
OpenMP Part 2
WorkSharing, Schedule,
Synchronization and
OMP best practices

✓ What is OPENMP?
✓ Fork/Join Programming model
✓ OPENMP Core Elements
✓ #pragma omp parallel OR Parallel construct
✓ run time variables
✓ environment variables
✓ data scoping (private, shared…)
✓ work sharing constructs

#pragma omp for
✓ compile and run openmp program in c++ and fortran
✓ work sharing constructs

schedule clause
sections
tasks

➢ synchronization

Recap of Part 1

OpenMP Parallel Programming

▪ Start with a parallelizable algorithm
Loop level parallelism /tasks

▪ Implement Serially : Optimized Serial Program

▪ Test, Debug & Time to solution

▪ Annotate the code with parallelization and Synchronization
directives

▪ Remove Race Conditions, False Sharing

▪ Test and Debug

▪ Measure speed-up (T-serial/T-parallel)

Installing and running C/C++/Fortran
Programs on multicore machines

The GNU Project https://gcc.gnu.org/install/binaries.html
MacOS:
The Homebrew package manager : https://brew.sh/
MacPorts https://www.macports.org/

MS Windows
The Cygwin project https://sourceware.org/cygwin/
MinGW and mingw-w64 projects http://www.mingw.org/
http://mingw-w64.org/doku.php

Linux machines come pre-installed with gnu binaries
gcc --version
gfortran --version

https://gcc.gnu.org/install/binaries.html
https://brew.sh/
https://www.macports.org/
https://sourceware.org/cygwin/
http://www.mingw.org/
http://mingw-w64.org/doku.php

Environment Variables
LINUX /UNIX bash /Cygwin:
List all environment variables: printenv
Update environment variable : export OMP_NUM_THREADS=5

LINUX/UNIX csh
List all environment variables: printenv
Update environment variable : setenv OMP_NUM_THREADS 5

Windows/DOS
List all environment variables: set
Update environment variable : set (/A) OMP_NUM_THREADS= 5

OSX
List all environment variables: env
Update environment variable : export OMP_NUM_THREADS= 5

Compiling and running OPENMP Code

Locally

$g++ -fopenmp Program.cpp –o <output_name>
$gfortran –fopenmp Program.f95 –o <output_name>
$./<output_name>

OpenMP environment variables

Display OPENMP environment upon execution of the program

$export OMP_DISPLAY_ENV=TRUE (bash)

$setenv OMP_DISPLAY_ENV TRUE (csh)

OPENMP DISPLAY ENVIRONMENT BEGIN
_OPENMP = '201307'
OMP_DYNAMIC = 'FALSE'
OMP_NESTED = 'FALSE'
OMP_NUM_THREADS = '32'
OMP_SCHEDULE = 'DYNAMIC'
OMP_PROC_BIND = 'FALSE'
OMP_PLACES = ''
OMP_STACKSIZE = '140729178218216'
OMP_WAIT_POLICY = 'PASSIVE'
OMP_THREAD_LIMIT = '4294967295'
OMP_MAX_ACTIVE_LEVELS = '2147483647'
OMP_CANCELLATION = 'FALSE'
OMP_DEFAULT_DEVICE = '0'

OPENMP DISPLAY ENVIRONMENT END

Running OpenMP code

Controlling the number of threads at runtime

▪ The default number of threads = number of online processors
on the machine.

▪ C shell : setenv OMP_NUM_THREADS number
▪ Bash shell: export OMP_NUM_THREADS = number
▪ Runtime OpenMP function omp_set_num_threads(4)
▪ Clause in #pragma for parallel region

Execution Timing #include omp.h
stime = omp_get_wtime();
longfunction();
etime = omp_get_wtime();
total = etime-stime;

Compiling and running OPENMP Code

On SahasraT

$ssh <username>@sahasrat.serc.iisc.ernet.in
$password:

Copy the code onto the home area
Create make files for compiling code (clearing binaries, compiling,
linking and creating executable)

Run make
Create a job script to submit the job in batch mode
qsub jobscript
qstat
Check output

2020JanOPENMP

$vi <code>.cpp
$make
$module load pbs
$module load craype-haswell
$qsub jobscript
$qstat
$vi jobscript

