1 =
. /
- «
e
’ e \,,“: ~
7 \ A 74
. , =
a \ \
o
. |
!
- 4B
v B y
<ANVIDIA. *
> . - =

ACCELERATING END TO ENDDEEP LEARNING *
WORKFLOW. \

Deepshikha Kumari

Data Scientist Il- Deep learning

1. Al Use cases for Industry
2. End To End Deep Learning Workflow
* Training Pipeline
a. NGC

/.A\GENDA ¢ b. Transfer Learning

c. Automatic Mixed Precision
- d. Code walkthrough
Inference Pipeline
a. TensorRT (Float 16)
b. TensorRT (INT8)
c. Custom plugin support
d. Deepstream

INTELLIGENT VIDEO ANALYTICS (IVA) FOR EFFICIENCY AND SAFETY

"Billboarding™

g8

enstsoooeorvnr [
P
pmp— 1

wimeonensen @ || | Pathways

P DeveLBMeNt AcaEAGE S =
.] =

3 <NVIDIA.

DEEP LEARNING IN PRODUCTION

Speech Recognition
Recommender Systems
Autonomous Driving
Real-time Object Recognitior
Robotics

Real-time Language
Translation

Many More...

END TO END NVIDIA DEEP LEARNING WORKFLOW

TRAINING

. . . . INFERENCE

L] '
_ L R NVIDIA
d | > g | B — . — %—r TensorRT" —_—

PRETRAINED TRAIN WITH PRUNE RETRAIN OUTPUT BUILD DEEPSTREAM
MODEL NEW DATA MODEL ENGINE SDK

O
@)
O
OM
o
O

WHY CONTAINERS?

CONTAINERIZED APPLICATION

DEEP LEARNING APPLICATIONS
DEEP LEARNING FRAMEWORKS
DEEP LEARNING LIBRARIES
CUDA TOOLKIT

Benefits of Containers:

CONTAINER 0S

Simplify deployment of
GPU-accelerated software, eliminating time-
consuming software integration work

Isolate individual deep learning frameworks and
applications

Share, collaborate,
and test applications across
e a RUNTIME FOR DOCKER different environments

CONTAINERIZATION TOOL

- NVIDIA DRIVER
* HOSTOS

NVIDIA GPU CLOUD SOFTWARE STACK

< NVIDIA

Virtual Machine vs. Container

Not so similar

App 1 App 1

App 2

Bins / Libs Bins / Libs Bins / Libs

Guest OS Guest OS Guest OS)) _ _
Bins / Libs Bins / Libs Bins / Libs

Hypervisor

Host Operating System
Server Infrastructure Server Infrastructure

Virtual Machines Containers

Host Operating System

8 <ANVIDIA

NVIDIA container runtime
https://github.com/NVIDIA/nvidia-docker

Colloqually called “nvidia-docker”

Docker containers are hardware-
agnostic and platform-agnostic

NVIDIA GPUs are specialized
hardware that require the NVIDIA
driver

Docker does not natively support
NVIDIA GPUs with containers

NVIDIA Container Runtime makes the
Images agnostic of the NVIDIA driver

CONTAINER 1

Applic aﬁonﬁ |
CLDA ToOLKIt «erevvrrrrerrmnnrrrdes

Container 05 User Space

Docker Engine

CUDA D
Host 0S

FIVEr =scrssecrnannnnnnsssrnnnnnnnnssannsfen

CONTAINER N

9 <ANVIDIA

https://github.com/NVIDIA/nvidia-docker

Docker Terms

Image
Docker images are the basis of .An Image is an ordered collection of root filesystem changes

and the corresponding execution parameters for use within a container runtime. An image typically
contains a union of layered filesystems stacked on top of each other. An image does not have state and it

never changes.

