PARALLEL FILE SYSTEMS

Filbert Minj
Storage Team @SERC,
Indian Institute of Science

filbert@iisc.ac.in

OUTLINE OF THE CONTENTS

= Simple File Systems

® Distributed File Systems

® Parallel File Systems

m Storage Device

" What is Parallel 1/0O?

= Parallel I/O Tools

® Parallel File System Architectures
® [ustre Overview

= Summary

m References

FILE SYSTEMS

= File Systems have two key roll
» Organizing and maintaining the named space
o Directory hierarchy and file names that let us find things
» Storing contents of files
o Providing an interface through which we can read and write data
® [ocal file systems are used by a single operating system instance (client) with direct access to the disk

» E.g NTFS, ext4 on laptop

= Distributed file systems provide access to one or more clients who might not have direct access to
the disk

> e.g. NFS AFS, etc.

DISTRIBUTED FILE SYSTEM (DFS)

= Distributed File System (DFS) is a method of storing
and accessing files based in a client/server - N

architecture / \

= |n a distributed file system, one or more central / \ %
servers store files that can be accessed, with proper / @
authorization rights, by any number of remote clients &) \

P

/

in the network

m Example: Network File System (NFS)

]
‘.
1 ° Mr

® Distributed file systems can be used by parallel
programs, but they have significant disadvantages: \

® The network bandwidth of the server system is a

limiting factor on performance \ >

® To retain UNIX-style file consistency, the DFS software
must implement some form of locking which has
significant performance implications

PARALLEL FILE SYSTEMS

m Store application data persistently

® usually extremely large datasets that can’t fit in memory
® Provide global shared namespace (files, directories)
® Designed for parallelism

® concurrent (often coordinated) access from many clients
® Designed for high-performance

® operate over high-speed networks (IB, Myrinet, Portals)

® optimized I/O path for maximum bandwidth

COMMON USE CASES OF PARALLEL FILE SYSTEMS

m Parallel file systems historically have targeted high-performance
computing (HPC) environments that require access to large
files, massive quantities of data or simultaneous access from
multiple compute servers

m Applications include climate modeling, computer-aided
engineering, exploratory data analysis, financial modeling,
genomic sequencing, machine learning and artificial intelligence,
seismic processing, video editing and visual effects rendering

EXAMPLES OF PARALLEL FILE SYSTEMS

® General Parallel File System (GPFS) / IBM Spectrum Scale
> Developed by IBM
» Available for AIX and Linux
= Lustre
> Developed by Cluster File Systems, Inc. (bought by Sun)
» Movement towards OpenLustre

» Name is amalgam of Linux and clusters

= Parallel Virtual File System (PVFS)

» Platform for 1/O research and production file system for cluster of workstations

> Developed by Clemson University and Argonne National Laboratory

STORAGE DEVICE

= Single hard drive

m File system resides entirely on a single disk

= RAID (Redundant Array of Independent Disks)
® A logical disk built of many physical disks

= A stripe of data is stored across multiple disks
® Fach chunk is placed on a single disk

= Several different levels of RAID with different protection and performance
characteristics

= RAID-6 (8+2) is typically used for distributed, parallel storage

STORAGE DEVICE

= RAID-6 (N+M)

» Erasure encoding allows up to
M devices to fail without data
loss

> Trade off capacity/performance
with data protection

» Diagram is a 3+2 RAID-6
configuration

T Ty Ty Ty T
AL 4 NAZ) NA S N g A
\BL 4 NB2 4 B g N Ba g B3
NWLSE S5 I NG I NGRS I NWLCP S I NWoE
| Dp (| Dq | D1 | D2 | D3 |
DiskO Diskl Disk2 Disk3 Disk4

CHARACTERISTICS OF PARALLEL FILE SYSTEMS

" Three Key Characteristics:

» Various hardware I/O data storage resources

High-Level I/O Library

» Multiple connections between these hardware devices and

Parallel 1/O (MPI I/O)

compute resources

Parallel File System

» High-performance, concurrent access to these I/O

Storage Hardware

resources

= Multiple physical /O devices and paths ensure
sufficient bandwidth for the high performance
desired

= Parallel I/O systems include both the hardware and
number of layers of software

PARALLEL I/O TECHNIQUES — MOTIVATION

® Parallel applications that emphasize on the importance of data
= Not all data-intensive or data-driven applications are ‘big data’ (volume)
= HPC simulations of the real world that generates very large volumes of data

® Synthesize new information from data that is maintained in distributed (partly
unique) repositories and archives

= Distributed across different organizations and computers/storages
m Data analysis applications that are ‘l/O bound’
= |/O dominates the overall execution time

® |/O performance crucial for overall performance

WHAT MEANS 1I/O?

