
PARALLEL FILE SYSTEMS

Filbert Minj

Storage Team @SERC,

Indian Institute of Science

filbert@iisc.ac.in

OUTLINE OF THE CONTENTS

 Simple File Systems

 Distributed File Systems

 Parallel File Systems

 Storage Device

 What is Parallel I/O?

 Parallel I/O Tools

 Parallel File System Architectures

 Lustre Overview

 Summary

 References

FILE SYSTEMS

 File Systems have two key roll

➢ Organizing and maintaining the named space

o Directory hierarchy and file names that let us find things

➢ Storing contents of files

o Providing an interface through which we can read and write data

 Local file systems are used by a single operating system instance (client) with direct access to the disk

➢ E.g NTFS, ext4 on laptop

 Distributed file systems provide access to one or more clients who might not have direct access to

the disk

➢ e.g. NFS, AFS, etc.

DISTRIBUTED FILE SYSTEM (DFS)

 Distributed File System (DFS) is a method of storing
and accessing files based in a client/server
architecture

 In a distributed file system, one or more central
servers store files that can be accessed, with proper
authorization rights, by any number of remote clients
in the network

 Example: Network File System (NFS)

 Distributed file systems can be used by parallel
programs, but they have significant disadvantages:

 The network bandwidth of the server system is a
limiting factor on performance

 To retain UNIX-style file consistency, the DFS software
must implement some form of locking which has
significant performance implications

PARALLEL FILE SYSTEMS

 Store application data persistently

 usually extremely large datasets that can’t fit in memory

 Provide global shared namespace (files, directories)

 Designed for parallelism

 concurrent (often coordinated) access from many clients

 Designed for high-performance

 operate over high-speed networks (IB, Myrinet, Portals)

 optimized I/O path for maximum bandwidth

COMMON USE CASES OF PARALLEL FILE SYSTEMS

 Parallel file systems historically have targeted high-performance

computing (HPC) environments that require access to large

files, massive quantities of data or simultaneous access from

multiple compute servers

 Applications include climate modeling, computer-aided

engineering, exploratory data analysis, financial modeling,

genomic sequencing, machine learning and artificial intelligence,

seismic processing, video editing and visual effects rendering

EXAMPLES OF PARALLEL FILE SYSTEMS

 General Parallel File System (GPFS) / IBM Spectrum Scale

➢ Developed by IBM

➢ Available for AIX and Linux

 Lustre

➢ Developed by Cluster File Systems, Inc. (bought by Sun)

➢ Movement towards OpenLustre

➢ Name is amalgam of Linux and clusters

 Parallel Virtual File System (PVFS)

➢ Platform for I/O research and production file system for cluster of workstations

➢ Developed by Clemson University and Argonne National Laboratory

STORAGE DEVICE

 Single hard drive

 File system resides entirely on a single disk

 RAID (Redundant Array of Independent Disks)

 A logical disk built of many physical disks

 A stripe of data is stored across multiple disks

 Each chunk is placed on a single disk

 Several different levels of RAID with different protection and performance
characteristics

 RAID-6 (8+2) is typically used for distributed, parallel storage

STORAGE DEVICE

 RAID-6 (N+M)

➢Erasure encoding allows up to

M devices to fail without data

loss

➢Trade off capacity/performance

with data protection

➢Diagram is a 3+2 RAID-6

configuration

CHARACTERISTICS OF PARALLEL FILE SYSTEMS

 Three Key Characteristics:

➢ Various hardware I/O data storage resources

➢ Multiple connections between these hardware devices and

compute resources

➢ High-performance, concurrent access to these I/O

resources

 Multiple physical I/O devices and paths ensure

sufficient bandwidth for the high performance

desired

 Parallel I/O systems include both the hardware and

number of layers of software

Storage Hardware

Parallel File System

Parallel I/O (MPI I/O)

High-Level I/O Library

PARALLEL I/O TECHNIQUES – MOTIVATION

 Parallel applications that emphasize on the importance of data

 Not all data-intensive or data-driven applications are ‘big data’ (volume)

 HPC simulations of the real world that generates very large volumes of data

 Synthesize new information from data that is maintained in distributed (partly

unique) repositories and archives

 Distributed across different organizations and computers/storages

 Data analysis applications that are ‘I/O bound’

 I/O dominates the overall execution time

 I/O performance crucial for overall performance

WHAT MEANS I/O?