Container
A container is a runtime instance of a

A Docker container consists of

® A Dockerimage
@® EXxecution environment

@® A standard set of instructions

https://docs.docker.com/engine/reference/glossary/

10 NVIDIA

https://docs.docker.com/engine/reference/glossary/#container
https://docs.docker.com/engine/reference/glossary/#image

@A NVIDIA NGC | MODELS

& ACCELERATED SOFTWARE

$ ALL MODELS

CONTAINERS

TLT | FP32
MODEL SCRIPTS

SETUP

X

TLT | FP32

X

TLT | FP32

Collapse

NGC Version: 2.14.1

@
27 ORGANIZATION MODELS

33 TEAM MODELS

TLT | FP32

X

TLT | FP32

Tensorflow

fp32

TLT | FP32

X

TLT | FP32

Tensorflow

fp16

TLT | FP32

X7

TLT | FP32

Tensorflow

fp32

Sort: Last Modified v

END TO END NVIDIA DEEP LEARNING WORKFLOW

TRAINING

. . . . INFERENCE

; | F |
. . . . y S . NVIDIA
LR . @ : - @ : % : == TensorRT" -

PRETRAINED TRAIN WITH PRUNE RETRAIN OUTPUT BUILD DEEPSTREAM
MODEL NEW DATA MODEL ENGINE SDK

TRANSFER LEARNING TOOLKIT

PRETRAINED
MODEL

DATA

TRANSFER LEARNING TOOLKIT

-

PRUNING SCENE NEW
ADAPTATION CLASSES

et

OUTPUT MODEL

PRUNING

o Reduce model size and increase throughput

e Incrementally retrain model after pruning to recover
accuracy

6 inputs, 6 nourons (iIncluding 2
outputs), 32 connections

tit-prune tit-train

Selecting Unnecessary Neurons

1. DATA Driven operation
2. Non- Data Driven Operation.
3. Handling Element-Wise Operations of Multiple Inputs

pruned_model = TLT.prune(model, t)

15 A nviDiA

SCENE ADAPTATION

Camera location vantage point

Person with blue shirt

EIRRETETE IIS8S (SESES REAAMBEIZ Y SO A AR T e L
O O R T - NK GRar Bl ABisAsiait iz -“l'w‘ vl‘qsn

TERETEES 10000 SRR T e o

7 r.._!ggmlm:g ,-.. -

AW 3

-v-1 9’3?. 'i‘

,l'\.‘ {Eh

Same network adapting to different
angles and vantage points

Same network adapting to new data

Train with new data from another vantage point, camera location, or added attribute

16

478 MVIDILA

END TO END NVIDIA DEEP LEARNING WORKFLOW

TRAINING

. . . . INFERENCE

; | F |
. . . . y S . NVIDIA
LR . @ : - @ : % : == TensorRT" -

PRETRAINED TRAIN WITH PRUNE RETRAIN OUTPUT BUILD DEEPSTREAM
MODEL NEW DATA MODEL ENGINE SDK

TRAINING LAYER

MNorm?2
Pool2

Norm!
Pooll

TLT

AUTOMATIC MIXED PRECISION

.
@.
Q.
@ .

ACCELERATED BY GPU

FP32

Dperation

FP16

Operation

Run On Tensor Cores

TENSORFLOW

Automatic Mixed Precision feature is available both in native TensorFlow and inside
the TensorFlow container on

NVIDIA NGC container registry:

export TF_ENABLE_AUTO_MIXED_PRECISION=1

As an alternative, the environment variable can be set inside the TensorFlow Python script:
0s.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] ='1*

PYTORCH

Automatic Mixed Precision feature is available in the Apex repository on GitHub. To enable,
add these two lines of code into your existing training script:

model, optimizer = amp.initialize(model, optimizer, opt_level="01")

with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()

MXNET

Automatic Mixed Precision feature is available both in native MXNet (1.5 or later) and inside the MXNet
container (19.04 or later) on NVIDIA NGC container registry. To enable the feature, add the following
lines of code to your existing training script:

amp.init()

amp.init_trainer(trainer)

with amp.scale_loss(loss, trainer) as scaled _loss:
autograd.backward(scaled_loss)

AUTOMATIC MIXED PRECISION IN TENSORFL

4x
3x

N

)

a

[V

@ 2Xx

o

-

©

[+3]

)

=1

7]
1x
Ox

ResNet-50v1.5 SSD-RNS50-FPN-640 NCF BERT - Q&A GNMT

TensorFlow Medium Post: Automatic Mixed Precision in TensorFlow for Faster Al Training on NVIDIA GPUs

All models can be found at:

https://github.com /NVIDIA/ DeeplLeamingEXx e/master/Te ow, except for ssd-rn50-fpn-640, which is here: https://github. com /tensorflow/models/ tree/ master/research/object_detection All
performance collected on 1xV100- 16GB, except bert-squadqga on 1xV100-32GB.

