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AGENDA

1. AI Use cases for Industry

2. End To End Deep Learning Workflow

Training Pipeline

a.  NGC

b.  Transfer Learning

c.   Automatic Mixed Precision

d.   Code walkthrough

Inference Pipeline

a.  TensorRT (Float 16)

b.  TensorRT (INT8)

c.   Custom plugin support

d.   Deepstream



INTELLIGENT VIDEO ANALYTICS (IVA) FOR EFFICIENCY ANDSAFETY

Access Control Public Transit Industrial Inspection Traffic Engineering

Retail Analytics Logistics Critical Infras tructure Public Safety
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DEEP LEARNING IN PRODUCTION

Speech Recognition

Recommender Systems

Autonomous Driving

Real-time Object Recognition

Robotics

Real-time Language 
Translation

Many More…
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NGC
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WHY CONTAINERS?

Benefits of Containers:

Simplify deployment of
GPU-accelerated software, eliminating time-
consuming software integration work

Isolate individual deep learning frameworks  and
applications

Share, collaborate,
and test applications across

different environments



Not so similar

App 1 App 2

Bins / Libs Bins / Libs

App 1

Bins / Libs

Guest OS Guest OS Guest OS

Hypervisor

Host Operating System

Server Infrastructure Server Infrastructure

Host Operating System

App 1 App 2App 1

Bins / Libs
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Bins / Libs Bins / Libs

Docker Engine

Virtual Machines Containers

Virtual Machine vs. Container



NVIDIA container runtime

https://github.com/NVIDIA/nvidia-docker

• Colloqually called “nvidia-docker”

• Docker containers are hardware-
agnostic and platform-agnostic

• NVIDIA GPUs are specialized  
hardware that require theNVIDIA  
driver

• Docker does not natively support  
NVIDIA GPUs with containers

• NVIDIA Container Runtime makes the  
images agnostic of the NVIDIA driver
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https://github.com/NVIDIA/nvidia-docker


Docker Terms
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Definitions

Image

Docker images are the basis of containers. An Image is an ordered collection of root filesystem  changes 
and the corresponding execution parameters for use within a container runtime. An  image typically 
contains a union of layered filesystems stacked on top of each other. An image  does not have state and it 
never changes.

Container
A container is a runtime instance of a docker image.
A Docker container consists of
● A Docker image
● Execution environment

● A standard set of instructions

https://docs.docker.com/engine/reference/glossary/

https://docs.docker.com/engine/reference/glossary/#container
https://docs.docker.com/engine/reference/glossary/#image
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Prune Retrain

tlt-prune tlt-train

PRUNING

Reduce model size and increase throughput

Incrementally retrain model after pruning to recover 
accuracy

1

2



15

Selecting Unnecessary Neurons

• 1. DATA Driven operation

• 2. Non- Data Driven Operation.

• 3. Handling Element-Wise Operations of Multiple Inputs

pruned_model = TLT.prune(model, t)
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SCENE ADAPTATION

AdaptData

Camera location vantage point

Train with new data from another vantage point, camera location, or added attribute

Person with blue shirt

Same network adapting to different 

angles and vantage points

Same network adapting to new data
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TLT
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TENSORFLOW

Automatic Mixed Precision feature is available both in native TensorFlow and inside 

the TensorFlow container on 

NVIDIA NGC container registry: 
export TF_ENABLE_AUTO_MIXED_PRECISION=1 

As an alternative, the environment variable can be set inside the TensorFlow Python script:
os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1' 
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PYTORCH

Automatic Mixed Precision feature is available in the Apex repository on GitHub. To enable, 

add these two lines of code into your existing training script: 

model, optimizer = amp.initialize(model, optimizer, opt_level="O1")

with amp.scale_loss(loss, optimizer) as scaled_loss:

scaled_loss.backward()
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MXNET

Automatic Mixed Precision feature is available both in native MXNet (1.5 or later) and inside the MXNet
container (19.04 or later) on NVIDIA NGC container registry. To enable the feature, add the following 
lines of code to your existing training script: 

amp.init()
amp.init_trainer(trainer)
with amp.scale_loss(loss, trainer) as scaled_loss:

autograd.backward(scaled_loss) 
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AUTOMATIC MIXED PRECISION IN TENSORFLOW
Upto 3X Speedup

All models can be found at:

https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow, except for ssd-rn50-fpn-640, which is here: https://github.com/tensorflow/models/tree/master/research/object_detection All 

performance collected on 1xV100-16GB, except bert-squadqa on 1xV100-32GB.