Exercise 1 - HelloWorld

Exercise 2 – Data Scoping

Exercise 3 – Compute PI

Exercise 4- Schedule Clause

Exercise 6 – Matrix Multiplication

Exercise 5- Schedule Clause

Exercise 7 – Jacobi Iteration

Exercise 8 – Mandelbrot Set

✓ What is OPENMP?
✓ Fork/Join Programming model
✓ OPENMP Core Elements
✓ #pragma omp parallel OR Parallel construct
✓ run time variables
✓ environment variables
✓ data scoping (private, shared…)
✓ work sharing constructs

#pragma omp for
✓ compile and run openmp program in c++ and fortran
✓ work sharing constructs

schedule clause
sections
tasks

➢ synchronization

Recap of Part 1

Schedule Clause

How is the work is divided among threads?
Directives for work distribution

Schedule Clause: Types
A schedule kind is passed to an OpenMP loop schedule clause:
• Provides a hint for how iterations of the corresponding

OpenMP loop should be assigned to threads in the team of
the OpenMP region surrounding the loop.

• Five kinds of schedules for OpenMP loop1:
static
dynamic
guided
auto
runtime

• The OpenMP implementation and/or runtime defines how to
assign chunks to threads of a team given the kind of schedule
specified by as a hint.

STATIC: Iterations of a loop are divided into chunks of size ceiling(iterations/threads). Each
thread is assigned a separate chunk.
STATIC, N: Iterations of a loop are divided into chunks of size N. Each chunk is assigned to a
thread in round-robin fashion. N >= 1 (integer expression)

DYNAMIC: Iterations of a loop are divided into chunks of size 1.
Chunks are assigned to threads on a first-come, first-serve basis as threads become available.
This continues until all work is completed.
DYNAMIC, N: Same as above, all chunks are set to size N

GUIDED: Chunks are made progressively smaller until a chunk size of one is reached. The first
chunk is of size ceiling(iterations/threads). Remaining chunks are of
size ceiling(iterations_remaining/threads).Chunks are assigned to threads on a first-come,
first-serve basis as threads become available. This continues until all work is completed.
GUIDED, N: Minimum chunk size is N

AUTO: Delegated the decision of the scheduling to the compiler and/or runtime system
RUNTIME: Scheduling policy is determined at run time. OMP_SCHEDULE/
OMP_SET_SCHEDULE

Schedule Clause

Schedule Clause

Work Sharing: sections

SECTIONS directive is a non-iterative
work-sharing construct.

It specifies that the enclosed
section(s) of code are to be divided
among the threads in the team.

Each SECTION is executed ONCE by a
thread in the team.

Work Sharing: sections

OpenMP: lastprivate Clause - review

• Creates private memory location for each thread.
• Does not initialize the private variable.
• The sequentially last iteration of the associated loops, or the

lexically last section construct [...] to the original list item.

!$OMP DO PRIVATE(I)

LASTPRIVATE(B)

DO i = 1, 1000

B = i

ENDDO

!$OMP END DO

!—value of B here is

1000

!$OMP SECTIONS

LASTPRIVATE(B)

!$OMP SECTION

B = 2

!$OMP SECTION

B = 4

!$OMP SECTION

D = 6

!$OMP END SECTIONS

Work Sharing: tasks

On encountering a task construct, a new task is
generated.
Unlike sections, the moment of execution of any task
is upto the runtime system and is non-deterministic.

Work Sharing: tasks

#pragma omp task [clauses]……

• Tasks allow to parallelize irregular problems (Unbounded loops &
Recursive algorithms)

• A task has - Code to execute – Data environment (It owns its data)
– Internal control variables – An assigned thread that executes the
code and the data

• Each encountering thread packages a new instance of a task (code
and data)

• Some thread in the team executes the task at some later time
• All tasks within a team have to be independent and there is no

implicit barrier.

Work Sharing: tasks

No implicit barrier
USE #pragma omp taskwait

Task1

Task2

Applications of Trees

•Binary Search Trees(BSTs) are used to quickly check whether an element is present in a

set or not.

•Heap is a kind of tree that is used for heap sort.

•A modified version of tree called Tries is used in modern routers to store routing

information.

•Most popular databases use B-Trees and T-Trees, which are variants of the tree structure.

•Compilers use a syntax tree to validate the syntax of every program you write.

Binary Tree Representation

A node of a binary tree is represented by a structure containing a data part

and two pointers to other structures of the same type.

Work
Sharing: tasks

Work
Sharing: tasks

Work
Sharing: tasks

Work
Sharing: tasks

Work
Sharing: tasks

OpenMP: Synchronization

• Data dependencies and Task Dependencies
• Need for finer control over how variables are shared.
• Ensure that threads do not interfere with each other. (the output should not

depend on how the individual threads are scheduled)
• In particular, the programmer must manage threads so that they read the

correct values of a variable and that multiple threads do not try to write to a
variable at the same time.