Speedup is the ratio of time to train for a fixed number of epochs in single-precision and Automatic Mixed Precision. Number of epochs for each model was matching the literature or common practice (it was also confirmed that both training sessions achieved the same model accuraqy).
Batchssizes:. rn50 (v1.5): 128 for FP32, 256 for AMP+XLA; ssd-rn50-fpn-640: 8 for FP32, 16 for AMP+XLA; NCF: 1M for FP32and AMP+XLA; bert-squadqa: 4 for FP32, 10 for AMP+XLA; GNMT : 128 for FP32, 192 for AMP. 7 NVIDIA,

https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow
https://github.com/tensorflow/models/tree/master/research/object_detection
https://medium.com/tensorflow/automatic-mixed-precision-in-tensorflow-for-faster-ai-training-on-nvidia-gpus-6033234b2540?linkId=64995850

AUTOMATIC MIXED PRECISION IN
PYTORCH

https://developer.nvidia.com/automatic-mixed-precision

Plot shows ResNet-50 result with/without automatic mixed o i
precision(AMP) -
: . 600
More AMP enabled model scripts coming soon:
Mask-R CNN, GNMT, NCF, etc. = 500
(o]
E 400 355
g
300
2
A
£ 200
100

FP32 Mixed
Precision

Source: https://github.com/NVIDIA/apex/tree/master/examples/imagenet g INVIDIA,

https://developer.nvidia.com/automatic-mixed-precision
https://github.com/NVIDIA/apex/tree/master/examples/imagenet

AUTOMATIC MIXED PRECISION IN MXNE

1.5X to 2X speedup

25X
X
1.5X
1K
5K

X
o T
.'1&5'1‘ w ,5-.1 4

(*) based on ResNet50 v1.5

https://github.com/apache/incubator-mxnet/pull/14173 9 AnviDIA

https://github.com/apache/incubator-mxnet/pull/14173

END TO END NVIDIA DEEP LEARNING WORKFLOW

TRAINING

. . . . INFERENCE

; | F |
. . . . y S . NVIDIA
LR . @ : - @ : % : == TensorRT" -

PRETRAINED TRAIN WITH PRUNE RETRAIN OUTPUT BUILD DEEPSTREAM
MODEL NEW DATA MODEL ENGINE SDK

NVIDIA TENSORRT

Programmable Inference Accelerator

FRAMEWORKS

Chainer

developer.nvidia.com/tensorrt

4 PaddlePaddle

PYTORCH

* TensorFlow

theano

GPU PLATFORMS

TESLA P4 =

B

JETSON TX2

DRIVE PX 2 o>
9‘ »
R
o
TESLA V100

TENSORRT PERFORMANCE

40x Faster CNNs on V100 vs. CPU-Only
Under 7ms Latency (ResNet50)
40

5700

35

30

§ 4,000 25
& 20
& 3,000
j= 14 ms 15
2,000
10
6.678Ms
1,000 5

V100 +
TensorFlow

Inference throughput (images/sec) on ResNet50. V100 + TensorRT: NVIDIA TensoRT (FP16), batch size 39, Tesla V100-SXM2-

CPU-Only V100 + TensorRT

16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On V100 + TensorFlow: Preview of vdtaoptimized TensorFlow (FP16),

batch size 2, TeslaV100-PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. CPU-Only: Intel Xeon-D 1587
Broadwell-E CPUand Intel DL SDK. Score doubled to comprehend Intel's stated claim of 2x performance improvementon Skylake
with AVX512.

developer.nvidia.com/tensorrt

(sw) Aouaje

140x Faster Language Translation RNNs on
V100 vs. CPU-Only Inference (OpenNMT)

600 550 500

450
500
400
350 &
g 400 o=
(2]
. 280 ms 300 3
g.)n <
o 300 250
= 3
= L
200
200
153 ms 1 50
100
100
" 25 50
0 . 0
CPU-Only + Torch V100 + Torch V100 + TensorRT
Inference throughput (sentences/sec) on OpenNMT 692M. V100 + TensorRT: NVIDIA TensorRT (FP32), batch size 64, Tesla V100-
PCIE-16GB, E5-2690v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. V100 + Torch: Torch (FP32), batichsize 4, TeslaV100-PCIE-
16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. CPU-Only: Torch (FP32), batch size 1, Intel E5-2690 v4@2.60GHz
3.5GHz Turbo (Broadwell) HT On
27 S NVIDIA,

