 0 Core 1 Core 0 Core 1 Core 0 Core 1

[Licache | [Licache]| |[Licache] [Licache]| |[Licache | |[Licache |

L2 cache L2 cache

L3 cache L3 cache
e —————— e —————————— e —————————

single core AMD Optetron, Athlon intel Core Duo, Xeon fntel ftanium 2

L2 cache L2 cache L2 cache L2 cache

Cache hits and misses

Cache could be KB or MB, but bytes are transferred in much
smaller sizes. Typical size of cache line is 64Bytes

When CPU asks for a value from the memory

If the value is already in the cache -> Cache Hit

Value is not in the cache, has to be fetched from the memory ->
Cache Miss

« Compulsory (cold start or process migration): - First access to
a block in memory impossible to avoid

» Capacity: Cache cannot hold all blocks accessed by the program

* Conflict (collision): - Multiple memory locations map to same
cache location

Sequential: Cache hits and misses

C and C++ store 2D arrays a row-at-a-time, like this, A[1][j]:

[j] ——

sum =0.;
0 11 2| 3| 4 for(inti=0; i< NUM; i++)
{
[:] O 6 7 8 9 for(intj=0;j < NUM; j++)
| {

10 11112 13]| 14 ot £

15| 16|17 | 18| 19 } sum += f;

20 2112223 | 24 }

For large arrays, would it be better to add the 'I float f = Array[i][j]; H Sequential memory order

elements by row, or by column? Which will avoid float f = Array[[I[i]- Jump in memory order
the most cache misses?

Sequential:
Cache hits

and misses

Time, in seconds, to compute the array sums, based
on by-row versus by-column order:

40.0

35.0

30.0
—
) 25.0
o
c
8 20.0 =—4#—By Row
g —i—By Col
S—
O 150
=

10.0

50

0.0

0 10000 20000 30000 40000 50000 60000

Dimension (NUM)
(Total array size = NUMxNUM)

Caching issues in multicore performance

Processor 0 Processor 1
LN 7
Cache O Cache 1
X " —
4000 4000 | 4004 | 4008 | 4012 | 4016 4028
Tag i 32-Byte Data Block
Memory
* Suppose:

— Block size is 32 bytes

— PO reading and writing variable X, P1 reading and writing
variable Y

— X in location 4000, Y in 4012
* What will happen?

Caching issues in multicore performance

Cache lines consist of several words of data.

When two processors are both writing to different words on
the same cache line

- Each write will invalidate the other processors copy.

- Lots of remote memory accesses.

Symptoms:

- Poor speedup

- High, non-deterministic numbers of cache misses.

- Mild, non-deterministic, unexpected load imbalance.

False Sharing

double sum=8.0, sum local[NUM THREADS];

ftpragma omp parallel num threads(NUM THREADS)

{
int me = omp get thread num();
sum_local[me] = 0.0;

#pragma omp for
for (i = @; i < N; i++)
sum_local[me] += x[1] * v[1];

#fpragma omp atomic
sum += sum_local[me];

¥

‘ Thread 0

CPUO

Thread 1

CPU1

Cache Line

Cache

Cache Line

A Cache

Memory

When threads on different processors modify variables that reside on the same cache line.

This invalidates the cache line and forces a memory update to maintain cache coherency.

Potential false sharing on the array sum_local.

“place” data on different blocks OR Reduce block size

False Sharing: Solution 1

double sum=0.8, sum local[NUM THREADS];
#pragma omp parallel num threads(NUM THREADS)

Thread 0 Thread 1

{ CPU 0 CPU 1
int me = omp get thread num(); I I
Sum_]_{]t:a]_[ITIE*] = E}'G-; Cache Line Cache Line
for (1 = @; i < N; i++) Cache _/X Cache
sum_local[me] += x[1] * y[1]; I I

#fpragma omp atomic
sum += sum_local[me];
1 Memory

Adding a schedule clause with chunksize that ensures that 2 threads
do not step over the same cache line

False Sharing: Solution 2

double sum=0.0, ENENEINIYRGET YT

ftpragma omp parallel num threads(NUM THREADS) || Use compiler directives to force
{ individual variable alignment.

int me = omp_get thread num(); __declspec(align(n)) (n =64)
S UM IDEal[mET - 0.0" o (64 byte boundary) to align the
— ! individual variables on cache

line boundaries.

