

ACCELERATING END TO END DEEP LEARNING WORKFLOW.

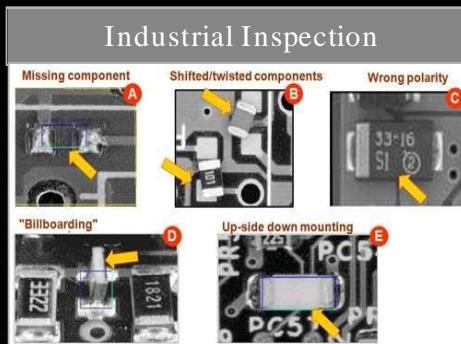
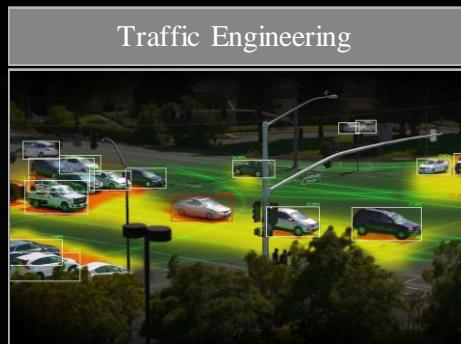
Deepshikha Kumari

Data Scientist II- Deep learning

AGENDA

1. AI Use cases for Industry
2. End To End Deep Learning Workflow
Training Pipeline
 - a. NGC
 - b. Transfer Learning
 - c. Automatic Mixed Precision
 - d. Code walkthrough
- Inference Pipeline
 - a. TensorRT (Float 16)
 - b. TensorRT (INT8)
 - c. Custom plugin support
 - d. Deepstream

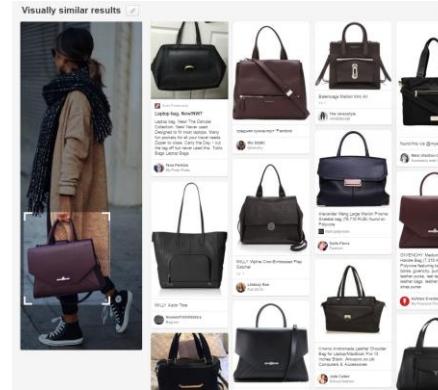
INTELLIGENT VIDEO ANALYTICS (IVA) FOR EFFICIENCY AND SAFETY



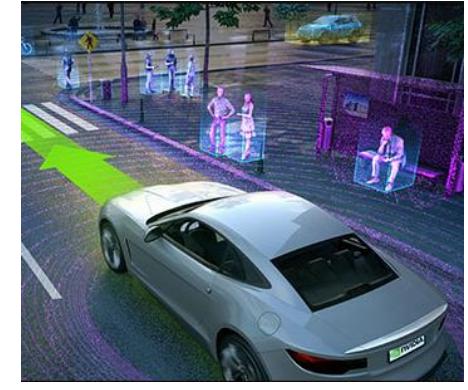
DEEP LEARNING IN PRODUCTION

Speech Recognition

Recommender Systems



Autonomous Driving



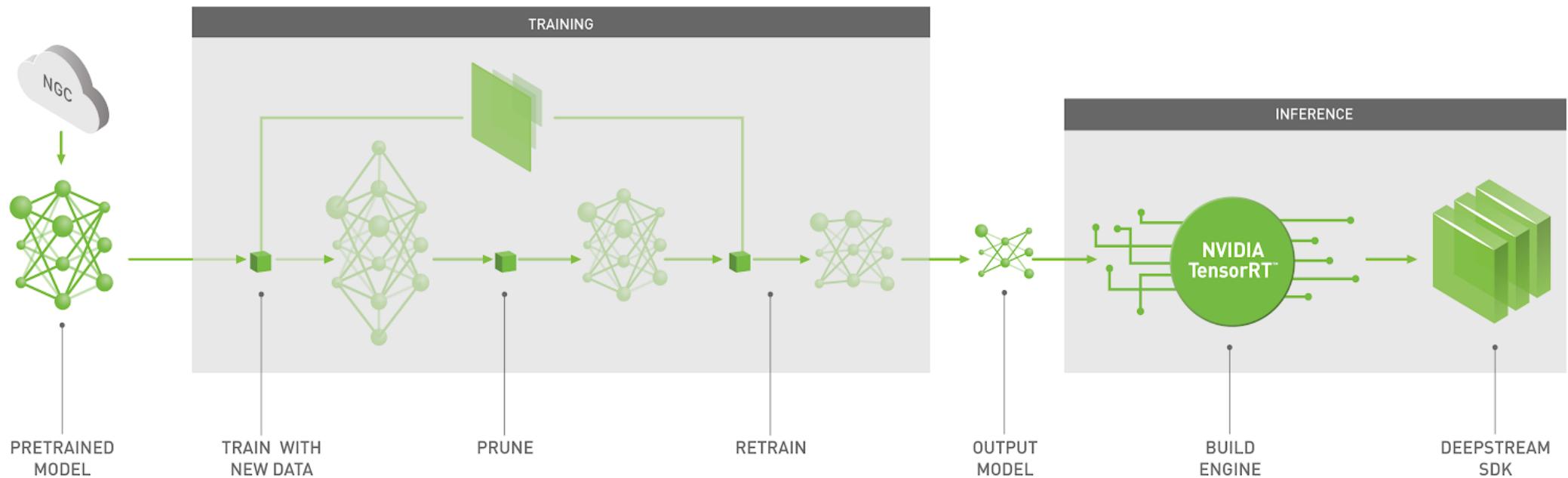
Real-time Object Recognition

Robotics

Real-time Language Translation

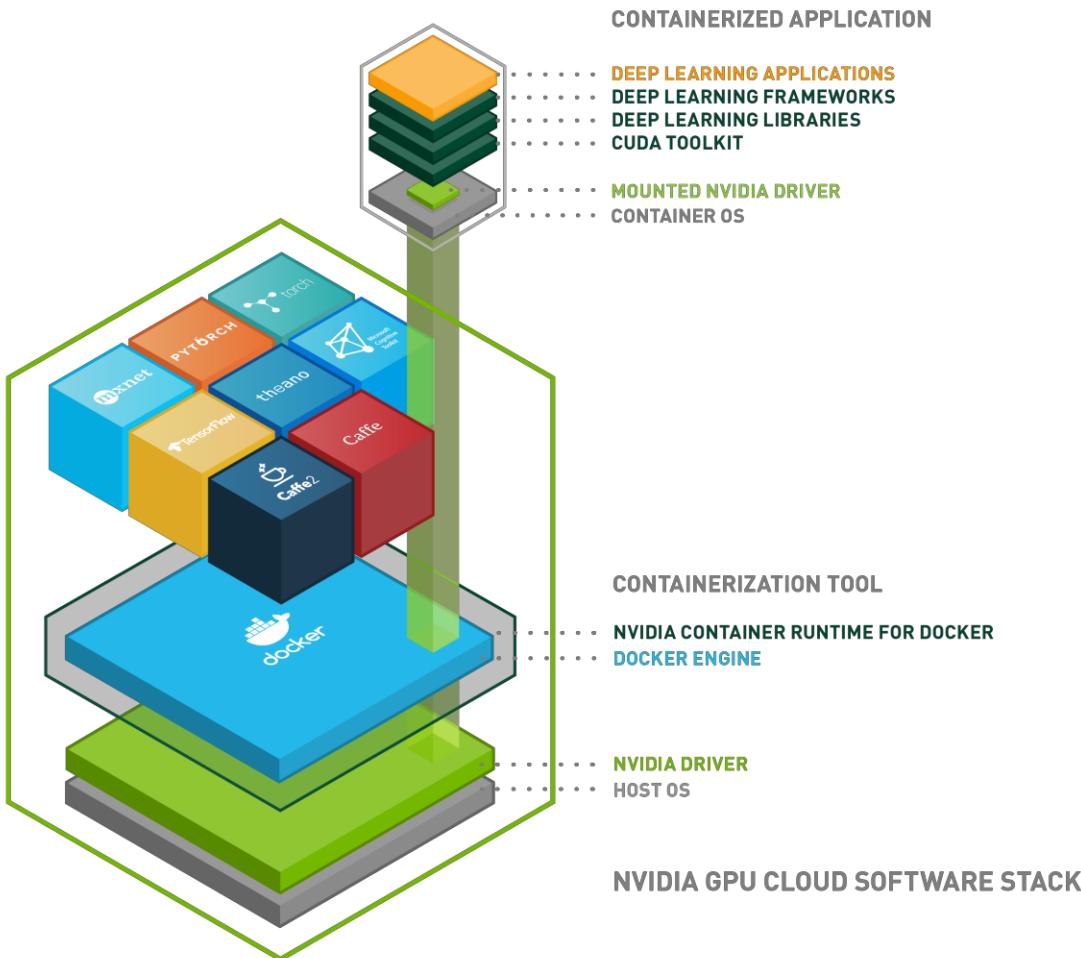
Many More...

END TO END NVIDIA DEEP LEARNING WORKFLOW



NGC

WHY CONTAINERS?



Benefits of Containers:

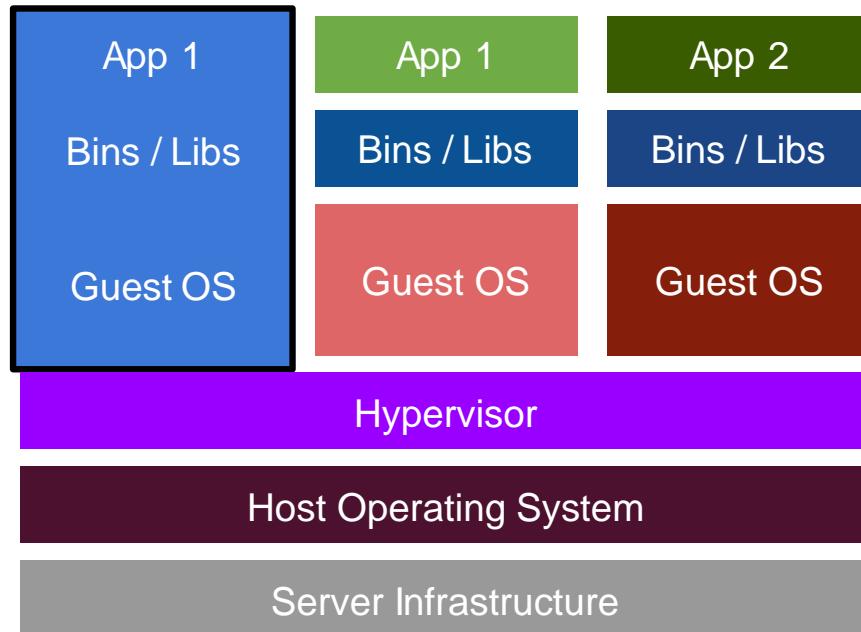
Simplify deployment of GPU-accelerated software, eliminating time-consuming software integration work

Isolate individual deep learning frameworks and applications

Share, collaborate, and test applications across different environments

Virtual Machine vs. Container

Not so similar



Virtual Machines

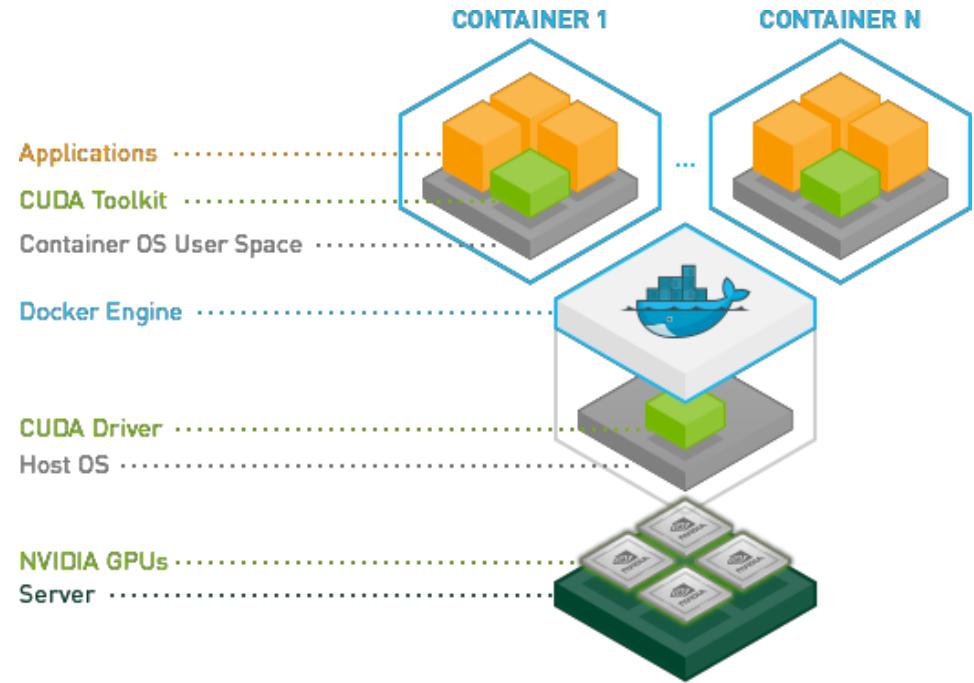


Containers

NVIDIA container runtime

<https://github.com/NVIDIA/nvidia-docker>

- Colloquially called “nvidia-docker”
- Docker containers are hardware-agnostic and platform-agnostic
- NVIDIA GPUs are specialized hardware that require the NVIDIA driver
- Docker does not natively support NVIDIA GPUs with containers
- NVIDIA Container Runtime makes the images agnostic of the NVIDIA driver



Docker Terms

Definitions

Image

Docker images are the basis of containers. An Image is an ordered collection of root filesystem changes and the corresponding execution parameters for use within a container runtime. An image typically contains a union of layered filesystems stacked on top of each other. An image does not have state and it never changes.

Container

A container is a runtime instance of a docker image.

A Docker container consists of

- A Docker image
- Execution environment
- A standard set of instructions

<https://docs.docker.com/engine/reference/glossary/>

ACCELERATED SOFTWARE

CONTAINERS

MODELS

MODEL SCRIPTS

SETUP

Documentation

User Forum

Collapse

NGC Version: 2.14.1

ALL MODELS

ORGANIZATION MODELS

TEAM MODELS

Search models

Sort: Last Modified

TLT | FP32

nvidian/magnet/squeezeen...

08/06/19

TLT | FP32

1
nvidian/magnet/alexnet

08/03/19

TLT | FP32

1
nvidian/magnet/googlenn...

08/03/19

TLT | FP32

1
nvidian/magnet/mobilene...

08/03/19



ResNet10 OpenImage pr...

TLT | FP32

1
nvidian/magnet/resnet10

08/03/19

ResNet18 OpenImage pr...

TLT | FP32

1
nvidian/magnet/resnet18

08/03/19

VGG16 OpenImage pretr...

TLT | FP32

1
nvidian/magnet/vgg16

08/03/19

ResNet50 OpenImage pr...

TLT | FP32

1
nvidian/magnet/resnet50

08/03/19

VGG19 OpenImage pretr...