TENSORRT DEPLOYMENT WORKFLOW

Step 1: Optimize trained model

Step 2: Deploy optimized plans with runtime

nnnnnnnnn

MODEL IMPORTING

@ > Al Researchers
‘ » Data Scientists

Other Frameworks

Caffe Ten:ﬁo\,y .

Python/C++ API

Network

Model Importer Definition API

TensorRT Optimizer
: ®o o Runtime inference
o ® C++ or Python API
o ®®

0

developer.nvidia.com/tensorrt

Step 1: Optimize trained model
TR Serialize P Plan 1
e Engine 4
: .o : — u Plan 2
«** O Plan 3
Trained Neural o -
Network TensorRT Optimizer Optimized Plans

Example: Importing a TensorFlow model

uff model = uff.from tensorflow frozen model ("frozen model.pb”,
"dense 2/Softmax")

29 <4 NVIDIA,

TENSORRT OPTIMIZATION

TensorRT Optimizer

x

TensorRT Optimizer

Layer & Tensor Fusion

63

Weights & Activation
Precision Calibration

&

Kernel Auto-Tuning

)

Dynamic Tensor
Memory

Step 1: Optimize trained model

Serialize
Engine

Import
Model

0

Trained N L
ra:‘;-_wgfltlra TensorRT Optimizer

Plan1
S
2=

Plan3

Optimized Plans

» Optimizations are completely automatic
» Performedwith a single function call

13
14
15
16
17
18

1G

engine = trt.utils.uff to trt engine(G LOGGER,

uff model,
parser,

INFERENCE BATCH SIZE,

1<<20,

trt.infer.DataType.FLOAT)

30 <A NVIDIA,

Step 1: Optimize trained model

LAYER & TENSOR FUSIC = =| % =i

.] plan 3
Trained Neural .
Network TensorRT Optimizer Optimized Plans

Senallze . P‘ !

“~ @

TensorRT Optimized Network

* \ertical Fusion
* Horizonal Fusion next input
 Layer Elimination

Network Layers Layers | CER
before after

Inception 309 113 1x1 CBR

V3

ResNet-152 670 159 ﬁf_/

31 <4 NVIDIA,

predictions

accelerated by TensorRT

R

o

TensorBoard Visualization

This is the sub graph that can bg

Mote: convlis a
format conversion

CKI

-

—— % Sub graph is replaced by a

l single TensorRT “op” in TensorFlow

The rest of the graph
o

runs in TensorFlow
as hefore.

/

KERNEL AUTO-TUNING
DYNAMIC TENSOR MEMOI

Kernel Auto-Tuning

100s for specialized kernels
Optimized for every GPU platform

» Batch size
* Input dimensions

Tesla V100 Jetson TX2 Drive PX2 + Filter dimensions

Step 1: Optimize trained model

- Import e Serialize Plan 1
- > i v |
%% Model .o, Engine .. Plan 2
7 : > o ° “— Plan 3
Trained Neural L
Network TensorRT Optimizer Optimized Plans

Multiple parameters:

Dynamic Tensor Memory

* Reduces memory footprintand
Improves memory re-use

« Manages memory allocation for

each tensor only for the duration of
its usage

33 SANVIDIA,

EXAMPLE: DEPLOYING TENSORFLOW
MODELS WITH TENSORR

Import, optimize and deploy
TensorFlow models using TensorRT python

Deployment and Inference

. \‘E
New Data
- i
. N TensorRT
Start with a frozen TensorFlow model Trained Neural ...
etwor . . e Rnine
Create a model parser et | mm)
Optimize model and create a runtime X e "
en gln e TensorRT 0
i i .. Optimizer Optimized
Perform inference using the optimized Runtime Engine

runtime engine

Inference Results

developer.nvidia.com/tensorrt

7/ STEPS TO DEPLOYMENT WITH TENSORRT

uff model = uff.from tensorflow frozen model("frozen model file.pb”, Step 1: Convert trained model into