Speedup is the ratio of time to train for a fixed number of epochs in single-precision and Automatic Mixed Precision. Number of epochs for each model was matching the literature or common practice (it was also confirmed that both training sessions achieved the same model accuracy).

Batch sizes:. rn50 (v1.5): 128 for FP32, 256 for AMP+XLA; ssd-rn50-fpn-640: 8 for FP32, 16 for AMP+XLA; NCF: 1M for FP32 and AMP+XLA; bert-squadqa: 4 for FP32, 10 for AMP+XLA; GNMT: 128 for FP32, 192 for AMP.

TensorFlow Medium Post: Automatic Mixed Precision in TensorFlow for Faster AI Training on NVIDIA GPUs

https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow
https://github.com/tensorflow/models/tree/master/research/object_detection
https://medium.com/tensorflow/automatic-mixed-precision-in-tensorflow-for-faster-ai-training-on-nvidia-gpus-6033234b2540?linkId=64995850
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● Plot shows ResNet-50 result with/without automatic mixed  
precision(AMP)

● More AMP enabled model scripts coming soon:  

Mask-R CNN, GNMT, NCF, etc.

AUTOMATIC MIXED PRECISION IN

PYTORCH
https://developer.nvidia.com/automatic-mixed-precision

FP32

AMP
Enabled

Mixed  

Precision

Source:https://github.com/NVIDIA/apex/tree/master/examples/imagenet

2X

https://developer.nvidia.com/automatic-mixed-precision
https://github.com/NVIDIA/apex/tree/master/examples/imagenet
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AUTOMATIC MIXED PRECISION IN MXNET

https://github.com/apache/incubator-mxnet/pull/14173

AMP speedup ~1.5X to 2X in comparison with FP32

https://github.com/apache/incubator-mxnet/pull/14173


25



26

NVIDIA TENSORRT
Programmable Inference Accelerator

developer.nvidia.com/tensorrt

DRIVE PX 2

JETSON TX2

NVIDIA DLA

TESLA P4

TESLA V100

FRAMEWORKS GPU PLATFORMS

TensorRT

Optimizer Runtime
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Inference throughput (images/sec) on ResNet50. V100 + TensorRT: NVIDIA TensorRT (FP16), batch size 39, Tesla V100-SXM2-
16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On V100 + TensorFlow: Preview of volta optimized TensorFlow (FP16), 
batch size 2, Tesla V100-PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. CPU-Only: Intel Xeon-D 1587 
Broadwell-E CPU and Intel DL SDK. Score doubled to comprehend Intel's stated claim of 2x performance improvement on Skylake 
with AVX512.
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Inference throughput (sentences/sec) on OpenNMT 692M. V100 + TensorRT: NVIDIA TensorRT (FP32), batch size 64, Tesla V100-
PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. V100 + Torch: Torch (FP32), batch size 4, Tesla V100-PCIE-
16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. CPU-Only: Torch (FP32), batch size 1, Intel E5-2690 v4@2.60GHz 
3.5GHz Turbo (Broadwell) HT On

TENSORRT PERFORMANCE

developer.nvidia.com/tensorrt

40x Faster CNNs on V100 vs. CPU-Only 

Under 7ms Latency (ResNet50)

140x Faster Language Translation RNNs on 

V100 vs. CPU-Only Inference (OpenNMT)
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TENSORRT DEPLOYMENT WORKFLOW

TensorRT Optimizer

TensorRT Runtime Engine

Trained Neural 
Network

Step 1: Optimize trained model

Plan 1

Plan 2

Plan 3

Optimized Plans

Step 2: Deploy optimized plans with runtime

EmbeddedAutomotive

Data center

Import
Model

Serialize
Engine

Plan 1

Plan 2

Plan 3

Optimized Plans

De-serialize
Engine

Deploy 
Runtime
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MODEL IMPORTING

developer.nvidia.com/tensorrt

Model Importer
Network 

Definition API

Python/C++ API

Other Frameworks

Python/C++ API

➢ AI Researchers
➢ Data Scientists

Runtime inference
C++ or Python API

Example: Importing a TensorFlow model
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TENSORRT OPTIMIZATIONS

Kernel Auto-Tuning

Layer & Tensor Fusion

Dynamic Tensor

Memory

Weights & Activation

Precision Calibration

➢ Optimizations are completely automatic 
➢ Performed with a single function call
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Un-Optimized Network

concat

max pool

input

next input

3x3 conv.