® |nput/Output(l/O) stands for data transfer/migration from memory to disk (or vice
versa)

® |mportant (time-sensitive) factors within HPC environments
» Characteristics of the computational system (e.g. dedicated I/O nodes)

» Characteristics of the underlying filesystem (e.g. parallel file systems, etc.)

Communication network

/O STRATEGIES: SPOKESPERSON (SEQUENTIAL 1/O)

® One process performs I/O

m Data Aggregation or Duplication

= |imited by single I/O process

Easy to program

Pattern does not scale

= Time increases linearly with amount of data
= Time increases with number of processes

Care has to be taken when doing the all-to-one kind
of communication at scale

Can be used for a dedicated I/O Server

W

Bottlenecks

/O STRATEGIES: MULTIPLE WRITERS - MULTIPLE FILES

m All processes perform |/O to individual files
= Easy to program
® Pattern may not scale at large process counts

m Number of files creates bottleneck with
metadata operations

®m Number of simultaneous disk accesses
creates contention for file system
resources

m Hard to read back from diff number of
processes

WHAT IS PARALLEL 1/O?

® From user’s perspective:

> Multiple processes or threads of a parallel program accessing data concurrently
from a common file (shared)

m Results in a single file and we can get good performance

WHAT IS PARALLEL 1/O? ...

= From system perspective:
> Files striped across multiple I/O servers

> File system designed to perform well for concurrent writes and reads (parallel file

system)
% Compute Nodes

Interconnect

[/O nodes

PARALLEL I/O: SHARED FILE

® Each process performs |/O to a single file which
is shared

m The file access is ‘shared’ across all
processors involved

m E.g. MPI/IO functions represent ‘collective
operations’

® Scalability and Performance

® Data layout within the shared file is crucial to
the performance

= High number of processors can still create
contention for file systems

/O STRATEGIES: COLLECTIVE IO TO SINGLE OR MULTIPLE FILES

m Aggregation to a processor in a group
which processes a subset of the total
data

m Serializes /O in group

= Group of processes perform parallel
l/O to a shared file

® Decreases number of processes
which access a shared file

PARALLEL I/O TOOLS FOR COMPUTATIONAL SCIENCE

Application
Application High-level I/O Library

Parallel File System ‘ I/O Middleware (MPI-I0)
I/0O Hardware Parallel File System
I/O Hardware

= Application require more software than just a parallel file system

= Break up support into multiple layers with distinct roles:

> Parallel file system (PFS) maintains logical space, provides efficient access to data (e.g. PVFS, GPFS,
Lustre)

» Middleware layer deals with organizing access by many processes (e.g. MPI-IO, UPC-10O)

> High level I/O library maps app. abstractions to a structured, portable file format (e.g. HDF5, Parallel
netCDF)

PARALLEL FILE SYSTEM

= Manage storage hardware
: :

> Present single view

> Stripe files for performance

» Focus on concurrent, independent access

> Transparent : files accessed over the network can be treated the same
as files on local disk by programs and users

» Publish an interface that middleware can use effectively
> Scalable

/O MIDDLEWARE

m Facilitate concurrent access by groups of processes

> Collective I/O

= Expose a generic interface
> Good building block for high-level libraries High-level 1/O Library
I/0 Middleware (MPI-IO)
® Match the underlying programming model (e.g. MPI) Parallel File System

= Efficiently map middleware operations into PFS ones I/O Hardware

> Leverage any rich PFS access constructs

HIGH LEVEL LIBRARIES

m Examples: HDF-5, PnetCDF
= Provide an appropriate abstraction for domain
» Multidimensional datasets
> Typed variables
> Attributes
m Self-describing, structured file format
= Map to middleware interface
» Encourage collective I/O
= Provide optimizations that middleware cannot

> e.g.caching attributes of variables

Application
High-level 1I/O Library
I/0O Middleware (MPI-IO)
Parallel File System
I/O Hardware

PARALLEL FILE SYSTEMS AND PERFORMANCE

® Striping is the basic mechanism

i/iq—yg used in parallel file system to
/{qu—pg improve performance
=)

-(,/’»iﬁﬁ} > Striping refers to a technique where

) () one file is split into fixed-sized

%ﬁg blocks that are written to separate

disks in order to facilitate parallel
Single logical file File automatically access
e.g. lwork/example divided into stripes ﬁ@

Stripes are written/read
from acrass multiple drives

PARALLEL FILE SYSTEM ARCHITECTURES

= Two types of parallel file systems

® Shared Storage Architectures
» Make blocks of disk array accessible by many clients
> Clients operate on disk blocks

® Object Server Architectures
> Distribute file data to multiple servers

» Clients operate on regions of files or objects and Disk blocks are not
visible to clients