OUTPUT _LAYERS)
- TensorRT format
parser = uffparser.create uff parser()

Step 2: Create a model parser

parser.register input(INPUT_LAYERS[®], (INPUT _C,INPUT H,INPUT W),@)

parser.register output(OUTPUT_LAYERS[@]) Step 3: Register inputs and outputs
engine = trt.utils.uff to trt engine(G_LOGGER, . H
JFf model, Step 4: Optlm_lze modgl and create
parser, a runtime engine
INFERENCE BATCH SIZE,
1<<28,

trt.infer.DataType.FLOAT)

trt.utils.write engine to file(save path, engine.serialize()) Step 5: Serialize optimized engine

engine = Engine(PLAN=plan, Step 6: De-serialize engine

postprocessors={"output layer name":post processing function}))
Step 7: Perform inference

result = engine single.infer(image)

- .

TensorRT Inference
wnth TensorFlow

» <A NVIDIA.

7 »:‘ﬁ
> -
= \

/

e
QN

’_‘

TensorFlow) l.\

Tensor

e Powerful platform for research and experimentation
e Versatile, easy model building
e Robust ML production anywhere

e Most popular ML project on Github

® Watch 8,584 W Star | 127,447 ¥ Fork 74,574

i

NVIDIA TensorRT

Platform for High-Performance Deep Learning Inference L_

e Optimize and Deploy neural networks in production environments
e Maximize throughput for latency-critical apps with optimizer and runtime

e Deploy responsive and memory efficient apps with INT8 & FP16

300k Downloads in 2018

L -
+

TF-TRT = TF + TRT

TensorRT Inference with
TensorFlow

e Benefits to using TF-TRT

AGENDA _

e HOW to use

e Customer experience: Clarifal
e How TF-TRT works

e Additional Resources

2 NVIDIA

Benefits to using TF-TRT

e Optimize TF inference while still using the TF ecosystem
e Simple API: up to 8x performance gain with little effort

e Fallback to native TensorFlow where TensorRT does not support

- =y ——
1[T w‘—@%

Tensorklow

Over 10 optimized models with published examples

Models TF FP32 TF-TRTINTS Speedup
(imgs/s) (imgs/s)

ResNet-50 399 3053 7.7X
Inception V4 158 1128 7.1x
Mobilenet V1 1203 4975 4.1x
NASNet large 43 162 3.8x

VGG16 245 1568 6.4x
SSD Mobilenet V2 102 411 4.0x
SSD Inception V2 82 327 4.0x

TensorFlow FP32 vs TensorFlow-TensorRT INT8 on T4, largest possible batch size, no I/O.

Performance optimizations soon:
More NLP and Object Detection
Models

For non-optimized layers, fallback
support is provided by
TensorFlow

NGC Tensorflow 19.07 with scripts: https://github.com/tensorflow/tensorrt/blob/master/tfirt/examples/image-classification/image_classification.py 42«3 mioia

https://github.com/tensorflow/tensorrt/blob/master/tftrt/examples/image-classification/image_classification.py

FP16 accuracy

Models TF FP32 TF-TRT FP16
Mobilenet V2 74.08 74.07
NASNet Mobile 73.97 73.87
ResNet50 V1.5 76.51 76.48
ResNet 50 V2 76.43 76.40
VGG 16 70.89 70.91
Inception V3 77.99 77.97
SSD Mobilenetvl 23.06 23.07

FP16 accuracy is within 0.1% of FP32 accuracy

Top-1 metric (%) for classification models. mAP for SSD detection models.

Complete data: https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#verified-models

43 A DA

https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html#verified-models

INT8 accuracy

Models TF FP32 TF-TRT INT8
Mobilenet V2 74.08 73.90
NASNet Mobile 73.97 73.55
ResNet 50 V1.5 76.51 76.23
ResNet 50 V2 76.43 76.30
VGG 16 70.89 70.78
Inception V3 77.99 77.85

INT8 accuracy is within 0.2% of FP32 accuracy except for NASNet Mobile within 0.5%.

Top-1 metric (%) for classification models.