relu

bias

1x1 conv.

relu

bias

1x1 conv.

relu

bias

1x1 conv.

relu

bias

concat

1x1 conv.

relu

bias
5x5 conv.

relu

bias

LAYER & TENSOR FUSION

max pool

input

next input

3x3 CBR 5x5 CBR 1x1 CBR

1x1 CBR

TensorRT Optimized Network
• Vertical Fusion 

• Horizonal Fusion 

• Layer Elimination

Network Layers 

before

Layers 

after

VGG19 43 27

Inception 

V3

309 113

ResNet-152 670 159
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KERNEL AUTO-TUNING
DYNAMIC TENSOR MEMORY

Kernel Auto-Tuning Dynamic Tensor Memory

Tesla V100 Jetson TX2

Multiple parameters:

• Batch size

• Input dimensions

• Filter dimensions

...

• Reduces memory footprint and 

improves memory re-use 

• Manages memory allocation for 

each tensor only for the duration of 

its usage

100s for specialized kernels 

Optimized for every GPU platform

Drive PX2
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EXAMPLE: DEPLOYING TENSORFLOW 
MODELS WITH TENSORRT 

Import, optimize and deploy 
TensorFlow models using TensorRT python 
API

Steps:

• Start with a frozen TensorFlow model
• Create a model parser
• Optimize model and create a runtime 

engine
• Perform inference using the optimized 

runtime engine

developer.nvidia.com/tensorrt

Deployment and Inference

Optimized 

Runtime Engine

TensorRT 
Optimizer

Trained Neural 
Network

New Data

Inference Results



developer.nvidia.com/tensorrt

7 STEPS TO DEPLOYMENT WITH TENSORRT

Step 1: Convert trained model into 

TensorRT format

Step 2: Create a model parser

Step 3: Register inputs and outputs

Step 4: Optimize model and create 

a runtime engine

Step 5: Serialize optimized engine

Step 6: De-serialize engine

Step 7: Perform inference



TensorRT Inference

with TensorFlow



TensorFlow

● Powerful platform for research and experimentation

● Versatile, easy model building

● Robust ML production anywhere

● Most popular ML project on Github

An end-to-end open source machine learning platform

41m Downloads



NVIDIA TensorRT

● Optimize and Deploy neural networks in production environments

● Maximize throughput for latency-critical apps with optimizer and runtime

● Deploy responsive and memory efficient apps with INT8 & FP16

Platform for High-Performance Deep Learning Inference

300k Downloads in 2018



TF-TRT = TF + TRT



AGENDA

TensorRT Inference with 

TensorFlow

● Benefits to using TF-TRT

● How to use

● Customer experience: Clarifai

● How TF-TRT works

● Additional Resources



Benefits to using TF-TRT

● Optimize TF inference while still using the TF ecosystem

● Simple API: up to 8x performance gain with little effort 

● Fallback to native TensorFlow where TensorRT does not support
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TensorFlow FP32 vs TensorFlow-TensorRT INT8 on T4, largest possible batch size, no I/O.
NGC Tensorflow 19.07 with scripts: https://github.com/tensorflow/tensorrt/blob/master/tftrt/examples/image-classification/image_classification.py

● Performance optimizations soon: 

More NLP and Object Detection 

Models

● For non-optimized layers, fallback 

support is provided by 

TensorFlow

Over 10 optimized models with published examples

Models TF FP32
(imgs/s)

TF-TRT INT8
(imgs/s)

Speedup

ResNet-50 399 3053 7.7x

Inception V4 158 1128 7.1x

Mobilenet V1 1203 4975 4.1x

NASNet large 43 162 3.8x

VGG16 245 1568 6.4x

SSD Mobilenet V2 102 411 4.0x

SSD Inception V2 82 327 4.0x

https://github.com/tensorflow/tensorrt/blob/master/tftrt/examples/image-classification/image_classification.py
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FP16 accuracy is within 0.1% of FP32 accuracy

Top-1 metric (%) for classification models. mAP for SSD detection models.

Complete data: https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#verified-models

Models TF FP32 TF-TRT FP16

Mobilenet V2 74.08 74.07

NASNet Mobile 73.97 73.87

ResNet 50 V1.5 76.51 76.48

ResNet 50 V2 76.43 76.40

VGG 16 70.89 70.91

Inception V3 77.99 77.97

SSD Mobilenet v1 23.06 23.07

FP16 accuracy

https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html#verified-models
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Models TF FP32 TF-TRT INT8

Mobilenet V2 74.08 73.90

NASNet Mobile 73.97 73.55

ResNet 50 V1.5 76.51 76.23

ResNet 50 V2 76.43 76.30

VGG 16 70.89 70.78

Inception V3 77.99 77.85

INT8 accuracy is within 0.2% of FP32 accuracy except for NASNet Mobile within 0.5%.