TLT | FP32

bert_tf_v1_1_base_fp32...

Tensorflow | fp32

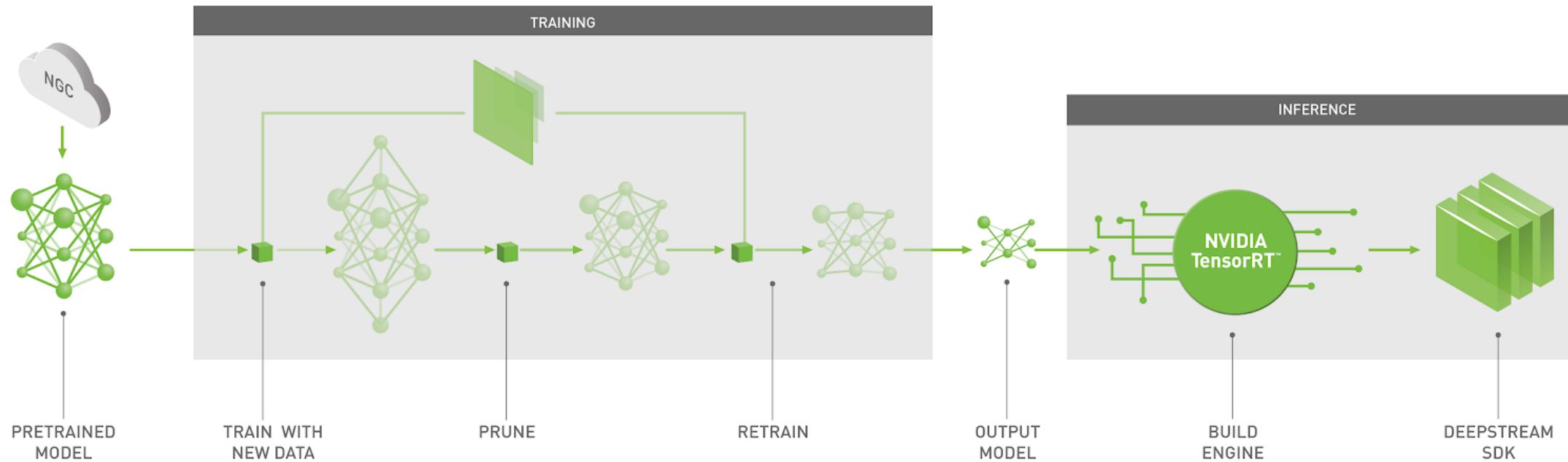
bert_tf_v1_1_base_fp16...

Tensorflow | fp16

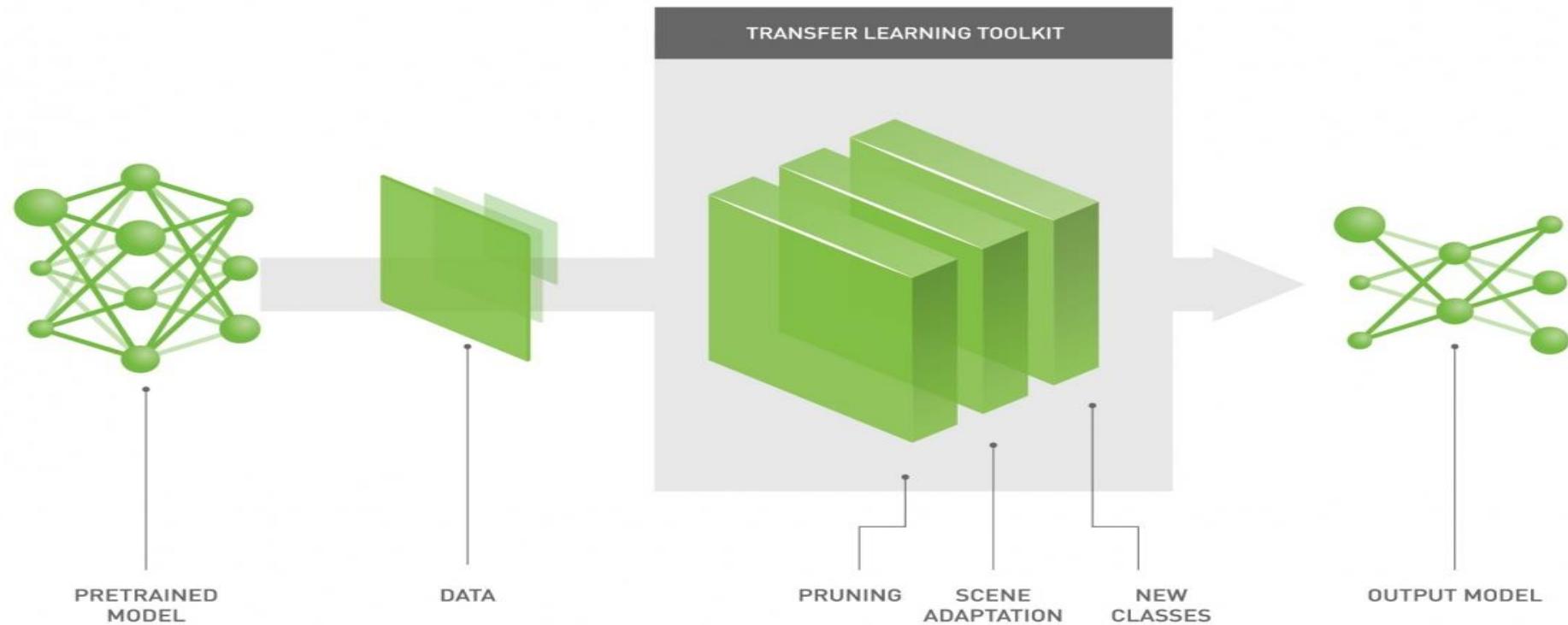
bert_tf_v1_1_base_fp32...

Tensorflow | fp32

END TO END NVIDIA DEEP LEARNING WORKFLOW

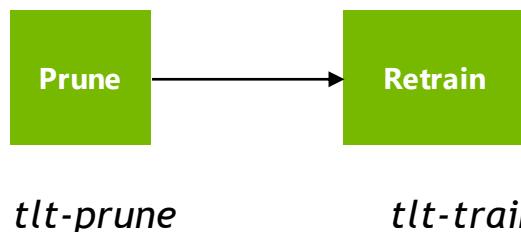
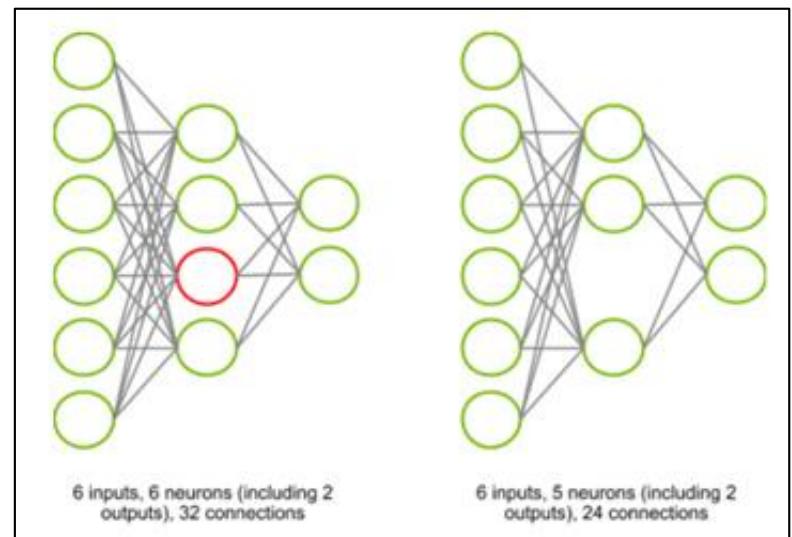


TRANSFER LEARNING TOOLKIT



PRUNING

- 1 Reduce model size and increase throughput
- 2 Incrementally retrain model after pruning to recover accuracy



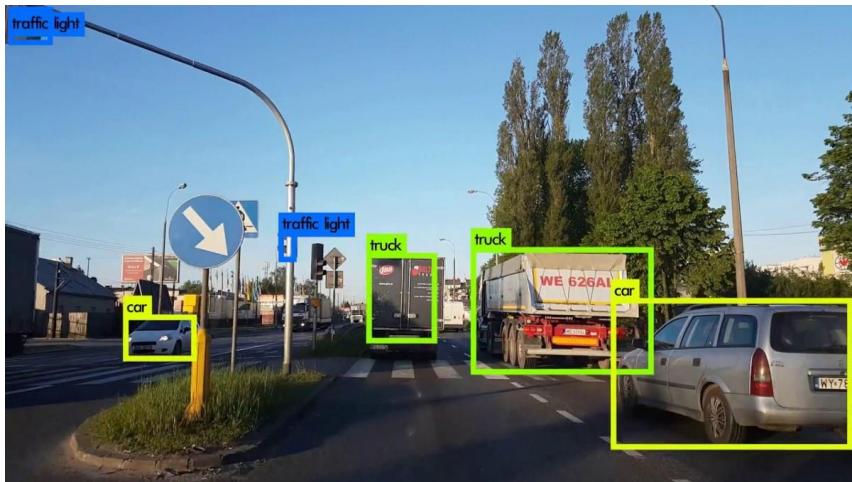
Selecting Unnecessary Neurons

- 1. DATA Driven operation
- 2. Non- Data Driven Operation.
- 3. Handling Element-Wise Operations of Multiple Inputs

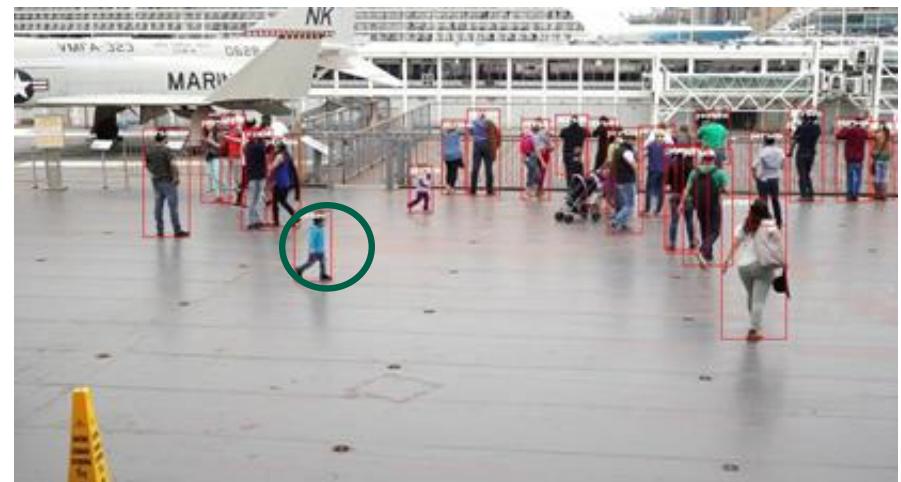
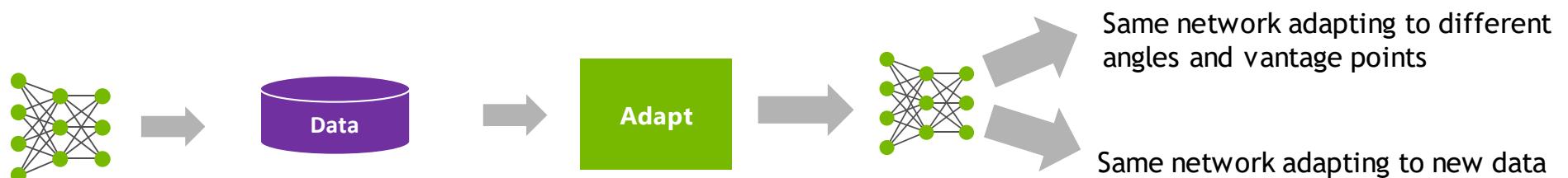
```
pruned_model = TLT.prune(model, t)
```

SCENE ADAPTATION

Camera location vantage point

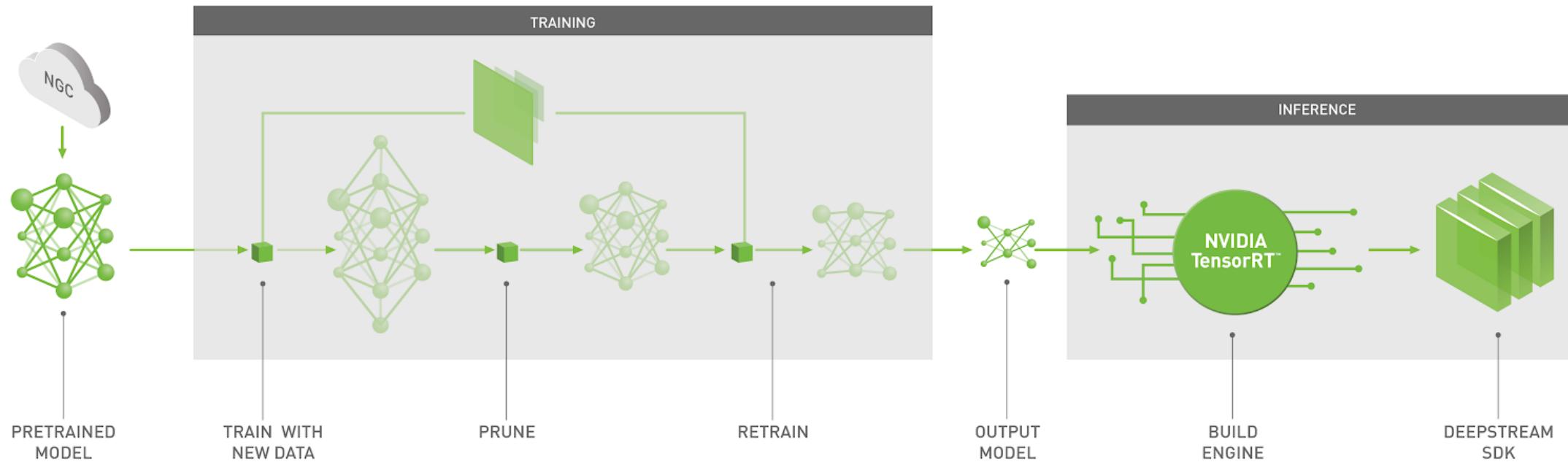


Person with blue shirt

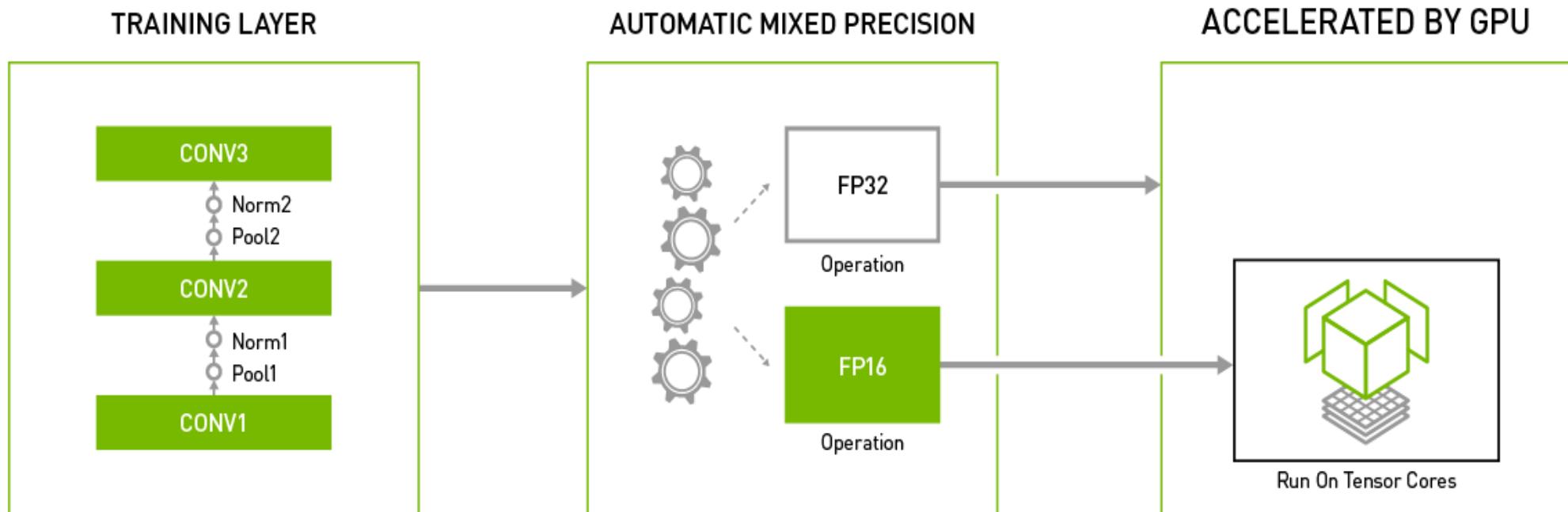


Train with new data from another vantage point, camera location, or added attribute