Complete data: https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#verified-models

44 <7 rpia

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#verified-models

TensorRT ONNX PARSER

Optimize and deploy models from ONNX-
supported frameworks in production

Apply TensorRT optimizations to any ONNX framework
(Caffe 2, Chainer, Microsoft Cognitive Toolkit, MxNet,
PyTorch)

C++ and Python APIs to import ONNX models

New samples demonstrating step-by-step process to get
started

€ ONNX

o, PYTHRCH _ 5"
Caffe? Chainer

¥ Microsoft

.Xnet CNTK q.ipadmepadme

INEFFICIENCY LIMITS INNOVATION

Difficulties with Deploying Data Center Inference

Single Model Only Single Framework Only

! © ()
To—ar

Ss= 0

ASR NLP Reg- @ Q

ommender
Some systems are overused while Solutions can only support
others are underutilized models from one framework

Custom Development

Developersneed to reinvent the
plumbing for every application

NVIDIA TENSORRT INFERENCE SERVER

Production Data Center Inference Server

Maximize real-time inference

e performance of GPUs
T4

TensorRT
Inference
Senver

NVIDIA

- Quickly deploy and manage multiple
models per GPU per node

Y

—
-
o
(2]
G
[t

Inference
Sener

Easily scale to heterogeneous GPUs
and multi GPU nodes

I Integrates with orchestration

X o = o

58 2 systems and auto scalers via latency
SE? TeslaPa and health metrics

Now open source for thorough
customization and integration

47 “ANVIDIA.

Concurrent Model Execution

Multiple models (or multiple instances of same
model) may execute on GPU simultaneously

CPU Model Inference Execution
Framework native models can execute inference
requests on the CPU

Metrics
Utilization, count, memory, and latency

Custom Backend

Custom backend allows the user more flexibility
by providing their own implementation of an
execution engine through the use of a shared
library

Model Ensemble
Pipeline of one or more models and the
connection of input and output tensors between

those models (can be used with custom
backend)

FEATURES

Dynamic Batching

Inference requests can be batched up by the
inference server to 1) the model-allowed
maximum or 2) the user-defined latency SLA

Multiple Model Format Support
PyTorch JIT (.pt)

TensorFlow GraphDef/SavedModel
TensorFlow and TensorRT GraphDef

ONNX graph (ONNX Runtime)

TensorRT Plans

Caffe2 NetDef (ONNX import path)

CMake build

Build the inference server from source making it
more portable to multiple OSes and removing
the build dependency on Docker

Streaming API
Built-in support for audio streaming input e.g.
for speech recognition

+
Caffe? Tensor

TensorRT
PYTHRCH

& ONNX

C hﬁ?r?e r Ci;'fr K

.Xnet PYTHORCH

48 INVIDIA

INFERENCE SERVER ARCHITECTURE

Available with Monthly Updates

Models supported
TensorFlow GraphDef/SavedModel

| Wre EX £ o reroson TensorFlow and TensorRT GraphDef
i . l TensorRT Plans
+ v Caffe2 NetDef (ONNX import)
Reguest/Response Handling Hm.:#p:ﬂrvw-l ONNX graph
- (_} PyTorch JIT (.pb)
T = Multi-GPU support
WVIDIA TansorRT Schedaler Busues Fatkends
r e Concurrent model execution
"'i e +
24 I N Server HTTP REST API/gRPC
| ﬁ ﬁﬁ 1"' Bl Python/C++ client libraries

49 “ANVIDIA.

Additional resources

- GTCTechnical presentation: https://developer.nvidia.com/gtc/2019/video/S9431 /video

- TF-TRT user guide: https://docs.nvidia.com/deeplearning/dgx/tf-trt-user-guide/index.html|

- NVIDIADLI course on TF-TRT: https://www.nvidia.com/en-us/deep-learning-ai/education/

- Monthly release notes: https://docs.nvidia.com/deeplearning/dgx/tf-trt-release-notes/index.html

- GoogleBlog on TF-TRT inference: https://cloud.google.com/blog/products/ai-machine-
learning/running-tensorflow-inference-workloads-at-scale-with-tensorrt-5-and-nvidia-t4-gpus

- Nvidia DeveloperBlog: https://devblogs.nvidia.com/tensorrt-integration-speeds-tensorflow-
inference/