• MASTER, CRITICAL, BARRIER, FLUSH, TASKWAIT, ORDERED, NOWAIT

Data Dependencies

OpenMP assumes that there is NO data-
dependency across jobs running in parallel

When the omp parallel directive is placed around
a code block, it is the programmer’s
responsibility to make sure data dependency is
ruled out

Synchronization Constructs

1) Mutual Exclusion (Data Dependencies)
Critical Sections : Protect access to shared & modifiable data,
allowing ONLY ONE thread to enter it at a given time

#pragma omp critical
#pragma omp atomic – special case of critical, less overhead

Locks

Only one thread
updates this at a

time

Synchronization Constructs

To impose order constraints and protect shared data.

Achieved by Mutual Exclusion & Barriers

2) Barriers (Task Dependencies)
Implicit : Sync points exist at the end of

parallel –necessary barrier – cant be removed
for – can be removed by using the nowait clause
sections – can be removed by using the nowait clause
single – can be removed by using the nowait clause

Explicit : Must be used when ordering is required
#pragma omp barrier

each thread waits until all threads arrive at the barrier

Work Sharing: single

!$OMP SINGLE [clause ...]
PRIVATE (list)
FIRSTPRIVATE (list)

block
!$OMP END SINGLE [NOWAIT]

#pragma omp single [clause ...] newline private (list)
firstprivate (list) nowait structured_block

• The SINGLE directive specifies that the enclosed code
is to be executed by only one thread in the team.

• May be useful when dealing with sections of code that
are not thread safe (such as I/O)

Explicit Barrier

Implicit Barrier at end
of parallel region

No Barrier
nowait cancels barrier

creation

Synchronization: Barrier

OPENMP Synchronization: review
PRAGMA DESCRIPTION

#pragma omp taskwait
!$OMP TASKWAIT

Specifies a wait on the completion of child tasks generated
since the beginning of the current task

#pragma omp critical
!$OMP CRITICAL
!$OMP END CRITICAL

Code within the block or pragma is only executed on one
thread at a time.

#pragma omp critical
!$OMP ATOMIC
!$OMP END ATOMIC

Provides a mini-CRITICAL section. specific memory location
must be updated atomically (Atomic statements)

#pragma omp barrier
!$OMP BARRIER
!$OMP END BARRIER

Synchronizes all threads in a team; all threads pause at the
barrier, until all threads execute the barrier.

Computing
Efficiency of
Parallel Code

Performance in OPENMP programs

Easy to write OpenMP but hard to write an efficient program!

6 main causes of poor performance:
– Sequential code
– Communication
– Load imbalance
– Synchronization
- Parallel Overhead
- Caching issues in multicore performance (False Sharing)

Sequential code

In OpenMP, all code outside of parallel regions and inside
MASTER, SINGLE and CRITICAL directives is sequential.

– This code should be as small as possible.

Communication

• On Shared memory machines, communication = increased
memory access costs.

• It takes longer to access data in main memory or another
processor’s cache than it does from local cache.

• Memory accesses are expensive!

• Unlike message passing, communication is spread throughout
the program. – Much harder to analyse and monitor.

Load Balancing: Gaussian Elimination

When eliminating a column, processors to the left of are idle
Each processor is active for only part of the computation

Conversion of a Matrix into its Upper Triangular Equivalent
Simple Data Partitioning method for parallel processing –
1D vertical strip partitioning
Each process owns N/P columns of data
The represents outstanding work in successive K iterations

Load Balancing

Important aspect of performance
For regular workloads (e.g. vector addition), load balancing is not
an issue
For less regular workloads, care needs to be taken in distributing
the work over the threads
Examples of irregular workloads:

multiplication of triangular matrices
parallel searches in a linked list or trees
recursive algorithms that involve the use of tasks

Schedule clause could be used for various iteration scheduling
algorithms
Can be addressed by pipelined processing.

Several Data & Task Decomposition and mapping techniques (Beyond
the scope of this talk)

Some simple techniques to avoid overheads.

Parallel Overhead

The amount of time required to coordinate parallel threads,
as opposed to doing useful work.

Thread start-up time
Synchronization
Software overhead imposed by parallel compilers, libraries,
tools, operating system, etc.
Thread termination time

Overheads of Parallel Directives

Overheads of Scheduling

Optimize the use of barriers

Prefer Atomic to Critical &
Avoid Large critical regions

Maximize Parallel Regions

Single parallel region enclosing all work sharing for loops.