END TO END NVIDIA DEEP LEARNING WORKFLOW



TLT



TENSORFLOW

Automatic Mixed Precision feature is available both in native TensorFlow and inside the TensorFlow container on

NVIDIA NGC container registry:

```
export TF_ENABLE_AUTO_MIXED_PRECISION=1
```

As an alternative, the environment variable can be set inside the TensorFlow Python script:

```
os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1'
```

PYTORCH

Automatic Mixed Precision feature is available in the Apex repository on GitHub. To enable, add these two lines of code into your existing training script:

```
model, optimizer = amp.initialize(model, optimizer, opt_level="O1")
with amp.scale_loss(loss, optimizer) as scaled_loss:
    scaled_loss.backward()
```

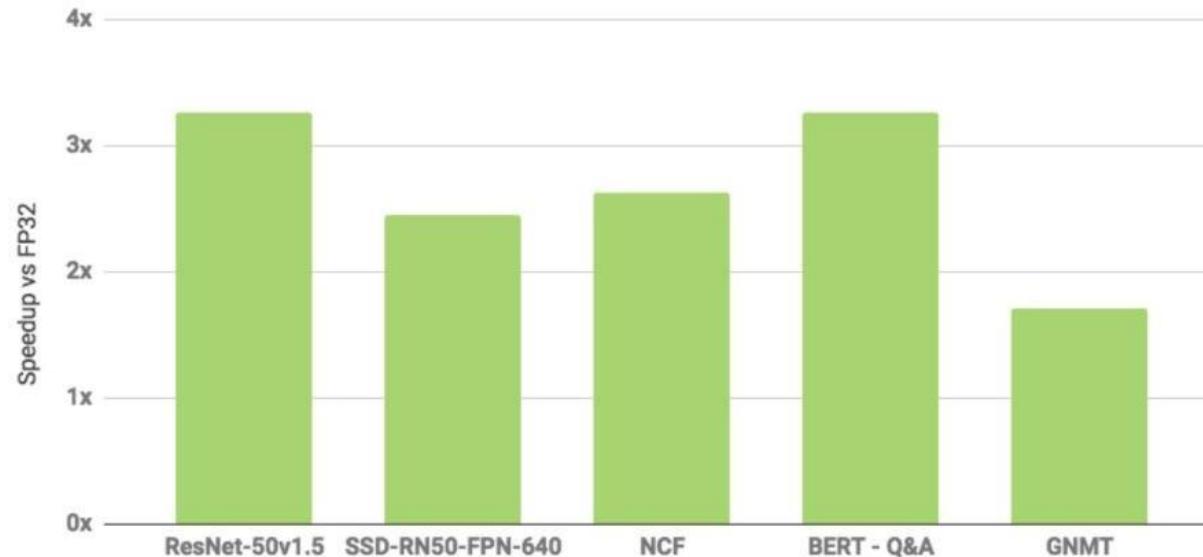
MXNET

Automatic Mixed Precision feature is available both in native MXNet (1.5 or later) and inside the MXNet container (19.04 or later) on NVIDIA NGC container registry. To enable the feature, add the following lines of code to your existing training script:

```
amp.init()  
amp.init_trainer(trainer)  
with amp.scale_loss(loss, trainer) as scaled_loss:  
    autograd.backward(scaled_loss)
```

AUTOMATIC MIXED PRECISION IN TENSORF

Upto 3X Speedup



TensorFlow Medium Post: [Automatic Mixed Precision in TensorFlow for Faster AI Training on NVIDIA GPUs](https://medium.com/tensorflow/automatic-mixed-precision-in-tensorflow-for-faster-ai-training-on-nvidia-gpus-103a2a2a2a2a)

All models can be found at:

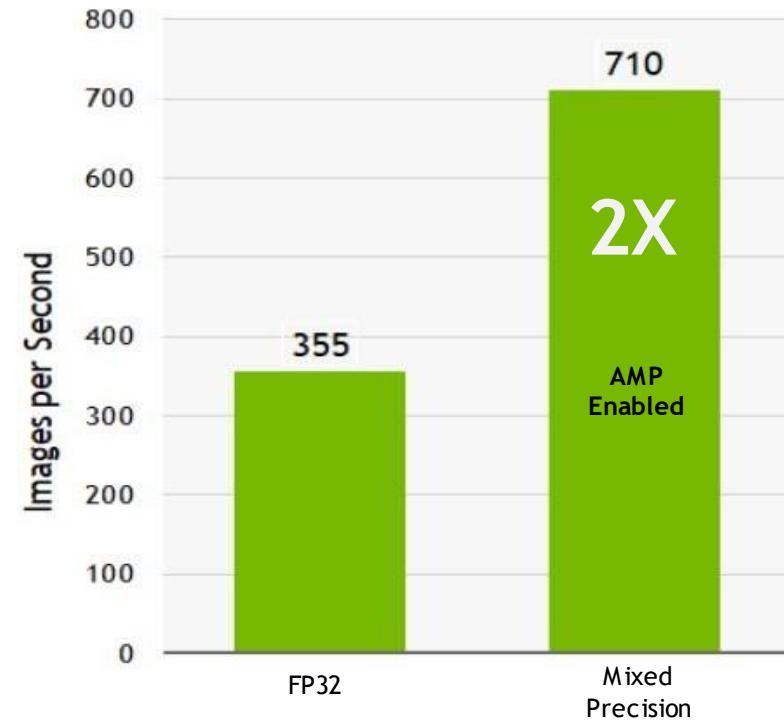
<https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow>, except for `ssd-rn50-fpn-640`, which is here: https://github.com/tensorflow/models/tree/master/research/object_detection. All performance collected on `1xV100-16GB`, except `bert-squadqa` on `1xV100-32GB`.

Speedup is the ratio of time to train for a fixed number of epochs in single-precision and Automatic Mixed Precision. Number of epochs for each model was matching the literature or common practice (it was also confirmed that both training sessions achieved the same model accuracy). Batch sizes: `rn50` (v1.5): 128 for FP32, 256 for AMP+XLA; `ssd-rn50-fpn-640`: 8 for FP32, 16 for AMP+XLA; `NCF`: 1M for FP32 and AMP+XLA; `bert-squadqa`: 4 for FP32, 10 for AMP+XLA; `GNMT`: 128 for FP32, 192 for AMP.

AUTOMATIC MIXED PRECISION IN PYTORCH

<https://developer.nvidia.com/automatic-mixed-precision>

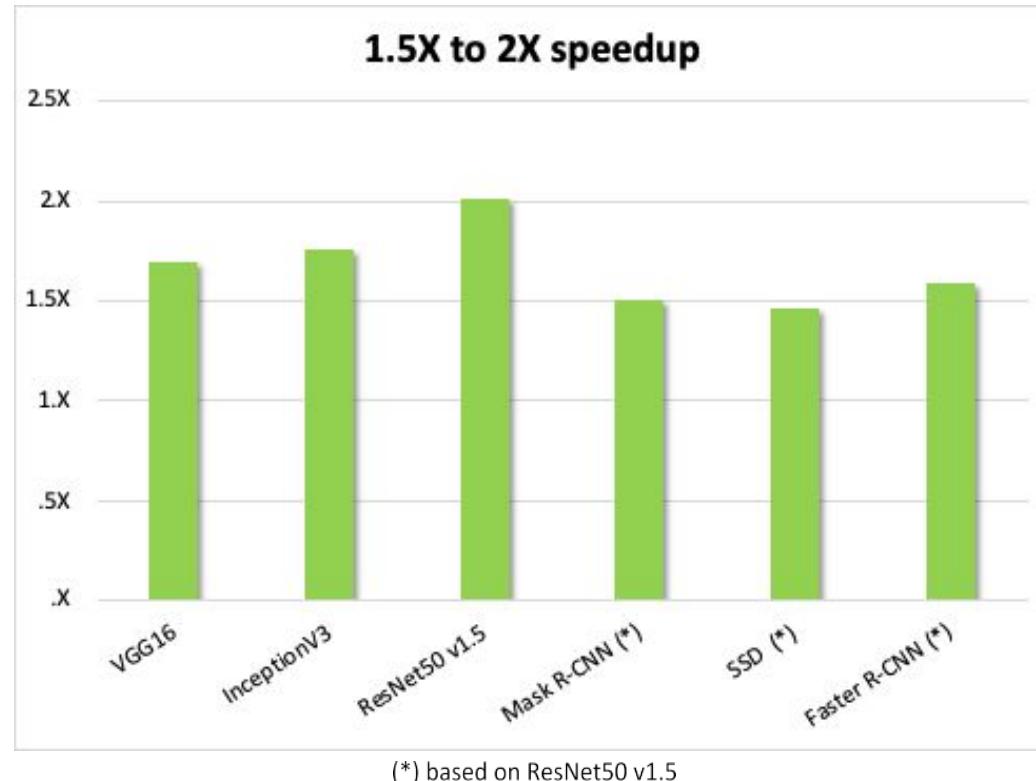
- Plot shows ResNet-50 result with/without automatic mixed precision(AMP)
- More AMP enabled model scripts coming soon:
Mask-R CNN, GNMT, NCF, etc.



Source: <https://github.com/NVIDIA/apex/tree/master/examples/imagenet>

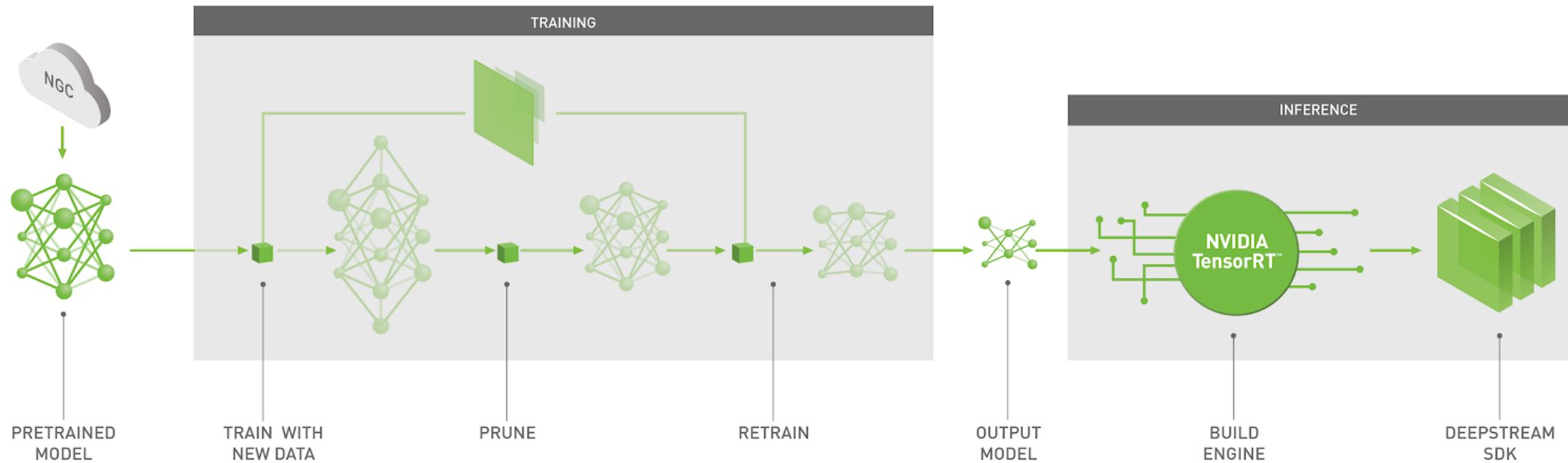
AUTOMATIC MIXED PRECISION IN MXNET

AMP speedup ~1.5X to 2X in comparison with FP32



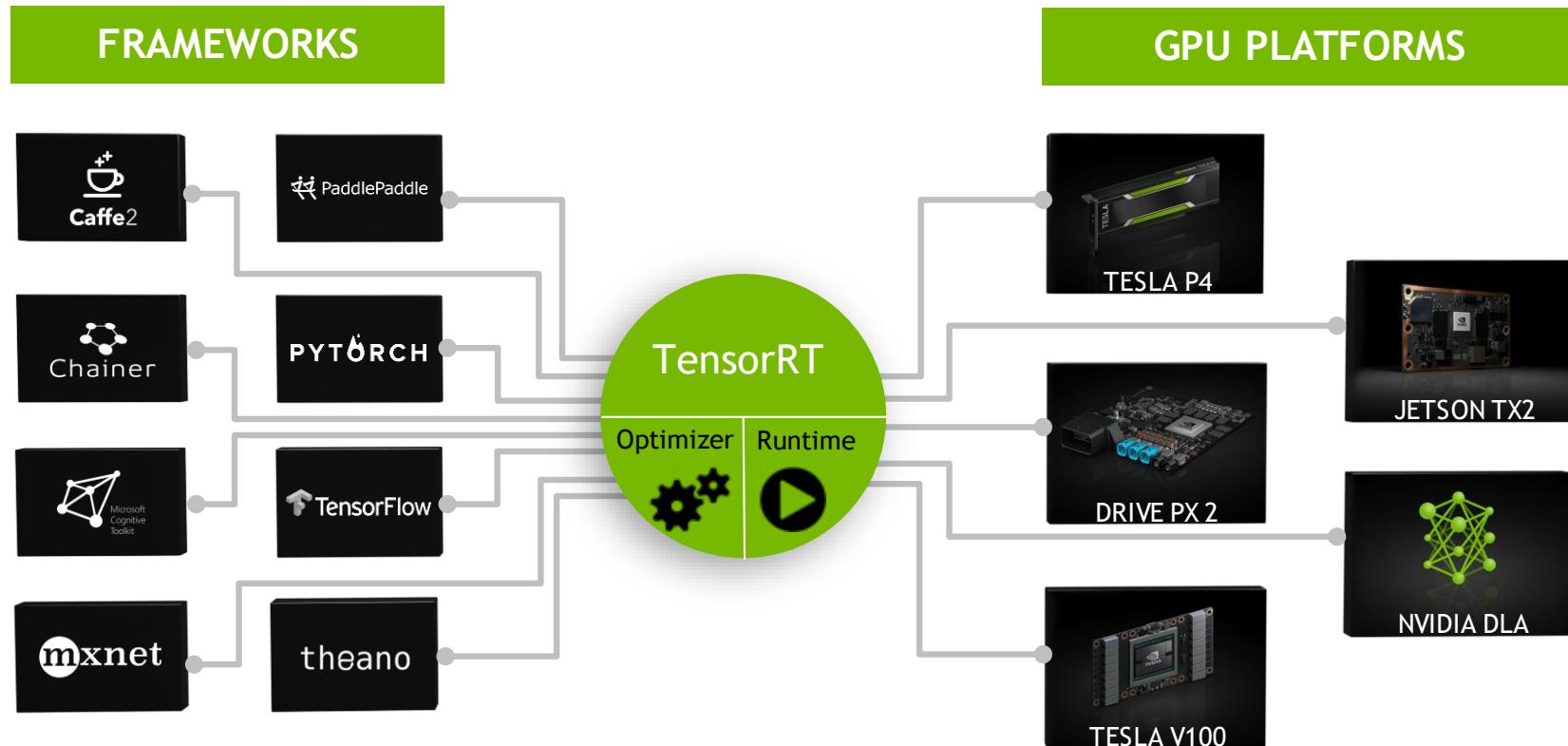
<https://github.com/apache/incubator-mxnet/pull/14173>