SHARED STORAGE ARCHITECTURES

Storage Area Network

7 T N
B

Shared storage using separate SAN Pooled storage using existing interconnect

I—

m Clients share access to disk blocks on real or virtual disks
» Directly via Fibre-Channel SAN, iSCSI, AT over Ethernet
» Indirectly via storage servers
o e.g.Virtual Shared Disk, Network Shared Disk

o May expose devices directly, or pool them into a larger whole
m |ock server coordinates shared access to blocks

» May be a distributed service to reduce contention

OBJECT SERVER ARCHITECTURES

m Clients share access to files or objects
m Servers are “smart”
» Understand something about the structure of data on storage
» 1/O servers (IOS) manage local storage allocation
o Map client accesses into local storage operations
m Metadata server (MDS) stores directory and file metadata

» Often a single metadata server stores all metadata for file
system

® Locking is often required for consistency of data and metadata
> Typically integrated into other servers

> Atomic metadata operations can eliminate need for metadata
locking

0S,

0S,

MDS

REDUNDANCY WITH OBJECT SERVER

10S,

10s,][10s,

1r><::1|:

RAID RAID RAID

==[==][==

Redundancy with replicated local storage Redundant storage connectivity for failover

= Data may be stored on multiple servers for tolerance of server failure

» Orchestrated either by client or servers

m Servers may have access to other server’s data

> Take over when a server fails

" |n both cases, each server is primarily responsible only for its own data

LUSTRE FILE SYSTEM OVERVIEW

An open-source distributed, parallel file system

Three server roles

® Metadata Server (MDS)

® Object Storage Server (OSS)

= Management Server (MGY)

Client

= No file system data locally accessible (excluding cache)
Designed for scalability, high-performance, and high-availability

Lustre runs on Linux-based operating systems and employs a client-server network
architecture

LUSTRE COMPONENTS

® Management Server (MGS)
= Communicates over a network
® Provides services related to file system configuration information

m Uses locally attached storage MGT (management service storage
target) to store configuration data

® /mnt/lustre (Lustre file system at SERC) has one MGS and one
MGT

LUSTRE COMPONENTS ...

= Metadata Server (MDS)
= Communicates over a network

® Provides services related to file system metadata such as directory contents, file names, attributes, and file
layout

m Uses locally attached storage to store metadata information
m Metadata Target (MDT)
= An MDS has one or more MDTs

® /mnt/lustre has one MDS and one MDT:
crayadm@Iogin |:~> Ifs df /mnt/lustre/
UuID | K-blocks Used Auvailable Use% Mounted on
lustre-MDTO0000_UUID 878145980 54298136 765294708 7% /mnt/lustre[MDT:0]

LUSTRE COMPONENTS ...

= Object Storage Server (OSS)
= Communicates over a network
® Provides file data services (objects)
m Uses locally attached storage to store file data
® Object Storage Metadata Target (OST)
= An OSS can have one or more OSTs
= /mnt/lustre has 96 OSTs on 16 OSSes (6 OSTs per OSS)
crayadm@login | :~> Ifs df /mnt/lustre/ | grep OST
lustre-OST0000_UUID 22935567680 12488481240 9299530652 57% /mnt/lustre[OST:0]
lustre-OSTO0001 _UUID 22935567680 11053373400 10734551704 51% /mnt/lustre[OST: 1]

LUSTRE ARCHITECTURE ON SAHASRAT AT SERC (CRAY XC-40)

Lustre Lustre Lustre Lustre Lustre
Client Client Client Client Client

1

16 OSSes,

High Performance Computing Interconnect (Aries) 96 OSTs

Metadata
Server

Object Storage Object Storage Object Storage Object Storage Object Storage

Server (OSS) + Server (OSS) + Server (OSS) + Server (OSS) +

Object Storage j Object Storags Object Storage
Target (OST) Target (OST)

1
I hame 1

permissions !
| attributes !
\ location !

OPENING A FILE

The client sends a request to the MDS to

Open Metadata opening/acquiring information about the file
Lustre Server
Client (MDS) The MDS then passes back a list of OSTs
OSTs N— 1+ Foran existing file, these contain the
| permissions : data stri PES
: attributes |+ For a new files, these typically contain a
location randomly assigned list of OSTs where
data is to be stored
Read/write Once a file has been opened no

Lustre £ further communication is required

between the client and the MDS

Client

All transfer is directly between the
assigned OSTs and the client

LUSTRE AND HIGH AVAILABILITY

= Each Lustre file system comprises, at a minimum:
® | Management service (MGS), with corresponding Management Target (MGT) storage
® | or more Metadata service (MDS) with Metadata Target (MDT) storage
® | or more Object storage service (OSS), with Object Storage Target (OST) storage
= For High Availability, the minimum working configuration is:
m 72 Metadata servers, running MGS and MDS in failover configuration
= MGS service on one node, MDS service on the other node
m Shared storage for the MGT and MDT
m 2 Object storage servers, running multiple OSTs in failover configuration
m Shared storage for the OSTs

m All OSTs evenly balanced across the OSS servers

LUSTRE AND HIGH AVAILABILITY

= Every major enterprise operating system offers a high-availability cluster
software framework

m Red Hat Enterprise Linux (RHEL) makes use of PCS
(Pacemaker/Corosync Configuration System)