#pragma omp for
for (1 =05 1 <N; i++) declspec (align(64)) int

Sum_local[me][o] += x[l] * F[i]; Epeadl_global_var\iable;
_ __declspec (align(64)) int
#ipragma omp atomlc thread2_global variable;
sum += sum local[me];

¥

Array padding and memory alignment to reduce false sharing. This works
because successive Array elements are forced onto different cache lines, so
less (or no) cache line conflicts exist

False Sharing: Solution 2

struct ThreadParams

{

s

// For the following 4 variables: 4%4 = 16 bytes
unsigned long thread id;

unsigned long v; // Frequent read/write access variable
unsigned long start;

unsigned long end;

// expand to 64 bytes to avoid false-sharing

// (4 unsigned long variables + 12 padding)*4 = 64
int padding[12];

declspec (align(64)) struct ThreadParams Array[10];

Padding a data structure to a cache line boundary
Ensuring the array is also aligned using the
compiler

declspec (align(n)) [n = 64 (64 byte boundary)]

Array of data structures

Pad the structure to the end of a
cache line to ensure that the array
elements begin on a cache line
boundary.

If you cannot ensure that the array
is aligned on a cache line boundary,
pad the data structure to twice the
size of a cache line.

If the array is dynamically allocated,
increase the allocation size and
adjust the pointer to align with a
cache line boundary.

False Sharing: Solution 3

Use of private variables
Note: Shared data that is read-only in a loop does not lead to false sharing.

double sum=0.8, sum local[NUM THREADS];
#pragma omp parallel num threads(NUM THREADS)

{

int me = omp get thread num();
sum_local[me] = 0.0;

#fpragma omp tor EEIEIEUIEERRIEINTIY)

for (i = @; i < N; i++)

+= x[1] * y[1];

#fpragma omp atomic

sSum += ThreadLocalSum P

False Sharing
c--t-0--r-r-t-o-U-Oe-Ue-tUe-U-U-0

N N S—— ——

One large global memory block - Shared

False Sharing?

Make sure each individual-block starts and ends at the cache
boundary

Separate blocks each local to its own core (i.e. private)
No false sharing but detailed code to identify where each private
block begins and ends.

Cache hits and misses

Coherence Misses: Misses caused by coherence traffic with other processor
Also known as communication misses because represents data moving
between processors working together on a parallel program

For some parallel programs, coherence misses can dominate total misses

Spatial Coherence

"If you need one memory address's contents now, then you will probably also
need the contents of some of the memory locations around it soon.”

Temporal Coherence

"If you need one memory address'’s contents now, then you will probably also
need its contents again soon."

Matrix-vector multiplication

Vi = djoXo +dijl X1+ +djp—1Xp—1

aoo apr || dop—1 Yo
a0 apy || dip-i Yo Ay
X
a0 din | dip— Do Li = dioXo +ain Xy 4 dip—1Xn—1
Xn—1 .
Um—1,0 | Gm—1,1 | "~ | dm—1,n—1 VYm—1
for (i = 0; i < m; i++) {

Y[ll = 0.0:
for (7 = 0 73 < n: Jj++)
ylil += A[1][3]*x[]]:

Matrix-vector multiplication

pragma omp parallel
default (none) private(i,

for

num_threads (thread_count)

J) shared(A,

X Y W,

n)

Far more write-misses
than the other two.

for (i = 0; 1i < m; i++) {
v[i] = 0.0; <
for (7 0; 3 < n: j++) |
yli] += A[i][j]*x[]];
S, Tl
\Matrix Dimension
/8.000.000><8\ 8000 x 8000 | 8 x 8,000,000
Threads || Time Eff. \ Time Eff. | Time Eff.
I 0.322 | 1.000 {]0.264 | 1.000 | 0.333 | 1.000
2 0.219 | 0.735 § 0.189 | 0.698 | 0.300 | 0.555
4 0.141 | 0.571/] 0.119 | 0.555 | 0.303 | 0.275