END TO END NVIDIA DEEP LEARNING WORKFLOW



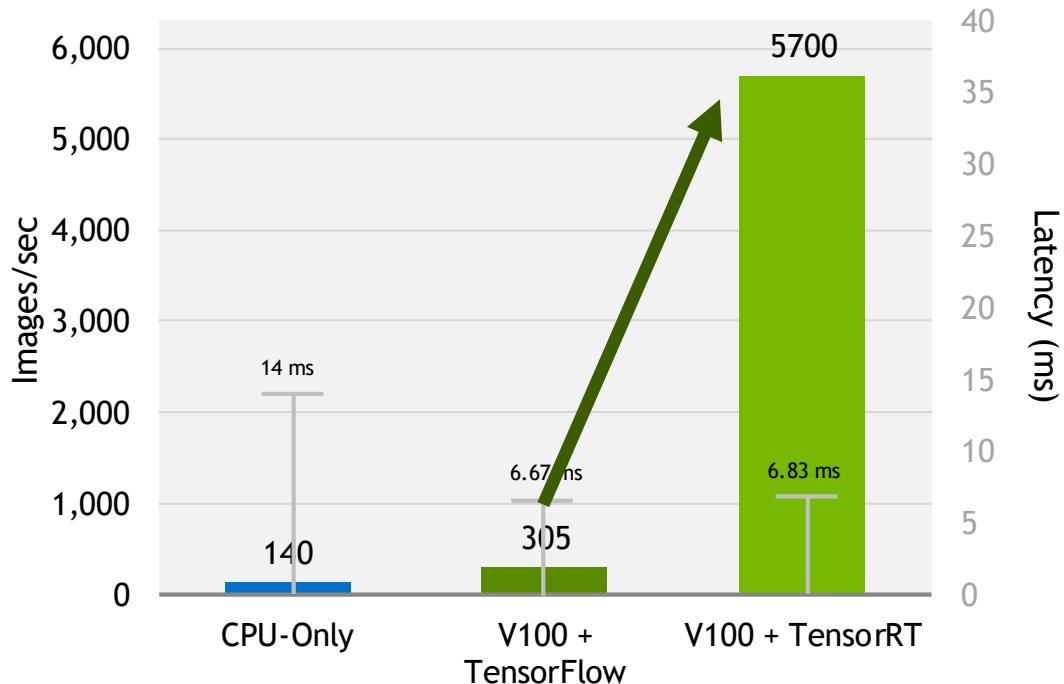
NVIDIA TENSORRT

Programmable Inference Accelerator



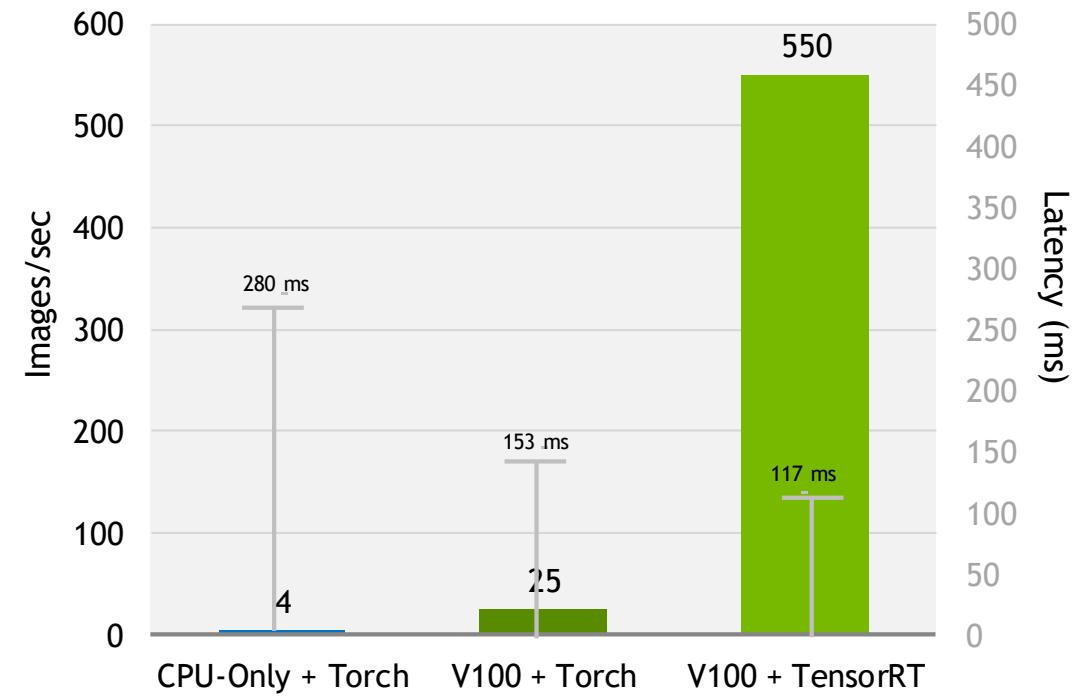
TENSORRT PERFORMANCE

40x Faster CNNs on V100 vs. CPU-Only
Under 7ms Latency (ResNet50)



Inference throughput (images/sec) on ResNet50. **V100 + TensorRT**: NVIDIA TensorRT (FP16), batch size 39, Tesla V100-SXM2-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. **V100 + TensorFlow**: Preview of v1.0a optimized TensorFlow (FP16), batch size 2, Tesla V100-PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. **CPU-Only**: Intel Xeon-D 1587 Broadwell-E CPU and Intel DL SDK. Score doubled to comprehend Intel's stated claim of 2x performance improvement on Skylake with AVX512.

140x Faster Language Translation RNNs on V100 vs. CPU-Only Inference (OpenNMT)



Inference throughput (sentences/sec) on OpenNMT 692M. **V100 + TensorRT**: NVIDIA TensorRT (FP32), batch size 64, Tesla V100-PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. **V100 + Torch**: Torch (FP32), batch size 4, Tesla V100-PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. **CPU-Only**: Torch (FP32), batch size 1, Intel E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On

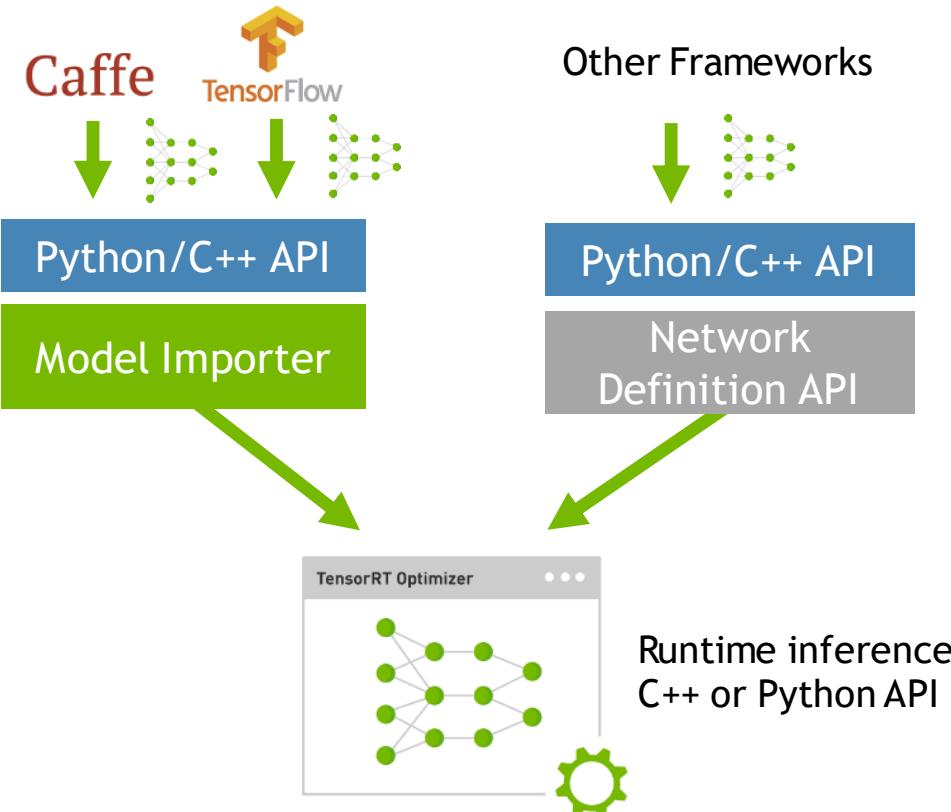
TENSORRT DEPLOYMENT WORKFLOW

Step 1: Optimize trained model

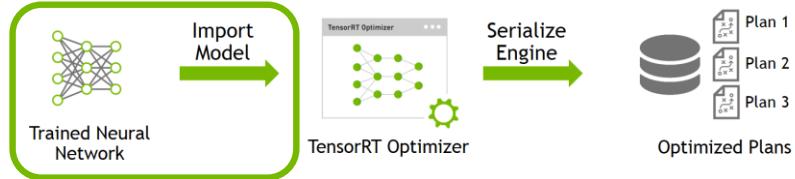
Step 2: Deploy optimized plans with runtime

MODEL IMPORTING

- AI Researchers
- Data Scientists



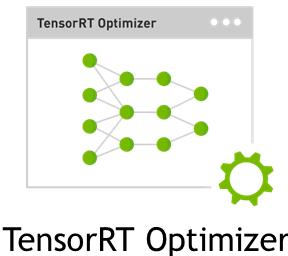
Step 1: Optimize trained model



Example: Importing a TensorFlow model

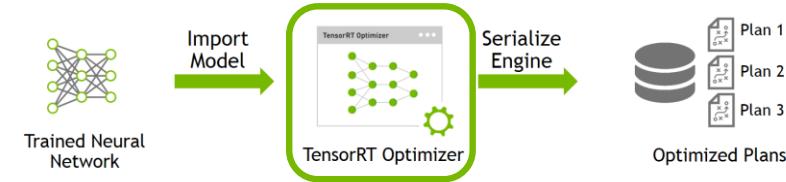
```
1 import tensorrt as trt
2 import uff
3 from tensorrt.parsers import uffparser
4
5 G_LOGGER = trt.infer.ConsoleLogger(trt.infer.LogSeverity.INFO)
6
7 uff_model = uff.from_tensorflow_frozen_model("frozen_model.pb",
8     "dense_2/Softmax")
9
10 parser = uffparser.create_uff_parser()
11 parser.register_input("input_1", (3, 224, 224), 0)
12 parser.register_output("dense_2/Softmax")
13
14 engine = trt.utils.uff_to_trt_engine(G_LOGGER,
15     uff_model,
16     parser,
17     INFERENCE_BATCH_SIZE,
18     1<<20,
19     trt.infer.DataType.FLOAT)
20
21 runtime = trt.infer.create_infer_runtime(G_LOGGER)
22 context = engine.create_execution_context()
```

TENSORRT OPTIMIZATION



- **Layer & Tensor Fusion**
- **Weights & Activation Precision Calibration**
- **Kernel Auto-Tuning**
- **Dynamic Tensor Memory**

Step 1: Optimize trained model



- Optimizations are completely automatic
- Performed with a single function call

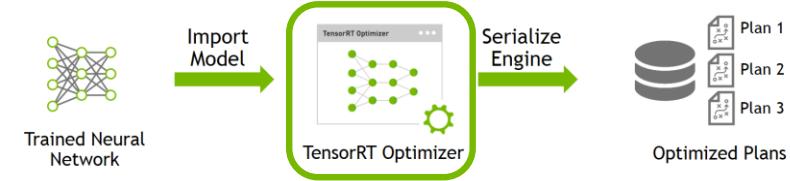
```
13 engine = trt.utils.uff_to_trt_engine(G_LOGGER,  
14 uff_model,  
15 parser,  
16 INFERENCE_BATCH_SIZE,  
17 1<<20,  
18 trt.infer.DataType.FLOAT)  
19
```


LAYER & TENSOR FUSION

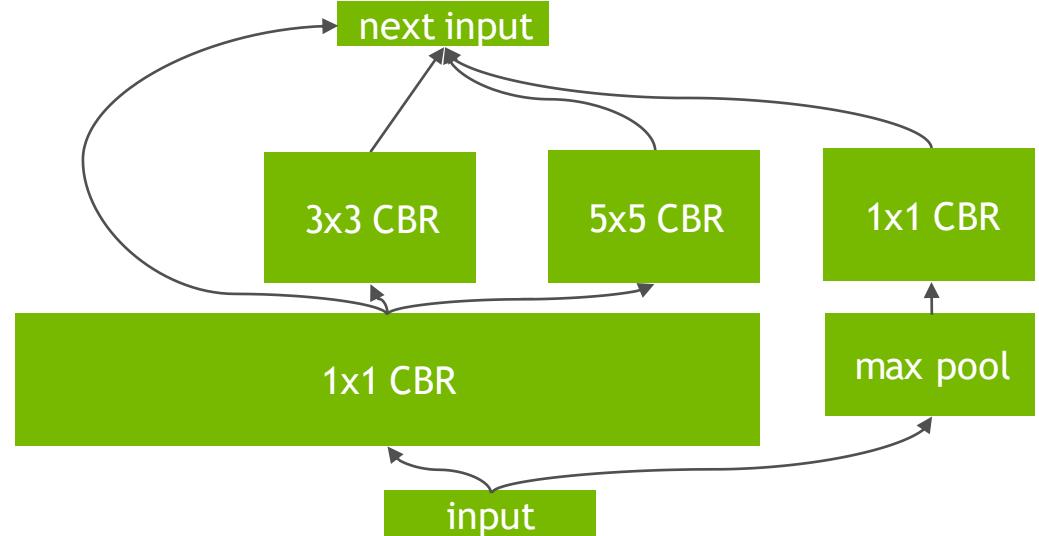
- Vertical Fusion
- Horizontal Fusion
- Layer Elimination