Top-1 metric (%) for classification models.

Complete data: https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#verified-models

INT8 accuracy

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#verified-models
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TensorRT ONNX PARSER

Optimize and deploy models from ONNX-
supported frameworks in production

Apply TensorRT optimizations to any ONNX framework 
(Caffe 2, Chainer, Microsoft Cognitive Toolkit, MxNet, 
PyTorch)

C++ and Python APIs to import ONNX models

New samples demonstrating step-by-step process to get 
started

Parser to import ONNX-models into TensorRT 

developer.nvidia.com/tensorrt
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INEFFICIENCY LIMITS INNOVATION
Difficulties with Deploying Data Center Inference

Single Framework OnlySingle Model Only Custom Development 

Some systems are overused while 

others are underutilized
Solutions can only support

models from one framework

Developers need to reinvent the 

plumbing for every application

ASR NLP
Rec-

ommender

!
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NVIDIA TENSORRT INFERENCE SERVER
Production Data Center Inference Server

Maximize real-time inference 
performance of GPUs

Quickly deploy and manage multiple 
models per GPU per node  

Easily scale to heterogeneous GPUs 
and multi GPU nodes

Integrates with orchestration 
systems and auto scalers via latency 
and health metrics

Now open source for thorough 
customization and integration
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Concurrent Model Execution
Multiple models (or multiple instances of same 

model) may execute on GPU simultaneously

CPU Model Inference Execution
Framework native models can execute inference 

requests on the CPU

Metrics
Utilization, count, memory, and latency

Custom Backend
Custom backend allows the user more flexibility 

by providing their own implementation of an 

execution engine through the use of a shared 

library

Model Ensemble
Pipeline of one or more models and the 

connection of input and output tensors between 

those models (can be used with custom 

backend)

Dynamic Batching
Inference requests can be batched up by the 

inference server to 1) the model-allowed 

maximum or 2) the user-defined latency SLA

Multiple Model Format Support
PyTorch JIT (.pt)

TensorFlow GraphDef/SavedModel

TensorFlow and TensorRT GraphDef

ONNX graph (ONNX Runtime)

TensorRT Plans

Caffe2 NetDef (ONNX import path)

CMake build
Build the inference server from source making it 

more portable to multiple OSes and removing 

the build dependency on Docker

Streaming API
Built-in support for audio streaming input e.g. 

for speech recognition

FEATURES
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INFERENCE SERVER ARCHITECTURE

Models supported
● TensorFlow GraphDef/SavedModel
● TensorFlow and TensorRT GraphDef
● TensorRT Plans
● Caffe2 NetDef (ONNX import)
● ONNX graph
● PyTorch JIT (.pb)

Multi-GPU support

Concurrent model execution

Server HTTP REST API/gRPC

Python/C++ client libraries

Python/C++ Client Library

Available with Monthly Updates
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Additional resources

- GTC Technical presentation: https://developer.nvidia.com/gtc/2019/video/S9431/video

- TF-TRT user guide: https://docs.nvidia.com/deeplearning/dgx/tf-trt-user-guide/index.html

- NVIDIA DLI course on TF-TRT: https://www.nvidia.com/en-us/deep-learning-ai/education/

- Monthly release notes: https://docs.nvidia.com/deeplearning/dgx/tf-trt-release-notes/index.html

- Google Blog on TF-TRT inference: https://cloud.google.com/blog/products/ai-machine-

learning/running-tensorflow-inference-workloads-at-scale-with-tensorrt-5-and-nvidia-t4-gpus

- Nvidia Developer Blog: https://devblogs.nvidia.com/tensorrt-integration-speeds-tensorflow-

inference/

https://developer.nvidia.com/gtc/2019/video/S9431/video
https://docs.nvidia.com/deeplearning/dgx/tf-trt-user-guide/index.html
https://www.nvidia.com/en-us/deep-learning-ai/education/
https://docs.nvidia.com/deeplearning/dgx/tf-trt-release-notes/index.html
https://cloud.google.com/blog/products/ai-machine-learning/running-tensorflow-inference-workloads-at-scale-with-tensorrt-5-and-nvidia-t4-gpus
https://devblogs.nvidia.com/tensorrt-integration-speeds-tensorflow-inference/
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AGENDA