Avoid Parallel Regions in inner loops

Caching issues in multicore performance

Memory
Architecture

Cache hits and misses

Cache could be KB or MB, but bytes are transferred in much
smaller sizes. Typical size of cache line is 64Bytes
When CPU asks for a value from the memory
If the value is already in the cache -> Cache Hit
Value is not in the cache, has to be fetched from the memory ->
Cache Miss

• Compulsory (cold start or process migration): – First access to
a block in memory impossible to avoid

• Capacity: Cache cannot hold all blocks accessed by the program
• Conflict (collision): – Multiple memory locations map to same

cache location

Sequential: Cache hits and misses

Sequential memory order

Jump in memory order

Sequential:
Cache hits
and misses

Caching issues in multicore performance

Caching issues in multicore performance

Cache lines consist of several words of data.

When two processors are both writing to different words on
the same cache line
– Each write will invalidate the other processors copy.
– Lots of remote memory accesses.

Symptoms:
– Poor speedup
– High, non-deterministic numbers of cache misses.
– Mild, non-deterministic, unexpected load imbalance.

False Sharing

When threads on different processors modify variables that reside on the same cache line.
This invalidates the cache line and forces a memory update to maintain cache coherency.
Potential false sharing on the array sum_local.

“place” data on different blocks OR Reduce block size

False Sharing: Solution 1

Adding a schedule clause with chunksize that ensures that 2 threads
do not step over the same cache line

#pragma omp for schedule(static,chunkSize)

False Sharing: Solution 2

Array padding and memory alignment to reduce false sharing. This works
because successive Array elements are forced onto different cache lines, so
less (or no) cache line conflicts exist

sum_local[NUM_THREADS][cacheline];

sum_local[me][0]

Use compiler directives to force
individual variable alignment.
__declspec(align(n)) (n =64)
(64 byte boundary) to align the
individual variables on cache
line boundaries.

__declspec (align(64)) int
thread1_global_variable;
__declspec (align(64)) int
thread2_global_variable;

False Sharing: Solution 2

Array of data structures
• Pad the structure to the end of a

cache line to ensure that the array
elements begin on a cache line
boundary.

• If you cannot ensure that the array
is aligned on a cache line boundary,
pad the data structure to twice the
size of a cache line.

• If the array is dynamically allocated,
increase the allocation size and
adjust the pointer to align with a
cache line boundary.

Padding a data structure to a cache line boundary
Ensuring the array is also aligned using the
compiler
__declspec (align(n)) [n = 64 (64 byte boundary)]

False Sharing: Solution 3
Use of private variables

Note: Shared data that is read-only in a loop does not lead to false sharing.

ThreadLocalSum

private(ThreadLocalSum)

ThreadLocalSum

One large global memory block – Shared
False Sharing?
Make sure each individual-block starts and ends at the cache
boundary

Separate blocks each local to its own core (i.e. private)
No false sharing but detailed code to identify where each private
block begins and ends.

False Sharing

Cache hits and misses

Coherence Misses: Misses caused by coherence traffic with other processor
Also known as communication misses because represents data moving
between processors working together on a parallel program
For some parallel programs, coherence misses can dominate total misses

Spatial Coherence
“If you need one memory address’s contents now, then you will probably also
need the contents of some of the memory locations around it soon.”

Temporal Coherence
“If you need one memory address’s contents now, then you will probably also
need its contents again soon.”

Where Cache Coherence Really
Matters: Matrix Multiply

Code simplicity!
Blindly marches
through memory
(how does this
affect the
cache?)
This is a problem in
a C /C++ program
because B is not
doing a unit stride

Where Cache
Coherence

Really Matters:
Matrix Multiply

Where Cache Coherence Really
Matters: Matrix Multiply

I, k, j

Block Dense Matrix Multiplication

Usually size of matrices (N) much larger than number of processors (p).
Divide matrix into s2 submatrices.
Each submatrix has N/s x N/s elements.

Block Dense Matrix Multiplication

OpenMP Parallel Programming

▪ Start with a parallelizable algorithm
Loop level parallelism /tasks

▪ Implement Serially : Optimized Serial Program

▪ Test, Debug & Time to solution

▪ Annotate the code with parallelization and Synchronization
directives

▪ Remove Race Conditions, False Sharing

▪ Test and Debug

▪ Measure speed-up (T-serial/T-parallel)