Network	Layers before	Layers after
VGG19	43	27
Inception V3	309	113
ResNet-152	670	159

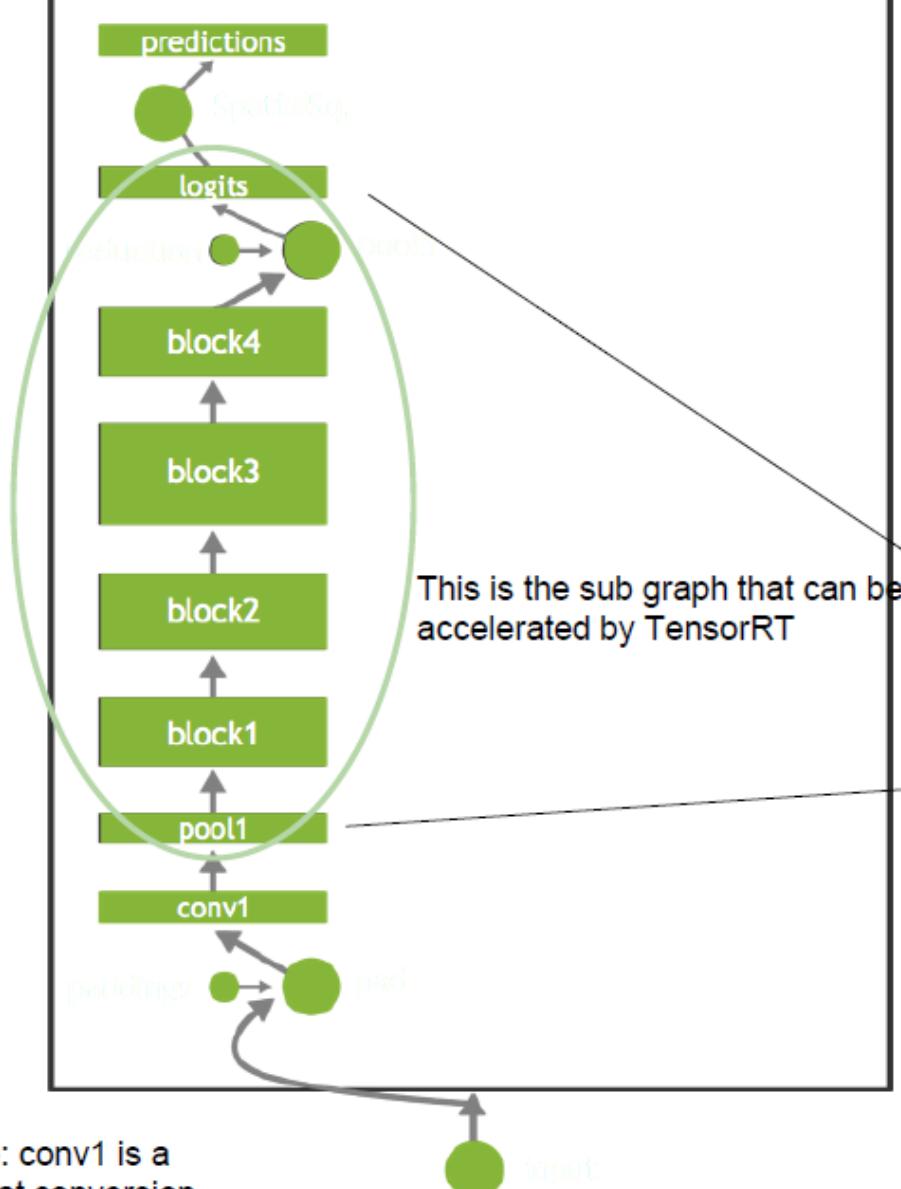
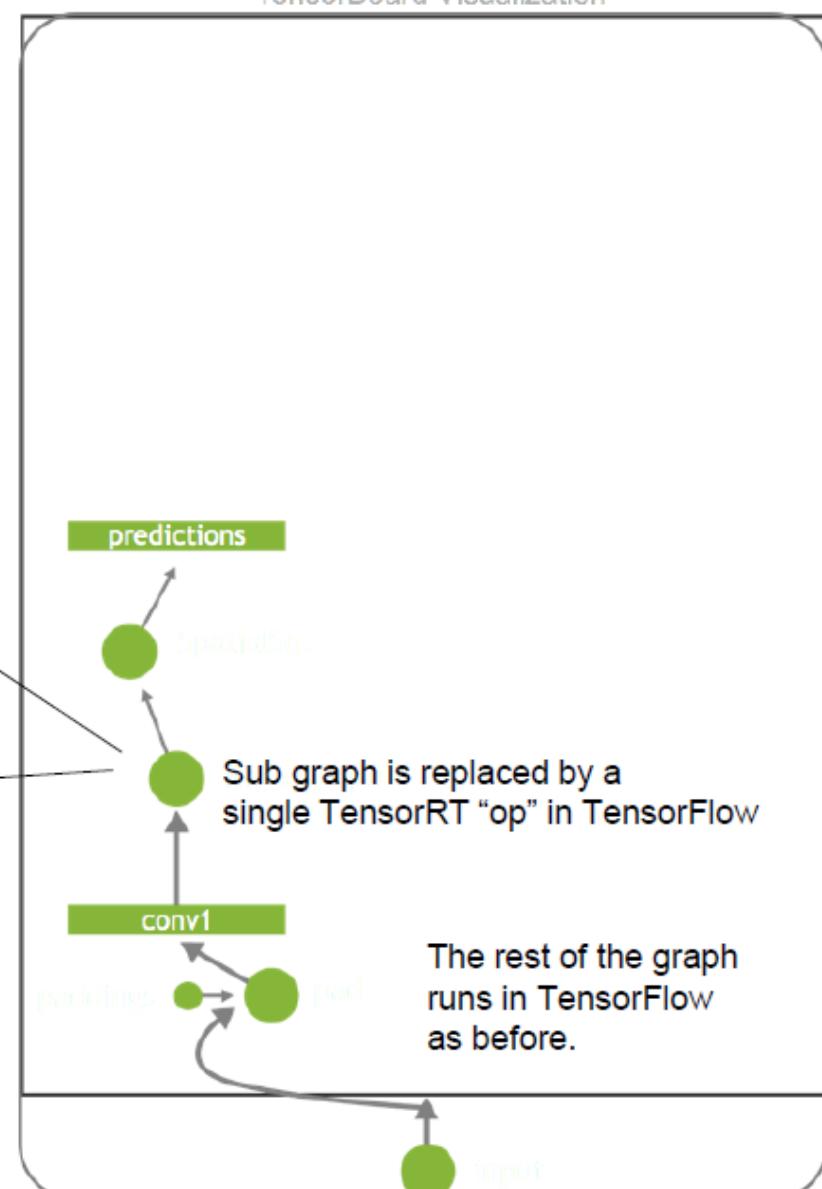
Step 1: Optimize trained model



TensorRT Optimized Network

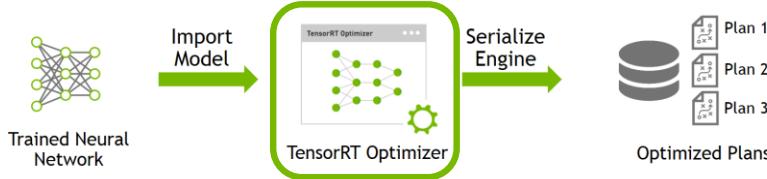


TensorBoard Visualization

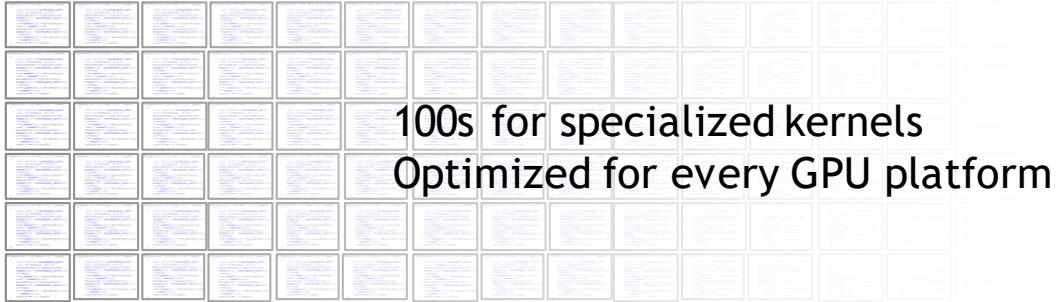


KERNEL AUTO-TUNING DYNAMIC TENSOR MEMORY

Step 1: Optimize trained model



Kernel Auto-Tuning

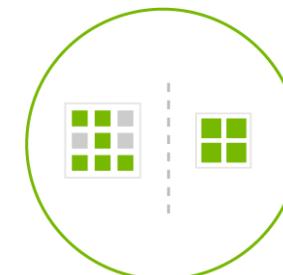


Tesla V100

Jetson TX2

Drive PX2

- Multiple parameters:
- Batch size
- Input dimensions
- Filter dimensions
- ...



Dynamic Tensor Memory

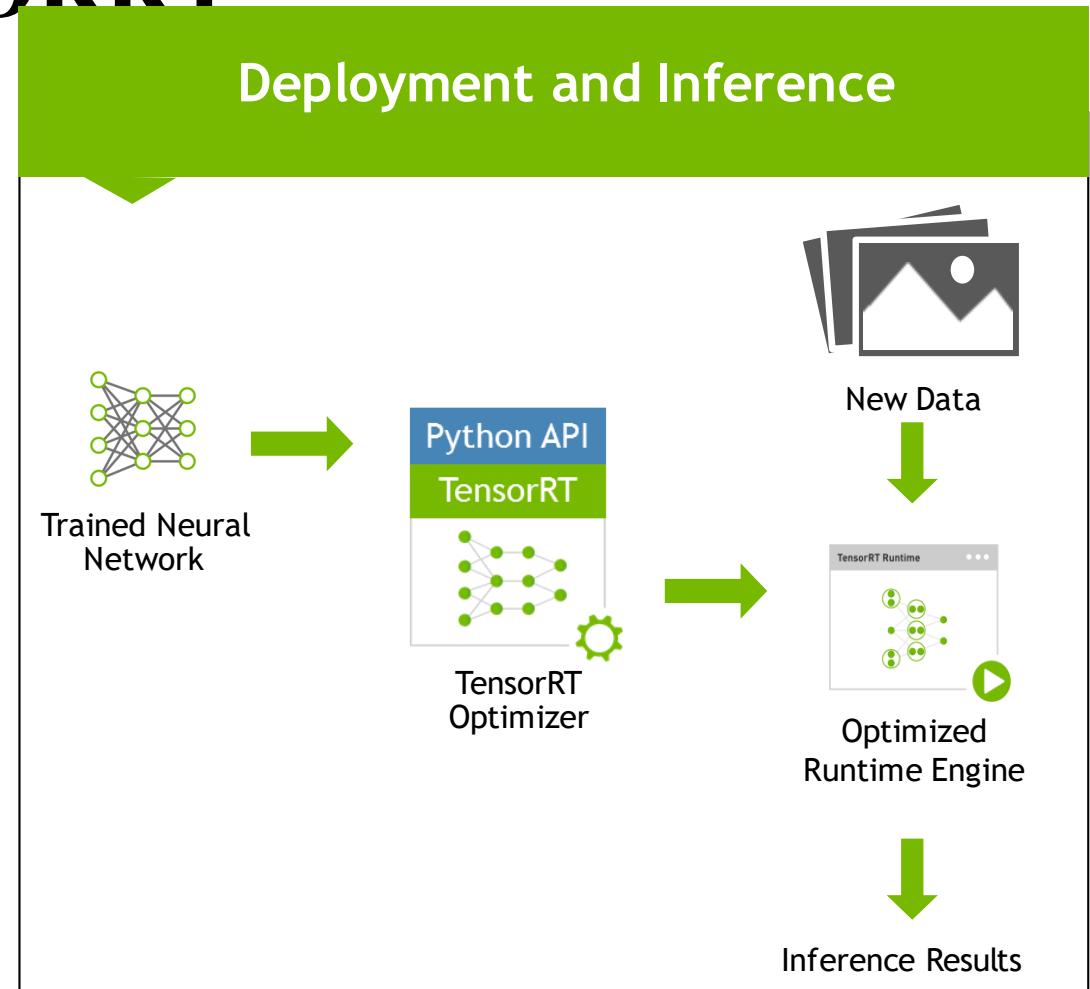
- Reduces memory footprint and improves memory re-use
- Manages memory allocation for each tensor only for the duration of its usage

EXAMPLE: DEPLOYING TENSORFLOW MODELS WITH TENSORRT

Import, optimize and deploy TensorFlow models using TensorRT python API

Steps:

- Start with a frozen TensorFlow model
- Create a model parser
- Optimize model and create a runtime engine
- Perform inference using the optimized runtime engine



7 STEPS TO DEPLOYMENT WITH TENSORRT

```
uff_model = uff.from_tensorflow_frozen_model("frozen_model_file.pb",
                                             OUTPUT_LAYERS)

parser = uffparser.create_uff_parser()

parser.register_input(INPUT_LAYERS[0], (INPUT_C,INPUT_H,INPUT_W),0)
parser.register_output(OUTPUT_LAYERS[0])

engine = trt.utils.uff_to_trt_engine(G_LOGGER,
                                     uff_model,
                                     parser,
                                     INFERENCE_BATCH_SIZE,
                                     1<<20,
                                     trt.infer.DataType.FLOAT)

trt.utils.write_engine_to_file(save_path, engine.serialize())

engine = Engine(PLAN=plan,
               postprocessors={"output_layer_name":post_processing_function})
result = engine_single.infer(image)
```

← **Step 1:** Convert trained model into TensorRT format

← **Step 2:** Create a model parser

← **Step 3:** Register inputs and outputs

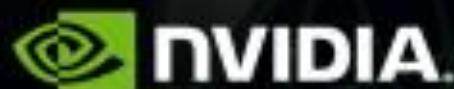
← **Step 4:** Optimize model and create a runtime engine

← **Step 5:** Serialize optimized engine

← **Step 6:** De-serialize engine

← **Step 7:** Perform inference

TensorRT Inference with TensorFlow



TensorFlow

An end-to-end open source machine learning platform

- Powerful platform for research and experimentation
- Versatile, easy model building
- Robust ML production anywhere
- Most popular ML project on Github