1. Intelligent Video Analytics

2. Deepstream SDK

a.  What is Deepstream SDK?

a. Why Deepstream SDK?

b. What’s new with DS4.0?

c. Deepstream Building Blocks

3. Getting started with Deepstream SDK

a. Where to start?

b. Directory hierarchy

c. Configurable file and pipeline details

d. Running application

4. Building with Deepstream SDK

a. Real world use cases with demo

b. Resources



INTELLIGENT VIDEO ANALYTICS (IVA) FOR EFFICIENCY ANDSAFETY

Access Control Public Transit Industrial Inspection Traffic Engineering

Retail Analytics Logistics Critical Infras tructure Public Safety

5
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WHAT IS DEEPSTREAM?

CUDA-X

K u b erne tes ON GPUs NVIDIA Co n t ainers RT CUDA

NVIDIA COMPUTING PLATFORM - EDGE TOCLOUD

JETSON  | TESLA

Multimedia TensorRT

Hardware  

Acceler a ted Plugins
Docker Co n t ainers

Referen ce  

Applications &  

Orch est ratio n Recipes
Analytic IOT

Runtime

Applications and Services

DEEPSTREAMSDK

5
4



55NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Broader Use Cases and 

Industries

Build your own application for smart cities, 

retail analytics, industrial inspection, 
logistics, and more

WHY DEEPSTREAM?

The most comprehensive end-to-end development platform for IVA.

.

Performance Driven 

Low latency and exceptional performance 

optimized for NVIDIA GPUs for real-time 
edge analytics

Faster Time to Progress

Iterate and integrate by quick plug and play 

of popular plug-ins that are pre-packaged or 
build your own. 

Cloud Integration 

Pushbutton IoT solution integration to build 

applications and services with Cloud 
Service Providers.

Faster Time to Market 

Provides ready to use building blocks and 

IP simplify building your innovative 
product. 

Faster Time to Progress

Provides ready to use building blocks and 

IP simplify building your innovative 
product. 
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Perception infra  - Jetson, Tesla server (Edge and cloud)

Linux, CUDA

Analytics infra - Edge server, NGC, AWS, Azure

DeepStream SDK

Video/image capture and processing plugins 

Plugins (build with open source, 3rd party, NV) Development Tools

Communications plugins 

DNN inference/TensorRT plugins 

3rd party library plugins … … 

End to end reference applications 

App building/configuration tools

Plugin templates, custom IP integration

TensorRT
Multimedia APIs/ 

Video Codec SDK

Imaging & 

Dewarping library

Metadata & 

messaging
NV containers Message bus clients

Multi-camera 

tracking lib

Analytics - multi-camera, multi-sensor framework

DEEPSTREAM SDK 

DeepStream in containers, Multi-GPU orchestration

Tracking & analytics across large scale/ multi-camera 

Streaming and Batch Analytics

Event fabric

End-end orchestration recipes & adaptation guides
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REAL TIME INSIGHTS, HIGHEST STREAM 
DENSITY

Analytics

NGC

NVIDIA EGX Server

NVIDIA Edge Stack

NVIDIA Metropolis 
Application Framework

ANY CLOUD

Visualization

Cloud Monitoring

68 streams of 1080p per T4

Pixels Information Dashboard



Smart Parking
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Detection and 

classification

PERCEPTION GRAPH

Decoder Dewarp library
Detection and 

classification

Global 

positioning
Tracker

Transmit 

Metadata

Analytics 

server

Camera 

calibration
ROI calibration

ROI: Lines ROI: Polygon360d feeds Dewarping

RTSP

COMM PLUGIN PREPROCESSING PLUGINS DETECTION, CLASSIFICATION  & TRACKING PLUGINS COMMUNICATIONS PLUGINS
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VIDEO : INTELLIGENT TRAFFIC SYSTEM

Perception Analytics Visualization



WAREHOUSE LOGISTICS: INVENTORY SORTING

USE CASE

Detect and flag packages on a  
conveyor belt

SOLUTION

DeepStream container can connect to Azure IoT central  
through Azure IoT edge runtime

NVIDIA

DeepSt ream  

Container

Business Logic  

Services

IoT edge  

runtime

Azure IoT Central

Telemetrydata

IoT edge device
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THANK YOU!

~QUESTIONS?


