
HPC Course - January 2020

OPENMP Hands on Exercises

Hello World [folder:OMPHelloWorld]
Openmp Schedules [folder:OMPSchedules]
#### Data Scoping (private firstprivate..) [folder:OMPDataScoping]
Compute PI [folder: OMPComputePI]
Fibonacci series computation [folder:OMPFibonacci]
Matrix Multiplication [folder:OMPMatrixMult]
Mandelbrot set computation [folder:OMPmandelbrot]

1. Copy Sample Code for OPEMP Lab Session

Before starting the course, the example programs and jobscripts used in this tutorial must be copied to your
home directory, so that you can work with your personal copy. All examples are present in the
“/home/proj/16/secpraba/2020JanOPENMP” directory. Copy folder and change permissions to read write and
execute all files in the folder that you created.

a. Create a folder/directory with your name. Try to make it as unique as possible.

    $mkdir <yourname>[Number]

b. Copy all code for openmp lab sessions into your folder that you just created

    $scp -r /home/proj/16/secpraba/2020JanOPENMP /<workingdirectory>/<yourname>[Number]

#

Exercise 3 - Variable scoping in OpenMP

The entire exercise consisting of the following functions is coded in the file named Ex3DataScoping.cpp or
Ex3DataScoping.f95 in folder

View the cpp or f95 file



    $cd /home/proj/16/secpraba/2019SepOPENMP/OMPSchedules
    $cd <yourworkingdirectory>/OMPSchedules
    $ls
    $vi Ex3DataScoping.cpp
    OR
    $vi Ex3DataScoping.f95

Variable scoping Part 1:

Example of a shared variable. In a parallel region, any data declared outside it will be shared: any thread using a
variable x will access the same memory location associated with that variable.

void exampleSharedVar()
{

  int x = 5;
  printf("X is a shared varible for all threads \n");
  printf("X is initialised to %d before the #pragma omp parallel region \n", x);
  #pragma omp parallel
  {
    x = x+1;
    printf("X is updated by thread %d to value %d \n", omp_get_thread_num(), x);

  }
  printf("Value of X at the end of the parallel region is: %d \n", x);

  x = 0;
  printf("X is reset to %d before the #pragma omp parallel for region \n");
  #pragma omp parallel for
  for (int i = 0; i < 10; i++)
  {
    x = x+1;
    printf("X is updated by thread %d to value %d \n", omp_get_thread_num(), x);

  }
  printf("Value of X at the end of the parallel for region is: %d \n", x);

}

Compile the program using the "make" command

Compile the program using CC for C++ and cc for c code. Please note that the default cray enviroment defines
the actual compilers that will be used with these commands. These could be the gnu compilers or intel
compilers depending upon the module loaded in the enviroment.

$CC Ex2DataScoping.cpp -o Ex2DataScoping.out



Alternatively one could use the makefile provided in the folder.

$vi makefile
$make

DO NOT RUN THE EXECUTABLE IN INTERACTIVE MODE!!!

Edit the jobscript "jobscriptCray24Threads"

$vi jobscriptCray24Threads
cd <CURRENT WORKING DIRECTORY THAT HAS THE EXECUTABLE THAT YOU JUST COMPILED>
aprun -j 1 -n 1 -N 1 -d $OMP_NUM_THREADS ./Ex2DataScoping.out
Make sure that the executable and current working directory are updated to files that you are working on.

Submit a job

$qsub <jobscriptname>
$qstat -u <username>

View the ouput

$vi <jobname>.o<jobid>
$vi <jobname>.e<jobid>

Understanding the output

Discuss the output

#

Variable Scoping Part 2:

Example of a private variable



void examplePrivateVar()
{
  int x = 5;
  printf("X is a Private varible for all threads \n");
  printf("X is not explicitly initialised in the parallel region. Could result in bad data/garbage \n");
  printf("X is initialised to %d before the #pragma omp parallel region \n", x);
  #pragma omp parallel private(x)
  {
    x = x+1;
    printf("X is updated by thread %d to value %d \n", omp_get_thread_num(), x);

  }
  printf("Value of X at the end of the parallel region is: %d \n", x);

  x = 0;
  printf("X is reset to %d before the #pragma omp parallel for region \n");
  printf("X is not explicitly initialised in the parallel region. Could result in bad data/garbage \n");
  #pragma omp parallel for private(x)
  for (int i = 0; i < 10; i++)
  {
    x = x+1;
    printf("X is updated by thread %d to value %d \n", omp_get_thread_num(), x);

  }
  printf("Value of X at the end of the parallel for region is: %d \n", x);

}

Compile the program using the "make" command

Compile the program using CC for C++ and cc for c code. Please note that the default cray enviroment defines
the actual compilers that will be used with these commands. These could be the gnu compilers or intel
compilers depending upon the module loaded in the enviroment.

$CC Ex2Schedules.cpp -o Ex2Schedules.out

Alternatively one could use the makefile provided in the folder.

$vi makefile
$make

DO NOT RUN THE EXECUTABLE IN INTERACTIVE MODE!!!

Edit the jobscript "jobscriptCray24Threads"



$vi jobscriptCray24Threads
cd <CURRENT WORKING DIRECTORY THAT HAS THE EXECUTABLE THAT YOU JUST COMPILED>
aprun -j 1 -n 1 -N 1 -d $OMP_NUM_THREADS ./Ex3DataScoping.out
Make sure that the executable and current working directory are updated to files that you are working on.