 Watch

8,584

 Star

127,447

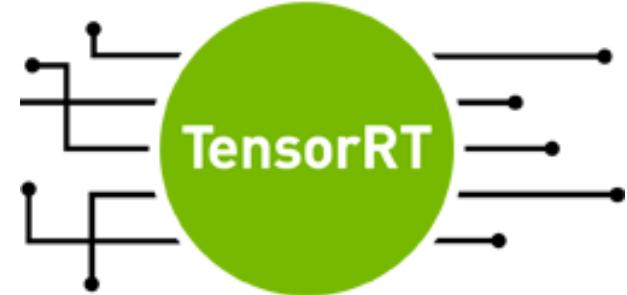
 Fork

74,574

41m Downloads

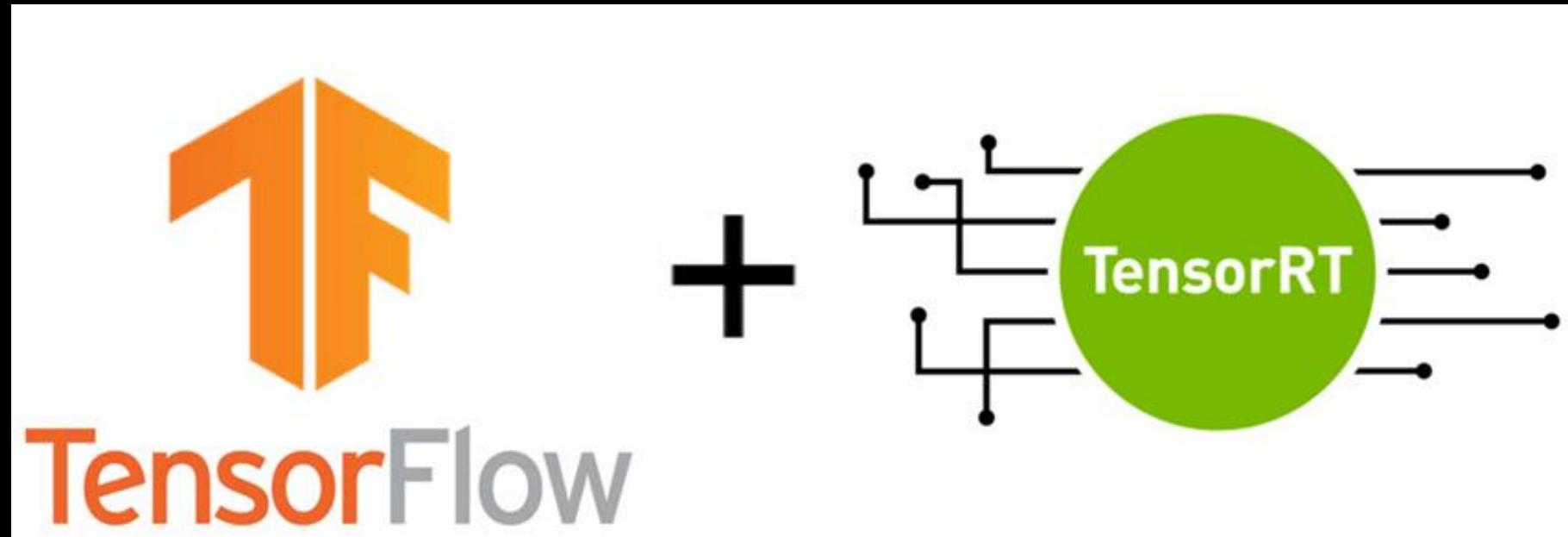
NVIDIA TensorRT

Platform for High-Performance Deep Learning Inference



- Optimize and Deploy neural networks in production environments
- Maximize throughput for latency-critical apps with optimizer and runtime
- Deploy responsive and memory efficient apps with INT8 & FP16

300k Downloads in 2018



TF-TRT = TF + TRT

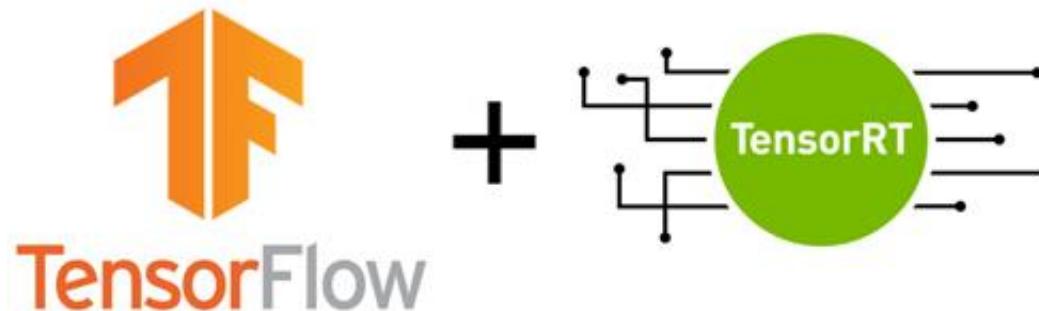
AGENDA

TensorRT Inference with TensorFlow

- **Benefits to using TF-TRT**
 - How to use
 - Customer experience: Clarifai
 - How TF-TRT works
 - Additional Resources

Benefits to using TF-TRT

- Optimize TF inference while still using the TF ecosystem
- Simple API: up to 8x performance gain with little effort
- Fallback to native TensorFlow where TensorRT does not support



Over 10 optimized models with published examples

Models	TF FP32 (imgs/s)	TF-TRT INT8 (imgs/s)	Speedup
ResNet-50	399	3053	7.7x
Inception V4	158	1128	7.1x
Mobilenet V1	1203	4975	4.1x
NASNet large	43	162	3.8x
VGG16	245	1568	6.4x
SSD Mobilenet V2	102	411	4.0x
SSD Inception V2	82	327	4.0x

- Performance optimizations soon: More NLP and Object Detection Models
- For non-optimized layers, fallback support is provided by TensorFlow

TensorFlow FP32 vs TensorFlow-TensorRT INT8 on T4, largest possible batch size, no I/O.

NGC Tensorflow 19.07 with scripts: https://github.com/tensorflow/tensorrt/blob/master/tftrt/examples/image-classification/image_classification.py

FP16 accuracy

Models	TF FP32	TF-TRT FP16
Mobilenet V2	74.08	74.07
NASNet Mobile	73.97	73.87
ResNet 50 V1.5	76.51	76.48
ResNet 50 V2	76.43	76.40
VGG 16	70.89	70.91
Inception V3	77.99	77.97
SSD Mobilenet v1	23.06	23.07

FP16 accuracy is within 0.1% of FP32 accuracy

Top-1 metric (%) for classification models. mAP for SSD detection models.

Complete data: <https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#verified-models>

INT8 accuracy

Models	TF FP32	TF-TRT INT8
Mobilenet V2	74.08	73.90
NASNet Mobile	73.97	73.55
ResNet 50 V1.5	76.51	76.23
ResNet 50 V2	76.43	76.30
VGG 16	70.89	70.78
Inception V3	77.99	77.85

INT8 accuracy is within 0.2% of FP32 accuracy except for NASNet Mobile within 0.5%.

Top-1 metric (%) for classification models.

Complete data: <https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#verified-models>

TensorRT ONNX PARSER

Parser to import ONNX-models into TensorRT

Optimize and deploy models from ONNX-supported frameworks in production

Apply TensorRT optimizations to any ONNX framework (Caffe2, Chainer, Microsoft Cognitive Toolkit, MxNet, PyTorch)

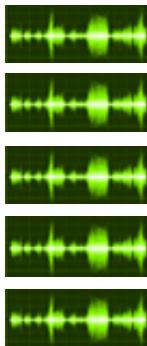
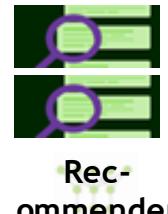
C++ and Python APIs to import ONNX models

New samples demonstrating step-by-step process to get started

INEFFICIENCY LIMITS INNOVATION

Difficulties with Deploying Data Center Inference

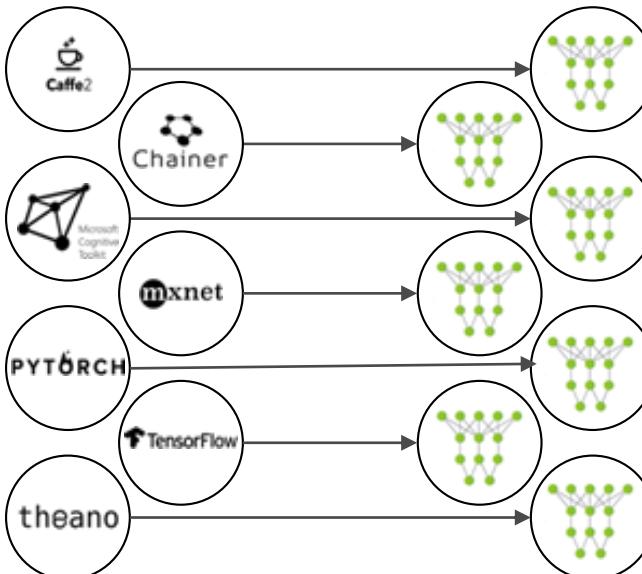
Single Model Only



Rec-
ommender

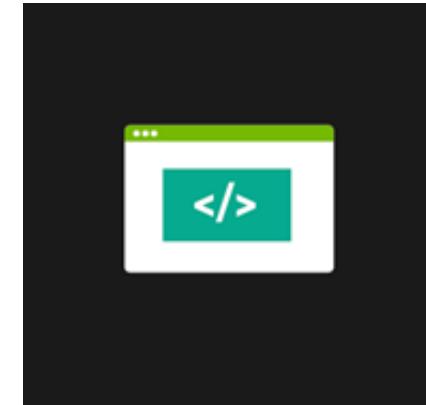
Some systems are overused while
others are underutilized

Single Framework Only



Solutions can only support
models from one framework

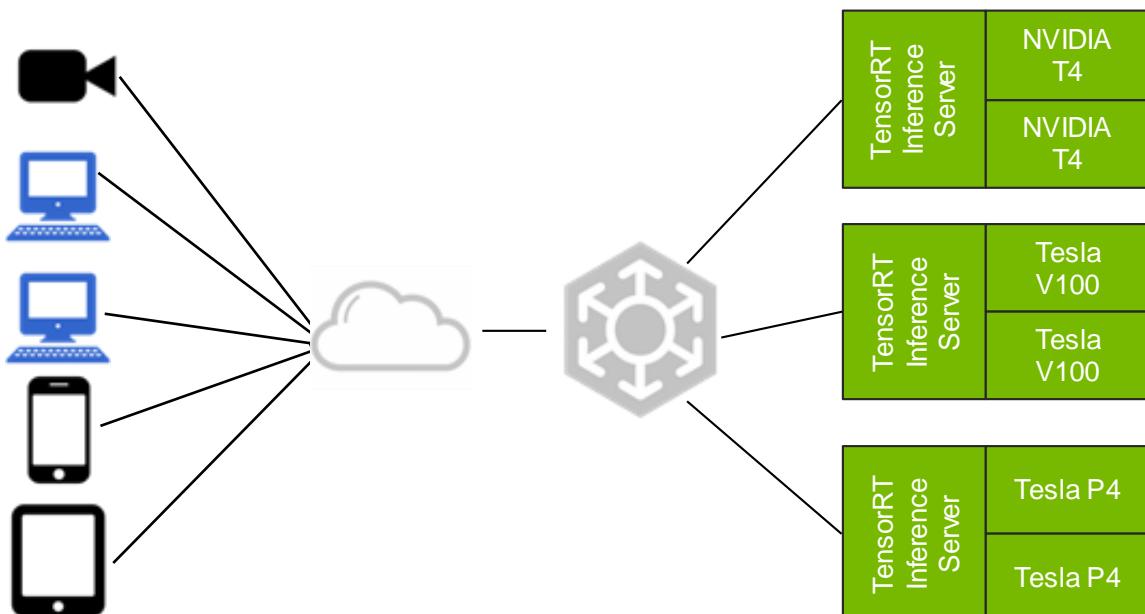
Custom Development



Developers need to reinvent the
plumbing for every application

NVIDIA TENSORRT INFERENCE SERVER

Production Data Center Inference Server



Maximize real-time inference performance of GPUs

Quickly deploy and manage multiple models per GPU per node

Easily scale to heterogeneous GPUs and multi GPU nodes

Integrates with orchestration systems and auto scalers via latency and health metrics

Now open source for thorough customization and integration

FEATURES

Concurrent Model Execution

Multiple models (or multiple instances of same model) may execute on GPU simultaneously

CPU Model Inference Execution

Framework native models can execute inference requests on the CPU

Metrics

Utilization, count, memory, and latency

Custom Backend

Custom backend allows the user more flexibility by providing their own implementation of an execution engine through the use of a shared library

Model Ensemble

Pipeline of one or more models and the connection of input and output tensors between those models (can be used with custom backend)

Dynamic Batching

Inference requests can be batched up by the inference server to 1) the model-allowed maximum or 2) the user-defined latency SLA

Multiple Model Format Support

PyTorch JIT (.pt)
TensorFlow GraphDef/SavedModel
TensorFlow and TensorRT GraphDef
ONNX graph (ONNX Runtime)
TensorRT Plans
Caffe2 NetDef (ONNX import path)

CMake build

Build the inference server from source making it more portable to multiple OSes and removing the build dependency on Docker

Streaming API

Built-in support for audio streaming input e.g. for speech recognition

TensorRT

PYTORCH

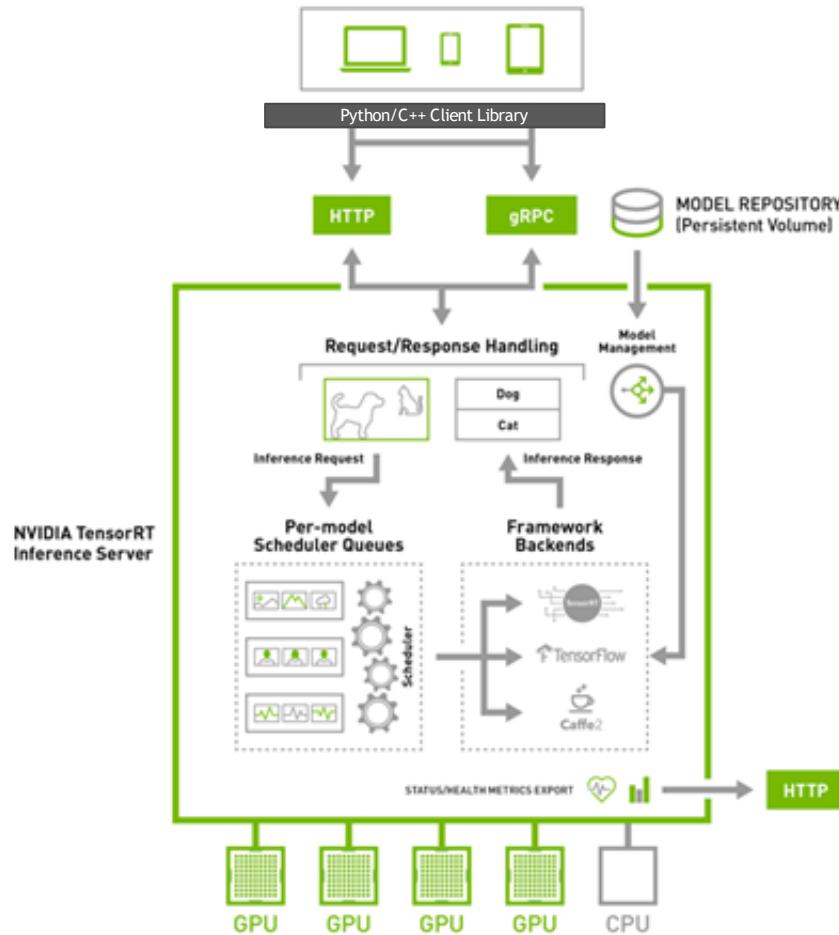
ONNX

Chainer CNTK

mxnet PYTORCH

INFERENCE SERVER ARCHITECTURE

Available with Monthly Updates



Models supported

- TensorFlow GraphDef/SavedModel
- TensorFlow and TensorRT GraphDef
- TensorRT Plans
- Caffe2 NetDef (ONNX import)
- ONNX graph
- PyTorch JIT (.pb)