 Input/Output(I/O) stands for data transfer/migration from memory to disk (or vice

versa)

 Important (time-sensitive) factors within HPC environments

➢ Characteristics of the computational system (e.g. dedicated I/O nodes)

➢ Characteristics of the underlying filesystem (e.g. parallel file systems, etc.)

I/O STRATEGIES: SPOKESPERSON (SEQUENTIAL I/O)

 One process performs I/O

 Data Aggregation or Duplication

 Limited by single I/O process

 Easy to program

 Pattern does not scale

 Time increases linearly with amount of data

 Time increases with number of processes

 Care has to be taken when doing the all-to-one kind
of communication at scale

 Can be used for a dedicated I/O Server

I/O STRATEGIES: MULTIPLE WRITERS – MULTIPLE FILES

 All processes perform I/O to individual files

 Easy to program

 Pattern may not scale at large process counts

 Number of files creates bottleneck with

metadata operations

 Number of simultaneous disk accesses

creates contention for file system

resources

 Hard to read back from diff number of

processes

WHAT IS PARALLEL I/O?

 From user’s perspective:

➢ Multiple processes or threads of a parallel program accessing data concurrently

from a common file (shared)

 Results in a single file and we can get good performance

WHAT IS PARALLEL I/O? …

 From system perspective:

➢ Files striped across multiple I/O servers

➢ File system designed to perform well for concurrent writes and reads (parallel file

system)

PARALLEL I/O: SHARED FILE

 Each process performs I/O to a single file which

is shared

 The file access is ‘shared’ across all

processors involved

 E.g. MPI/IO functions represent ‘collective

operations‘

 Scalability and Performance

 Data layout within the shared file is crucial to

the performance

 High number of processors can still create

contention for file systems

I/O STRATEGIES: COLLECTIVE IO TO SINGLE OR MULTIPLE FILES

 Aggregation to a processor in a group

which processes a subset of the total

data

 Serializes I/O in group

 Group of processes perform parallel

I/O to a shared file

 Decreases number of processes

which access a shared file

PARALLEL I/O TOOLS FOR COMPUTATIONAL SCIENCE

 Application require more software than just a parallel file system

 Break up support into multiple layers with distinct roles:

➢ Parallel file system (PFS) maintains logical space, provides efficient access to data (e.g. PVFS, GPFS,

Lustre)

➢ Middleware layer deals with organizing access by many processes (e.g. MPI-IO, UPC-IO)

➢ High level I/O library maps app. abstractions to a structured, portable file format (e.g. HDF5, Parallel

netCDF)

PARALLEL FILE SYSTEM

Manage storage hardware

➢Present single view

➢Stripe files for performance

➢Focus on concurrent, independent access

➢Transparent : files accessed over the network can be treated the same
as files on local disk by programs and users

➢Publish an interface that middleware can use effectively

➢Scalable

I/O MIDDLEWARE

 Facilitate concurrent access by groups of processes

➢ Collective I/O

 Expose a generic interface

➢ Good building block for high-level libraries

 Match the underlying programming model (e.g. MPI)

 Efficiently map middleware operations into PFS ones

➢ Leverage any rich PFS access constructs

HIGH LEVEL LIBRARIES

 Examples: HDF-5, PnetCDF

 Provide an appropriate abstraction for domain

➢ Multidimensional datasets

➢ Typed variables

➢ Attributes

 Self-describing, structured file format

 Map to middleware interface

➢ Encourage collective I/O

 Provide optimizations that middleware cannot

➢ e.g. caching attributes of variables

PARALLEL FILE SYSTEMS AND PERFORMANCE

 Striping is the basic mechanism

used in parallel file system to

improve performance

➢ Striping refers to a technique where

one file is split into fixed-sized

blocks that are written to separate

disks in order to facilitate parallel

access

PARALLEL FILE SYSTEM ARCHITECTURES

 Two types of parallel file systems

 Shared Storage Architectures

➢Make blocks of disk array accessible by many clients

➢Clients operate on disk blocks

 Object Server Architectures

➢Distribute file data to multiple servers

➢Clients operate on regions of files or objects and Disk blocks are not

visible to clients

 Clients share access to disk blocks on real or virtual disks

➢ Directly via Fibre-Channel SAN, iSCSI, AT over Ethernet

➢ Indirectly via storage servers

o e.g. Virtual Shared Disk, Network Shared Disk

o May expose devices directly, or pool them into a larger whole

 Lock server coordinates shared access to blocks

➢ May be a distributed service to reduce contention

SHARED STORAGE ARCHITECTURES

OBJECT SERVER ARCHITECTURES

 Clients share access to files or objects

 Servers are “smart”