Submit a job

$qsub <jobscriptname>
$qstat -u <username>

View the ouput

$vi <jobname>.o<jobid>
$vi <jobname>.e<jobid>

Understanding the output

Discuss the output

#

OMPEMP Variable Scoping Part 3:

First Private private variables are completely separate from any variables by the same name in the surrounding
scope. However, there are two cases where you may want some storage association between a private
variable and a global counterpart. First of all, private variables are created with an undefined value. You can
force their initialization with clause{firstprivate}. In the following function variable t behaves like a private
variable, except that it is initialized to the outside value.

void firstPrivate()
{
  int t=2;
#pragma omp parallel firstprivate(t)
  {
    t += omp_get_thread_num();
    printf("t is updated by thread %d to value %d \n", omp_get_thread_num(), t);
  }
  printf("Value of t after the parallel region is %d \n", t);
}

Compile the program using the "make" command

Compile the program using CC for C++ and cc for c code. Please note that the default cray enviroment defines
the actual compilers that will be used with these commands. These could be the gnu compilers or intel



compilers depending upon the module loaded in the enviroment.

$CC Ex3DataScoping.cpp -o Ex3DataScoping.out

Alternatively one could use the makefile provided in the folder.

$vi makefile
$make

DO NOT RUN THE EXECUTABLE IN INTERACTIVE MODE!!!

Edit the jobscript "jobscriptCray24Threads"

$vi jobscriptCray24Threads
cd <CURRENT WORKING DIRECTORY THAT HAS THE EXECUTABLE THAT YOU JUST COMPILED>
aprun -j 1 -n 1 -N 1 -d $OMP_NUM_THREADS ./Ex2Schedules.out
Make sure that the executable and current working directory are updated to files that you are working on.

Submit a job

$qsub <jobscriptname>
$qstat -u <username>

View the ouput

$vi <jobname>.o<jobid>
$vi <jobname>.e<jobid>

Understanding the output

Discuss the output

#

OMPEMP Variable Scoping Part 4:

Last Private Secondly, you may want a private value to be preserved to the environment outside the parallel
region. This really only makes sense in one case, where you preserve a private variable from the last iteration
of a parallel loop, or the last section in an sections construct. This is done with clause{lastprivate}: NOTE:
lastprivate works only only a omp parallel for OR omp sections Also note that the value is from the LAST
iteration of the for loop, NOT from the thread that runs last



void lastPrivate()
{

  int t=2;
  int m= 0;
#pragma omp parallel for firstprivate(t) lastprivate(m)
  for (int i = 0; i < 10; i++)
  {
    t += omp_get_thread_num();
    m = i*i;
    printf("t is updated by thread %d to value %d \n", omp_get_thread_num(), t);
  }
  printf("Value of t after the parallel region is %d \n", t);
  printf("Value of m after the parallel region is %d \n", m);

#pragma omp parallel for shared(t) lastprivate(m)
  for (int i = 0; i < 10; i++)
  {
    t = i*i;
    m = i*i;
    printf("t is updated by thread %d to value %d \n", omp_get_thread_num(), t);
    printf("m is updated by thread %d to value %d \n", omp_get_thread_num(), m);
  }
  printf("Value of t after the parallel region is %d \n", t);
  printf("Value of m after the parallel region is %d \n", m);

}

Compile the program using the "make" command

Compile the program using CC for C++ and cc for c code. Please note that the default cray enviroment defines
the actual compilers that will be used with these commands. These could be the gnu compilers or intel
compilers depending upon the module loaded in the enviroment.

$CC Ex3DataScoping.cpp -o Ex3DataScoping.out

Alternatively one could use the makefile provided in the folder.

$vi makefile
$make

DO NOT RUN THE EXECUTABLE IN INTERACTIVE MODE!!!

Edit the jobscript "jobscriptCray24Threads"



$vi jobscriptCray24Threads
cd <CURRENT WORKING DIRECTORY THAT HAS THE EXECUTABLE THAT YOU JUST COMPILED>
aprun -j 1 -n 1 -N 1 -d $OMP_NUM_THREADS ./Ex2Schedules.out
Make sure that the executable and current working directory are updated to files that you are working on.

Submit a job

$qsub <jobscriptname>
$qstat -u <username>

View the ouput

$vi <jobname>.o<jobid>
$vi <jobname>.e<jobid>

Understanding the output

Discuss the output


	HPC Course - January 2020
	OPENMP Hands on Exercises
	1. Copy Sample Code for OPEMP Lab Session
	a. Create a folder/directory with your name. Try to make it as unique as possible.
	b. Copy all code for openmp lab sessions into your folder that you just created
	#

	Exercise 3 - Variable scoping in OpenMP
	View the cpp or f95 file
	Variable scoping Part 1:
	Compile the program using the "make" command
	DO NOT RUN THE EXECUTABLE IN INTERACTIVE MODE!!!
	Edit the jobscript "jobscriptCray24Threads"
	Submit a job
	View the ouput
	Understanding the output
	#

	Variable Scoping Part 2:
	Compile the program using the "make" command
	DO NOT RUN THE EXECUTABLE IN INTERACTIVE MODE!!!
	Edit the jobscript "jobscriptCray24Threads"
	Submit a job
	View the ouput
	Understanding the output
	#

	OMPEMP Variable Scoping Part 3:
	Compile the program using the "make" command
	DO NOT RUN THE EXECUTABLE IN INTERACTIVE MODE!!!
	Edit the jobscript "jobscriptCray24Threads"
	Submit a job
	View the ouput
	Understanding the output
	#

	OMPEMP Variable Scoping Part 4:
	Compile the program using the "make" command
	DO NOT RUN THE EXECUTABLE IN INTERACTIVE MODE!!!
	Edit the jobscript "jobscriptCray24Threads"
	Submit a job
	View the ouput
	Understanding the output