Multi-GPU support

Concurrent model execution

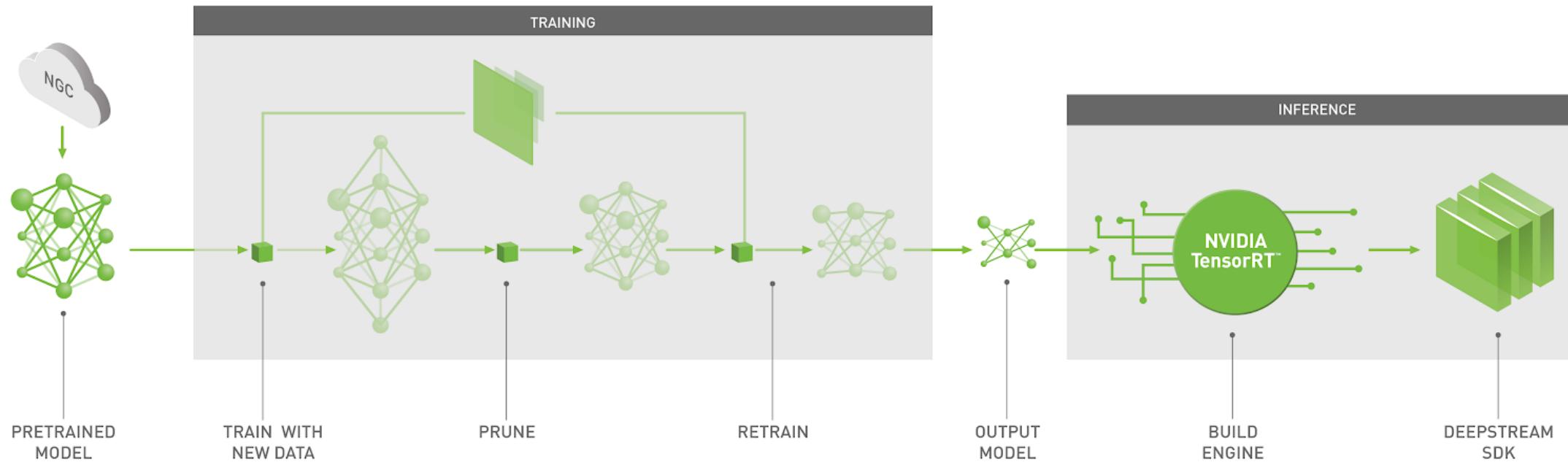
Server HTTP REST API/gRPC

Python/C++ client libraries

Additional resources

- **GTC Technical presentation:** <https://developer.nvidia.com/gtc/2019/video/S9431/video>
- **TF-TRT user guide:** <https://docs.nvidia.com/deeplearning/dgx/tf-trt-user-guide/index.html>
- **NVIDIA DLI course on TF-TRT:** <https://www.nvidia.com/en-us/deep-learning-ai/education/>
- **Monthly release notes:** <https://docs.nvidia.com/deeplearning/dgx/tf-trt-release-notes/index.html>
- **Google Blog on TF-TRT inference:** <https://cloud.google.com/blog/products/ai-machine-learning/running-tensorflow-inference-workloads-at-scale-with-tensorrt-5-and-nvidia-t4-gpus>
- **Nvidia Developer Blog:** <https://devblogs.nvidia.com/tensorrt-integration-speeds-tensorflow-inference/>

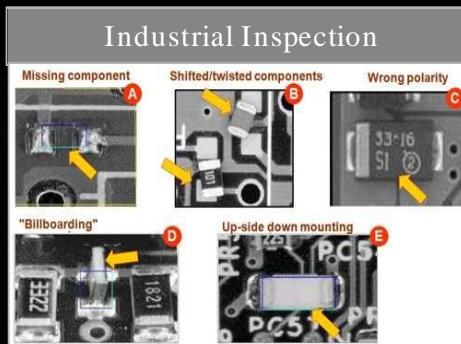
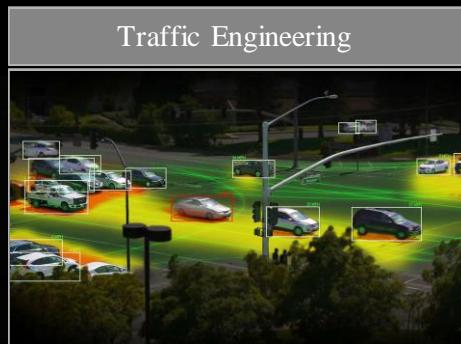
END TO END NVIDIA DEEP LEARNING WORKFLOW



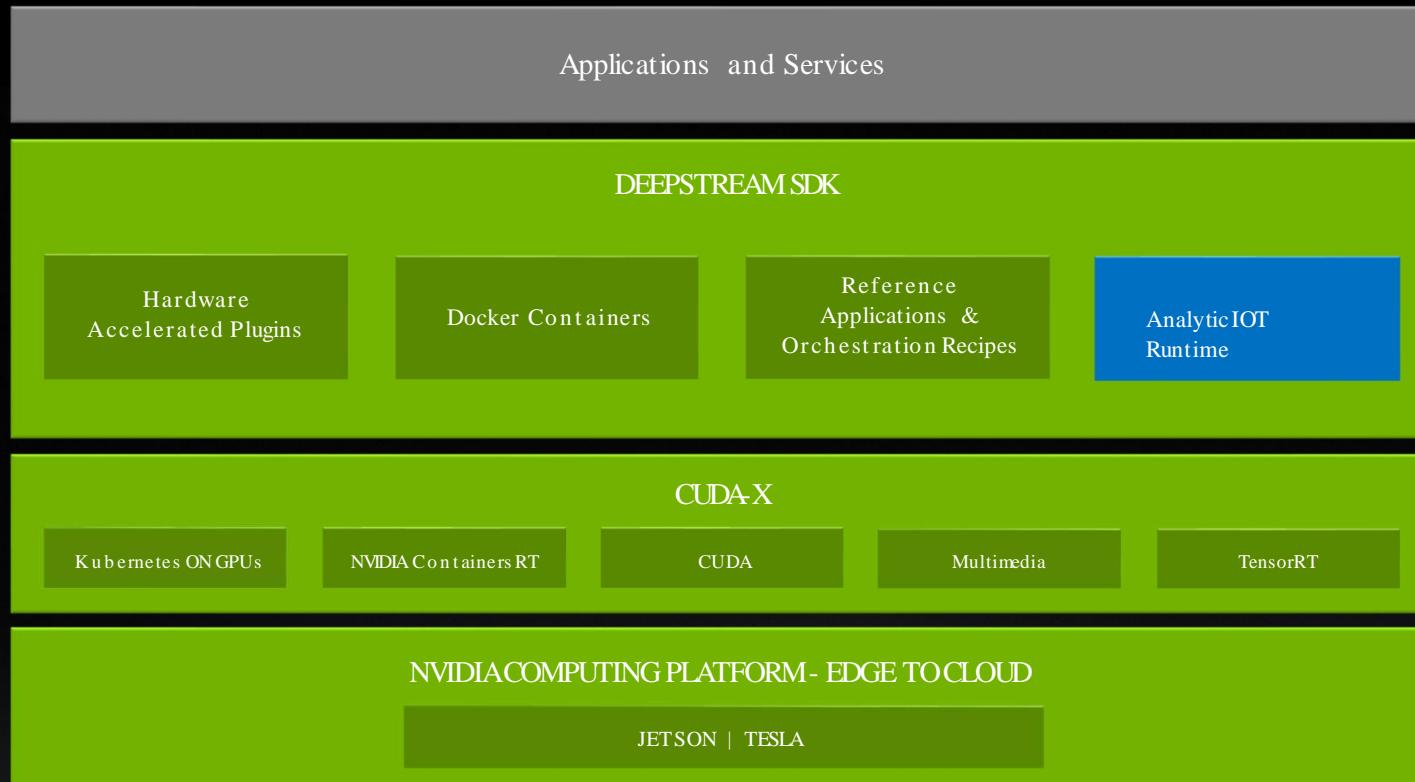
AGENDA

1. Intelligent Video Analytics
2. Deepstream SDK
 - a. What is Deepstream SDK?
 - a. Why Deepstream SDK?
 - b. What's new with DS4.0?
 - c. Deepstream Building Blocks
3. Getting started with Deepstream SDK
 - a. Where to start?
 - b. Directory hierarchy
 - c. Configurable file and pipeline details
 - d. Running application
4. Building with Deepstream SDK
 - a. Real world use cases with demo

INTELLIGENT VIDEO ANALYTICS (IVA) FOR EFFICIENCY AND SAFETY



WHAT IS DEEPSTREAM?



WHY DEEPSTREAM?

Broader Use Cases and Industries

Build your own application for smart cities, retail analytics, industrial inspection, logistics, and more

Performance Driven

Low latency and exceptional performance optimized for NVIDIA GPUs for real-time edge analytics

Faster Time to Progress

Provides ready to use building blocks and IP simplify building your innovative product.

Cloud Integration

Pushbutton IoT solution integration to build applications and services with Cloud Service Providers.

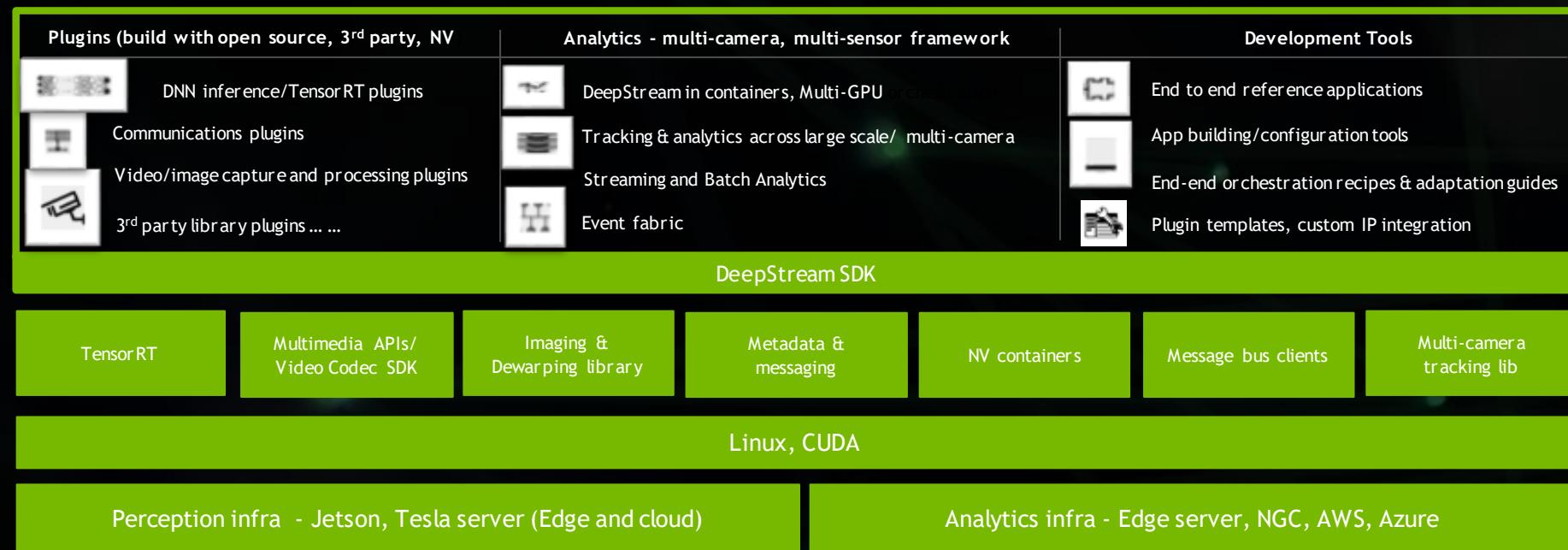
Faster Time to Market

Provides ready to use building blocks and IP simplify building your innovative product.

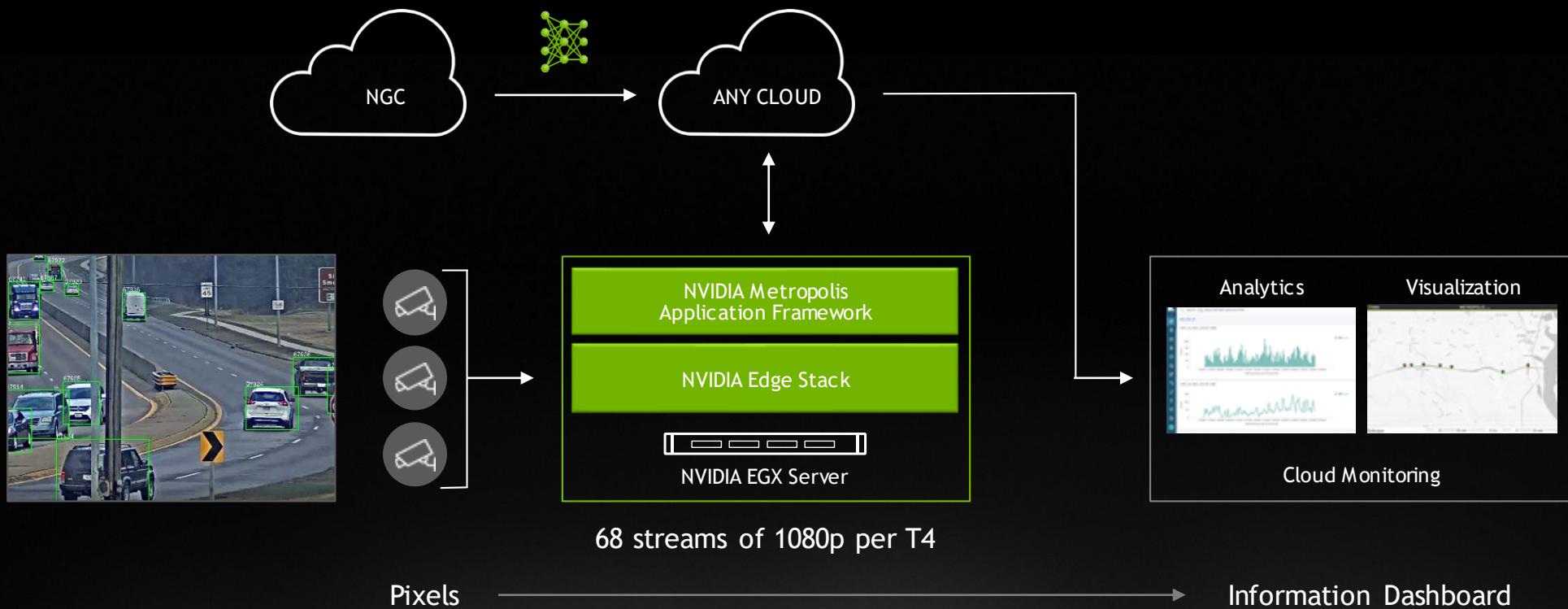
Faster Time to Progress

Iterate and integrate by quick plug and play of popular plug-ins that are pre-packaged or build your own.