➢ Understand something about the structure of data on storage

➢ I/O servers (IOS) manage local storage allocation

o Map client accesses into local storage operations

 Metadata server (MDS) stores directory and file metadata

➢ Often a single metadata server stores all metadata for file
system

 Locking is often required for consistency of data and metadata

➢ Typically integrated into other servers

➢ Atomic metadata operations can eliminate need for metadata
locking

REDUNDANCY WITH OBJECT SERVER

 Data may be stored on multiple servers for tolerance of server failure

➢ Orchestrated either by client or servers

 Servers may have access to other server’s data

➢ Take over when a server fails

 In both cases, each server is primarily responsible only for its own data

LUSTRE FILE SYSTEM OVERVIEW

 An open-source distributed, parallel file system

 Three server roles

 Metadata Server (MDS)

 Object Storage Server (OSS)

 Management Server (MGS)

 Client

 No file system data locally accessible (excluding cache)

 Designed for scalability, high-performance, and high-availability

 Lustre runs on Linux-based operating systems and employs a client-server network
architecture

LUSTRE COMPONENTS

 Management Server (MGS)

 Communicates over a network

 Provides services related to file system configuration information

 Uses locally attached storage MGT (management service storage

target) to store configuration data

 /mnt/lustre (Lustre file system at SERC) has one MGS and one

MGT

LUSTRE COMPONENTS …

 Metadata Server (MDS)

 Communicates over a network

 Provides services related to file system metadata such as directory contents, file names, attributes, and file

layout

 Uses locally attached storage to store metadata information

 Metadata Target (MDT)

 An MDS has one or more MDTs

 /mnt/lustre has one MDS and one MDT:

crayadm@login1:~> lfs df /mnt/lustre/

UUID 1K-blocks Used Available Use% Mounted on

lustre-MDT0000_UUID 878145980 54298136 765294708 7% /mnt/lustre[MDT:0]

LUSTRE COMPONENTS …

 Object Storage Server (OSS)

 Communicates over a network

 Provides file data services (objects)

 Uses locally attached storage to store file data

 Object Storage Metadata Target (OST)

 An OSS can have one or more OSTs

 /mnt/lustre has 96 OSTs on 16 OSSes (6 OSTs per OSS)

crayadm@login1:~> lfs df /mnt/lustre/ | grep OST

lustre-OST0000_UUID 22935567680 12488481240 9299530652 57% /mnt/lustre[OST:0]

lustre-OST0001_UUID 22935567680 11053373400 10734551704 51% /mnt/lustre[OST:1]

LUSTRE ARCHITECTURE ON SAHASRAT AT SERC (CRAY XC-40)

OPENING A FILE

LUSTRE AND HIGH AVAILABILITY

 Each Lustre file system comprises, at a minimum:

 1 Management service (MGS), with corresponding Management Target (MGT) storage

 1 or more Metadata service (MDS) with Metadata Target (MDT) storage

 1 or more Object storage service (OSS), with Object Storage Target (OST) storage

 For High Availability, the minimum working configuration is:

 2 Metadata servers, running MGS and MDS in failover configuration

 MGS service on one node, MDS service on the other node

 Shared storage for the MGT and MDT

 2 Object storage servers, running multiple OSTs in failover configuration

 Shared storage for the OSTs

 All OSTs evenly balanced across the OSS servers

LUSTRE AND HIGH AVAILABILITY

 Every major enterprise operating system offers a high-availability cluster

software framework

 Red Hat Enterprise Linux (RHEL) makes use of PCS

(Pacemaker/Corosync Configuration System)

 SuSE Linux Enterprise Server (SLES) has CRMSH (Cluster Resource

Management Shell)

 Both PCS and CRMSH are open-source applications

SUMMARY

 Large-scale data-intensive supercomputing relies on parallel file systems, such as

Lustre, GPFS, PVFS etc. for high-performance I/O (Huaiming Song et al. 2011)

 I/O performance is a critical aspect of data-intensive scientific computing (Glenn K.