N/

Matrix-vector multiplication

pragma omp parallel for num_threads(thread_count) \

default(none) private(i, j) shared(A, x, y, m, n)
for (i = 0; i < m; i++) {
] = 9.4k
eF (1 =8 9 < n; 1%%) :
72 e AP T [T Far more read-misses
! /Qm other two.
Matrix Dimension / %
8.000,000 x 8 | 8000 x 8000 |/8 x 8,000,000
Threads || Time Eff. | Time Eft. { Time Eff.
] 0.322 | 1.000 | 0.264 | 1.000{ 0.333 | 1.000
2 0.219 | 0.735 | 0.189 | 0.698 | 0.300 | 0.555
4 0.141 | 0.571 | 0.119 | 0.555 \0.303 | 0.275

N/

Where Cache Coherence Really
Matters: Matrix Multiply

The usual approach is multiplying the entire A row * entire B column
This is equivalent to computing a single dot product

j
—
i i r

Rowiof A % Columnjof B mmm) Element (ij) of C

for(i=0; i < SIZE; i++)
for(j = 0; j < SIZE; j++)
for(k = 0; k < SIZE; k++)

Sum and store
ZA[i][k] * BlKk][j] —) Clillj]

Where Cache
Coherence

Really Matters:
Matrix Multiply

Performance vs.

Matrix Size

1000

1000
800 800
——5 -8
600 600
—- -4
400 2 400 2
200 -] 200 —e1
0 0
200 400 600 200 400 600
I-j-k i-K-j
1000 1000
800 800
——8 ——3
600 600
-4 -4
400 = 400 5
200 - _1 200 —
0 i@ 0
200 400 600 200 400 600
J-k-i J-1-K
1000 1000
800 800
—4—3 ——8
600 600
-4 -4
400 X 400 2
- E
200 —_—1 200 i i 2 E ; ———]
0 0 -
200 400 600 200 400 600
K-i-] K-j-i

Where Cache Coherence Really
Matters: Matrix Multiply

Scalable Universal Matrix Multiply Algorithm (SUMMA)
Entire A row * one element of B row
Equivalent to computing one item in many separate dot products

k l -
, l *)
I i |
Row i of A Row k of B Element (i,j) of C

for(i=0;i<SIZE; i++)
for(k = 0; k < SIZE; k++)
for(j=0;j < SIZE; j++) Add to

AlT][k] * BlKkI[] —) Clilli]

Block Dense Matrix Multiplication

Usually size of matrices (N) much larger than number of processors (p).
Divide matrix into s? submatrices.
Each submatrix has N/s x N/s elements.

Cor = Ap1B1a + AxsBoy + ApsBay + ApyByy =
2k Ax"Byo

Block Dense Matrix Multiplication

Usually size of
matrices (n)
much larger
than number of
processors (p).

Divide matrix
into s2
submatrices.
Each submatrix
has n/s x n/s
elements.

Mutpy _ 9 Sam
¢ T — T

P /x-:_..-——— -

T =
........... resESer——

\
el)

A b B = £

for (p=0; p <s; p++)
for (q=0; q<s; q++){
Coa=0;
for(r=0; r<m; r++)
Cpq = Cpq *Apr " Brg

rg:

/* clear elements of submatrix*/
* submatrix multiplication */
*add to accum. submatrix®/

}

The line: Cp =Cp 4 + Ay * Brg: means multiply submatrix A,
and B, using matrix multiplication and add to submatrix C, ,
using matrix addition.

OpenMP Parallel Programming

= Start with a parallelizable algorithm
Loop level parallelism /tasks

= Implement Serially : Optimized Serial Program
= Test, Debug & Time to solution

= Annotate the code with parallelization and Synchronization
directives

= Remove Race Conditions, False Sharing
= Test and Debug
= Measure speed-up (T-serial/T-parallel)