DEEPSTREAM SDK

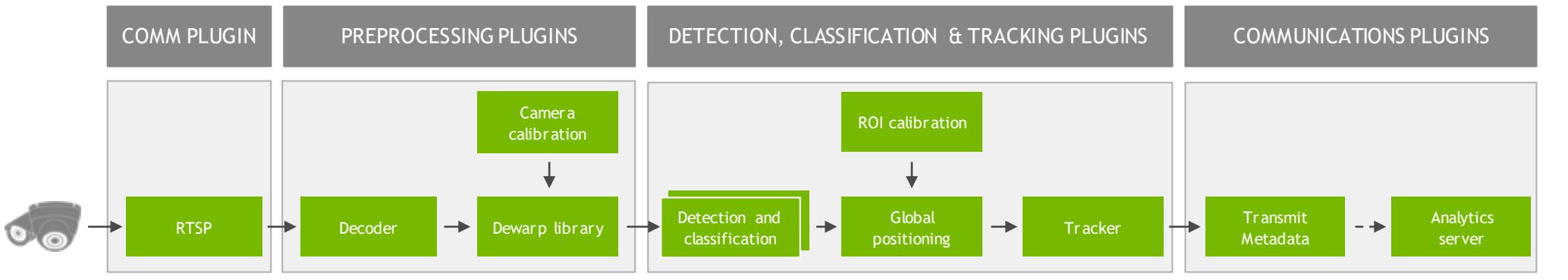
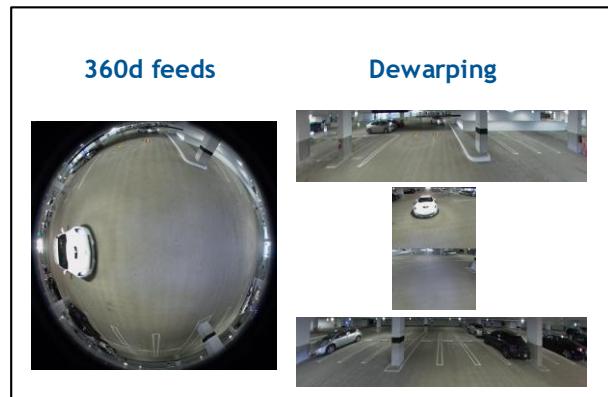
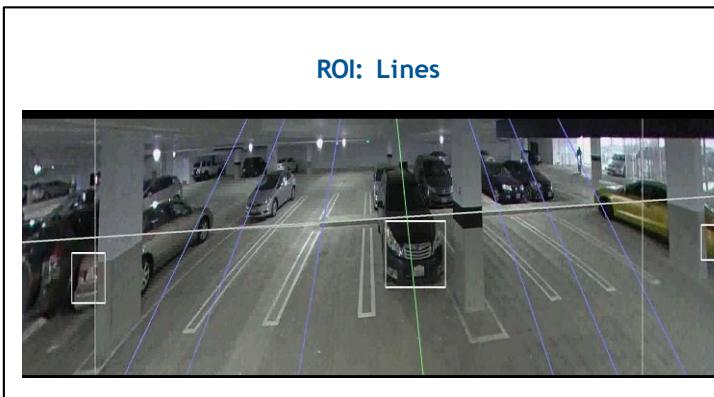
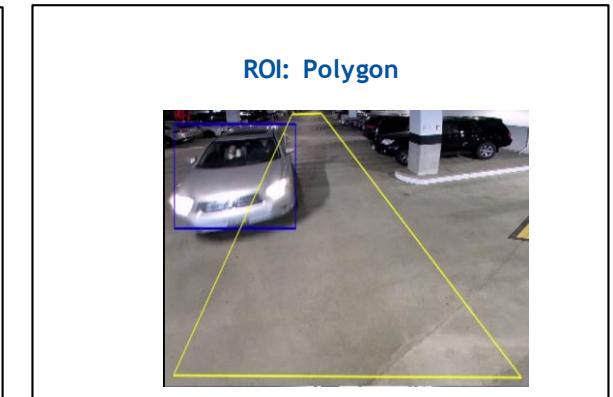


REAL TIME INSIGHTS, HIGHEST STREAM DENSITY

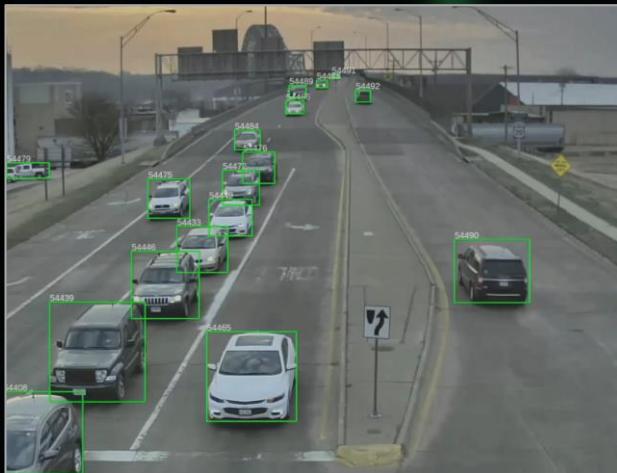


Smart Parking

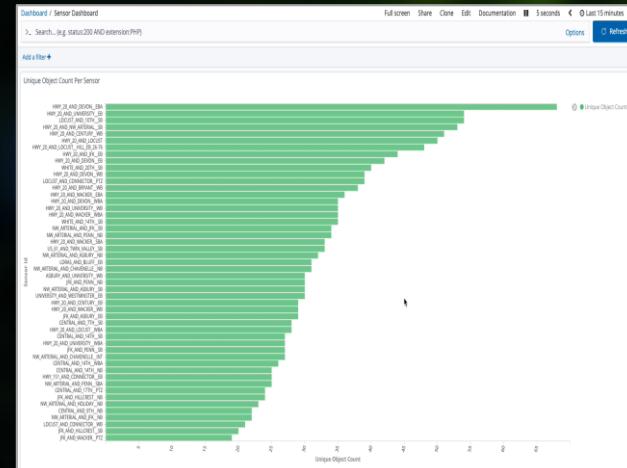
PERCEPTION GRAPH



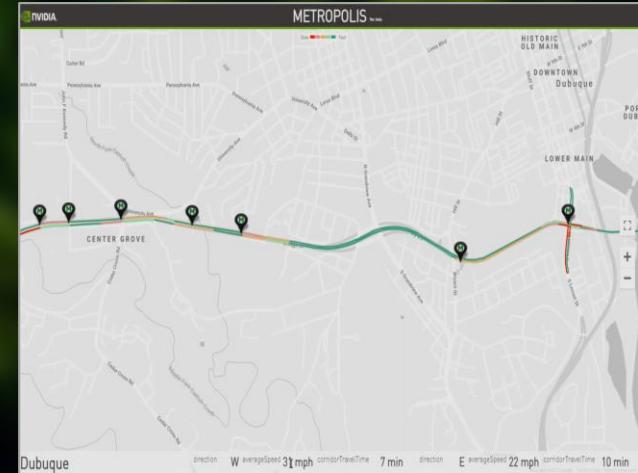
Perception



Analytics



Visualization



VIDEO : INTELLIGENT TRAFFIC SYSTEM

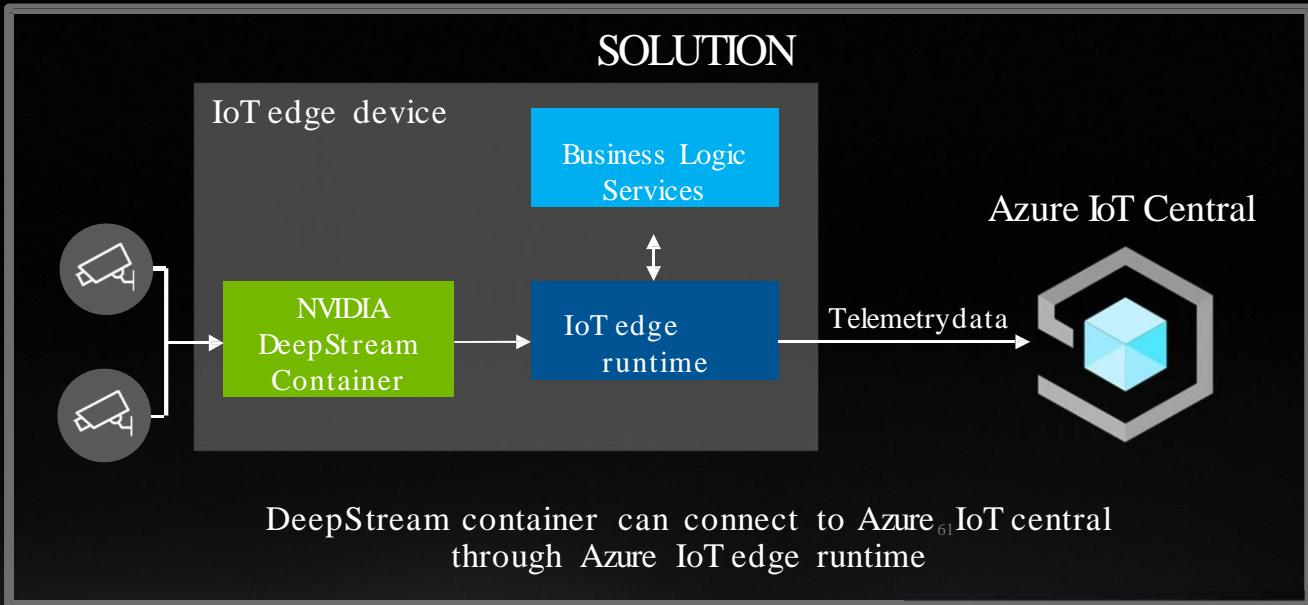
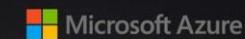
WAREHOUSE LOGISTICS: INVENTORY SORTING

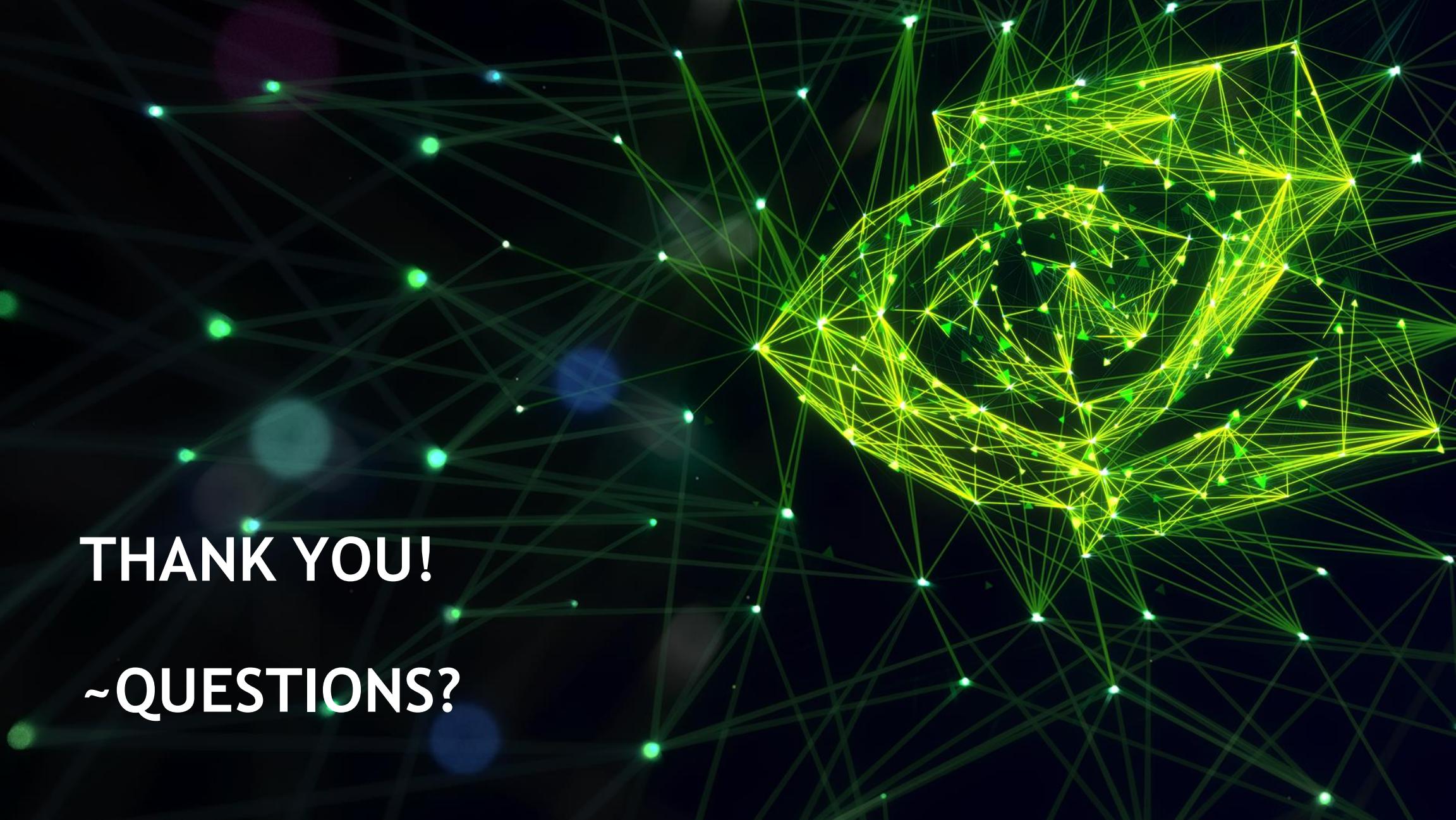
USE CASE



Detect and flag packages on a conveyor belt

SOLUTION





THANK YOU!
~QUESTIONS?