Lockwood et al., 2018)

 Parallel I/O is one technique used to access data on disk simultaneously from

different application processes to maximize bandwidth and speed things up (The

HDF Group)

 Parallel I/O is a subset of parallel computing that performs multiple input/output

operations simultaneously

ONLINE RESOURCES

 Introduction to Lustre: http://wiki.lustre.org/Introduction_to_Lustre

 Introduction to Lustre* Architecture: http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf

 The NetCDF Tutorial: http://www.unidata.ucar.edu/software/netcdf/docs/netcdftutorial.pdf

 Introduction to HDF5: http://ww.hdfgroup.org/HDF5/doc/H5.intro.html

 The HDF group: https://www.hdfgroup.org/2015/04/parallel-io-why-how-and-where-to-hdf5/

 Parallel I/O Techniques and Performance Optimization:

https://www.nics.tennessee.edu/sites/www.nics.tennessee.edu/files/pdf/Lonnie.pdf

 Parallel I/O in Practice: http://www.eecs.ucf.edu/~jwang/Teaching/EEL6760-f13/M02.tutorial.pdf

 Parallel file system: https://searchstorage.techtarget.com/definition/parallel-file-system

 Introduction to Parallel I/O: https://www.olcf.ornl.gov/wp-content/uploads/2011/10/Fall_IO.pdf

http://wiki.lustre.org/Introduction_to_Lustre
http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf
http://www.unidata.ucar.edu/software/netcdf/docs/netcdftutorial.pdf
http://www.hdfgroup.org/HDF5/doc/H5.intro.html
https://www.hdfgroup.org/2015/04/parallel-io-why-how-and-where-to-hdf5/
https://www.nics.tennessee.edu/sites/www.nics.tennessee.edu/files/pdf/Lonnie.pdf
http://www.eecs.ucf.edu/~jwang/Teaching/EEL6760-f13/M02.tutorial.pdf
https://searchstorage.techtarget.com/definition/parallel-file-system
https://www.olcf.ornl.gov/wp-content/uploads/2011/10/Fall_IO.pdf

ONLINE RESOURCES …

 Parallel File Systems: http://www.cs.iit.edu/~iraicu/teaching/CS554-F13/lecture17-pfs-sam-lang.pdf

 Parallel I/O and MPI-IO: http://www.training.prace-ri.eu/uploads/tx_pracetmo/pio1.pdf

 Overview of Luster File System and I/O strategies: http://www.serc.iisc.ac.in/serc_web/wp-

content/uploads/2018/01/SERC_IO_Workshop_Day1.pdf

 LUSTRE OVERVIEW: https://indico.fnal.gov/event/2538/session/27/contribution/17/material/slides/1.pdf

 Advanced MPI Techniques: http://morrisriedel.de/wp-content/uploads/2018/03/HPC-Lecture-4-HPC-

Advanced-MPI-Techniques-Public.pdf

 Architecture of a Next-Generation Parallel File System:

https://events.static.linuxfound.org/images/stories/pdf/lfcs2012_wilson.pdf

 High Level Introduction to HDF5: https://support.hdfgroup.org/HDF5/Tutor/HDF5Intro.pdf

http://www.cs.iit.edu/~iraicu/teaching/CS554-F13/lecture17-pfs-sam-lang.pdf
http://www.training.prace-ri.eu/uploads/tx_pracetmo/pio1.pdf
http://www.serc.iisc.ac.in/serc_web/wp-content/uploads/2018/01/SERC_IO_Workshop_Day1.pdf
https://indico.fnal.gov/event/2538/session/27/contribution/17/material/slides/1.pdf
http://morrisriedel.de/wp-content/uploads/2018/03/HPC-Lecture-4-HPC-Advanced-MPI-Techniques-Public.pdf
https://events.static.linuxfound.org/images/stories/pdf/lfcs2012_wilson.pdf
https://support.hdfgroup.org/HDF5/Tutor/HDF5Intro.pdf

Thank you