50+Z noia

https://developer.nvidia.com/gtc/2019/video/S9431/video
https://docs.nvidia.com/deeplearning/dgx/tf-trt-user-guide/index.html
https://www.nvidia.com/en-us/deep-learning-ai/education/
https://docs.nvidia.com/deeplearning/dgx/tf-trt-release-notes/index.html
https://cloud.google.com/blog/products/ai-machine-learning/running-tensorflow-inference-workloads-at-scale-with-tensorrt-5-and-nvidia-t4-gpus
https://devblogs.nvidia.com/tensorrt-integration-speeds-tensorflow-inference/

END TO END NVIDIA DEEP LEARNING WORKFLOW

TRAINING

. . . . INFERENCE

; | F |
. . . . y S . NVIDIA
LR . @ : - @ : % : == TensorRT" -

PRETRAINED TRAIN WITH PRUNE RETRAIN OUTPUT BUILD DEEPSTREAM
MODEL NEW DATA MODEL ENGINE SDK

AGENDA _

1. Intelligent Video Analytics
2. Deepstream SDK
a. What is Deepstream SDK?
a. Why Deepstream SDK?
b. What’s new with DS4.07
c. Deepstream Building Blocks
3. Getting started with Deepstream SDK
a. Where to start?
b. Directory hierarchy
c. Configurable file and pipeline details
d. Running application
4. Building with Deepstream SDK
a. Real world use cases with demo

INTELLIGENT VIDEO ANALYTICS (IVA) FOR EFFICIENCY AND SAFETY

"Billboarding™

g8

enstsoooeorvnr [
P
pmp— 1

wimeonensen @ || | Pathways

P DeveLBMeNt AcaEAGE S =
.] =

<SANVIDIA.

w ol

WHAT IS DEEPSTREAM?

0]
B

WHY DEEPSTREAM?

Build your own application for smart cities,
retail analytics, industrial inspection,
logistics, and more

Low latency and exceptional performance
optimized for NVIDIA GPUs for real-time
edge analytics

Provides ready to use building blocks and
IP simplify building your innovative
product.

Pushbutton 10T solution integration to build
applications and services with Cloud
Service Providers.

Provides ready to use building blocks and
IP simplify building your innovative
product.

Iterate and integrate by quick plug and play
of popular plug-ins that are pre-packaged or
build your own.

DEEPSTREAM SDK

Plugins (build with open source, 3™ party, NV Analytics - multi-camera, multi-sensor framework Development Tools

DNN inference/TensorRT plugins - DeepStream in containers, Multi-GPU - End to end reference applications

Communications plugins

Tracking & analytics across large scale/ multi-camera ! App building/configuration tools

Video/image captureand processing plugins Streaming and Batch Analytics End-end or chestration recipes & adaptation guides

3rd party library plugins Event fabric ==Y Plugin templates, custom IP integration

REAL TIME INSIGHTS, HIGHEST STREAM

Pixels

DENSITY

SN T ANY CLOUD

|

_

NVIDIA EGX Server

68 streams of 1080p per T4

Analytics Visualization

Cloud Monitoring

[
»

Information Dashboard

Smart Parking

B

.
@m: Scroll
k:sse Wheel

—
£D
R

Panm+0rag
- oY

—_—
-
-.

U

S eCEU R AL |

i

NVIDIA | METROPOLIS

PERCEPTION GRAPH

COMM PLUGIN PREPROCESSING PLUGINS DETECTION, CLASSIFICATION & TRACKING PLUGINS COMMUNICATIONS PLUGINS
calibration

—> RTSP - Decoder gl Dewarp library Hamd Detec.t ol ?nd > G.lc?ba‘l —> Tracker > SENSIIE -> Analytics
classification positioning Metadata server

360d feeds Dewarping ROI: Lines ROI: Polygon

59 <A NVIDIA.

Perception Analytics Visualization

METROPOLIS ..

VIDEO : INTELLIGENT TRAFFIC SYSTEM

WAREHOUSE LOGISTICS: INVENTORY SORTING

USE CASE SOLUTION

loT edge device -
Azure loT Central

!

loT edge Telemetrydata -
runtime g

Detect and flag packages on a DeepStream container can connect to Azure., 10T central
conveyor belt through Azure IoT edge runtime
2@ Microsoft Azure HECRIOVO:

<SANVIDIA.

THANK YOU

?

~QUESTIONS