® SuSE Linux Enterprise Server (SLES) has CRMSH (Cluster Resource
Management Shell)

m Both PCS and CRMSH are open-source applications

SUMMARY

m | arge-scale data-intensive supercomputing relies on parallel file systems, such as
Lustre, GPFS, PVFS etc. for high-performance /O (Huaiming Song et al. 201 |)

® |/O performance is a critical aspect of data-intensive scientific computing (Glenn K.
Lockwood et al.,, 2018)

® Parallel I/O is one technique used to access data on disk simultaneously from
different application processes to maximize bandwidth and speed things up (The

HDF Group)

= Parallel I/O is a subset of parallel computing that performs multiple input/output
operations simultaneously

Introduction to Lustre: http://wiki.lustre.org/Introduction_to_Lustre

Introduction to Lustre™® Architecture: http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf

The NetCDF Tutorial: http://www.unidata.ucar.edu/software/netcdf/docs/netcdftutorial.pdf

Introduction to HDF5: http://ww.hdfgroup.org/HDF5/doc/H5.intro.html

The HDF group: https://www.hdfgroup.org/2015/04/parallel-io-why-how-and-where-to-hdf5/

Parallel /O Techniques and Performance Optimization:
https://www.nics.tennessee.edu/sites/www.nics.tennessee.edu/files/pdf/Lonnie.pdf

Parallel I/O in Practice: http://www.eecs.ucf.edu/~jwang/Teaching/EEL6760-f| 3/M02.tutorial.pdf

Parallel file system: https://searchstorage.techtarget.com/definition/parallel-file-system

Introduction to Parallel I/O: https://www.olcf.ornl.gov/wp-content/uploads/201 |/10/Fall_1O.pdf

http://wiki.lustre.org/Introduction_to_Lustre
http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf
http://www.unidata.ucar.edu/software/netcdf/docs/netcdftutorial.pdf
http://www.hdfgroup.org/HDF5/doc/H5.intro.html
https://www.hdfgroup.org/2015/04/parallel-io-why-how-and-where-to-hdf5/
https://www.nics.tennessee.edu/sites/www.nics.tennessee.edu/files/pdf/Lonnie.pdf
http://www.eecs.ucf.edu/~jwang/Teaching/EEL6760-f13/M02.tutorial.pdf
https://searchstorage.techtarget.com/definition/parallel-file-system
https://www.olcf.ornl.gov/wp-content/uploads/2011/10/Fall_IO.pdf

Parallel File Systems: http://www.cs.iit.edu/~iraicu/teaching/CS554-F | 3/lecture | 7-pfs-sam-lang.pdf

Parallel I/O and MPI-1O: http://www.training.prace-ri.eu/uploads/tx_pracetmo/pio | .pdf

Overview of Luster File System and I/O strategies: http://www.serc.iisc.ac.in/serc_web/wp-
content/uploads/2018/01/SERC_IO_Workshop_Day |.pdf

LUSTRE OVERVIEW: https://indico.fnal.gov/event/2538/session/27/contribution/| 7/material/slides/ | .pdf

Advanced MPI Techniques: http://morrisriedel.de/wp-content/uploads/2018/03/HPC-Lecture-4-HPC-
Advanced-MPI-Techniques-Public.pdf

Architecture of a Next-Generation Parallel File System:
https://events.static.linuxfound.org/images/stories/pdf/lfcs2012_wilson.pdf

High Level Introduction to HDF5: https://support.hdfgroup.org/HDF5/Tutor/HDF5Intro.pdf

http://www.cs.iit.edu/~iraicu/teaching/CS554-F13/lecture17-pfs-sam-lang.pdf
http://www.training.prace-ri.eu/uploads/tx_pracetmo/pio1.pdf
http://www.serc.iisc.ac.in/serc_web/wp-content/uploads/2018/01/SERC_IO_Workshop_Day1.pdf
https://indico.fnal.gov/event/2538/session/27/contribution/17/material/slides/1.pdf
http://morrisriedel.de/wp-content/uploads/2018/03/HPC-Lecture-4-HPC-Advanced-MPI-Techniques-Public.pdf
https://events.static.linuxfound.org/images/stories/pdf/lfcs2012_wilson.pdf
https://support.hdfgroup.org/HDF5/Tutor/HDF5Intro.pdf

Thank you

