
Process Virtual Machines

Motivation for Process VMs

• Systems VMs need skill and planning for setup
and administration. Useful in large multi-
organizational or public cloud setups.

• Process VMs are easy to launch and simple
enough to cater to most organizational
development and deployment groups.

• Native support for same OS-ISA application base
(containers as an example).

• Different OS-ISA combination also easily
supported by using emulation and/or binary
translation (cygwin?).

11-03-2020 Process Virtual Machines 2

Process Virtual Machine Implementation
Different OS-ISA combination

Loader

11-03-2020 Process Virtual Machines 3

Structure of the Process VM

• Loader
– load guest code and data
– load runtime code

• Initialization
– allocate memory
– establish signal handlers

• Emulation engine
– interpreter and/or

translator

• Code cache manager
– manage translated guest

code
– flush outdated translations

• Profile database
– hold program profile info.
– block/edge/invocation

profile

• OS call emulator
– translate OS calls
– translate OS responses

• Exception emulator
– handle signals
– form precise state

• Side tables
– structures used during

emulation

11-03-2020 Process Virtual Machines 4

Compatibility Aspects
• How accurately does the emulation of the guest’s functional

behaviour compare with its behaviour on its native platform
– two systems are compatible if, in response to the same sequence of

input values, they give the same sequence of output values

• Intrinsic compatibility
– precise behaviour i.e., behaviour inside VM equivalent to the one on

native platform
– Used and verified while generating the virtualization software
– difficult to achieve, this method is practically used by hardware

designers to ensure ISA compatibility

• Extrinsic compatibility
– accuracy within some well-defined constraints like specific compiler

requirements or logical resources required
• based on VM implementation, architecture/OS specifications, and external

guarantees or certificates
• some burden on the users to ensure that guarantees are met

– acceptable for most systems

11-03-2020 Process Virtual Machines 5

Verifying Compatibility

• Too complex to theoretically prove
– except in simple systems

• In practice
– use informal reasoning
– use test suites

• Sufficient conditions
– decompose compatibility into parts
– allows the reasoning process to be simplified

• Assume state of guest is 1 to 1 mapped to host
– but same “type” of state is not necessary

11-03-2020 Process Virtual Machines 6

Compatibility Framework

• The need for a framework
– rigorously proving that compatibility holds is hard

– allow to reason about compatibility issues

– decide when/where during program execution
should compatibility be guaranteed/verified

• Model of program execution
– machine state, defined by registers, memory, I/O,

etc.

– operations that change state

11-03-2020 Process Virtual Machines 7

Isomorphism Property

• Isomorphism is
having an equal
representation or
state between the
guest and host.

11-03-2020 Process Virtual Machines 8

Two-level State Management

• Managing (changes to) program state at two
levels
– user-managed state

• main memory, registers

• straightforward mapping between guest and host states

• operated on by user-level instructions

– OS-managed state
• disk contents, I/O state, networks

• operated via OS calls, traps, interrupts

• operations can affect user-level state as well

11-03-2020 Process Virtual Machines 9

Compatibility Verification

• Compatibility is
only verified at
points where
control is
transferred
between the user
code and OS
– establish one-to-

one mapping
between control
transfer points

– in both native
platform and VM

11-03-2020 Process Virtual Machines 10

Compatibility Validation

• Conditions for compatibility

– guest state should be equivalent to host state at

• control transfer from user instructions to OS

• control transfer from OS to user instructions

– all user-managed state must be compatible

– instruction-level equivalence not required

11-03-2020 Process Virtual Machines 11

Trap Compatibility
• If source traps, then target traps

– If target traps, then source would have trapped

– runtime can filter target traps, to remove false ones

• Page faults are special case
– page fault behaviour is non-deterministic w.r.t. user process

Source Target

.
r4 r6 + 1 R4 R6 + 1

r1 r2 + r3  trap R1 R4 + R5  remove dead assignment

r1 r4 + r5 R6 R1 * R7

r6 r1 * r7

.

11-03-2020 Process Virtual Machines 12

Register State Compatibility

• At the time of an exception is the register state
exactly as in the real machine?
– including dead register values?

.

R1 <- R2 + R3 R1 <- R2 + R3

R9 <- R1 + R5 re-schedule R6 <- R1 * R7 trap?

R6 <- R1 * R7 R9 <- R1 + R5

R3 <- R6 + 1 R3 <- R6 + 1

.

11-03-2020 Process Virtual Machines 13

Memory State Compatibility

• Memory state compatibility is maintained if, at the time
of a trap or interrupt, the contents of memory are exactly
the same in the translated target program as in the
original source program

Source Target

.

R7 R6 << 8 R7 R6 << 8

A: mem (R6) R1 B: mem (R7) R2

B: mem (R7) R2 A: mem (R6) R1protection fault?

.

11-03-2020 Process Virtual Machines 14

Memory Ordering Compatibility

• Maintain equivalent consistency model

– Important for multiprocessors

 A=Flag=0;

P1 P2

A = 1; while (Flag == 0);

Flag = 1; … = A;

Good refresher on Memory Consistency Models:
www.cs.pdx.edu/~walpole/class/cs510/spring2010/slides/4.ppt

11-03-2020 Process Virtual Machines 15

Undefined Architecture Cases

• Some (most?) ISAs have undefined cases
– example: self-modifying code with I-caches

– unless special actions are performed, result may be
undefined

• Different, undefined behavior is compatible behavior
– can be tricky

– what if undefined behavior is different from all existing
implementations?

– what if existing implementations do the “logical” thing?
• e.g., self-modifying code works as “expected”

11-03-2020 Process Virtual Machines 16

Constructing a Process VM

• Mapping of user-managed state
– held in registers

– held in memory

• Perform emulation (operations to transform
state)
– memory architecture emulation

– instruction emulation

– exception emulation

– OS emulation

11-03-2020 Process Virtual Machines 17

State Mapping

• Map user-managed
register & memory state
– guest data and code map

into host’s address space
– host address space

includes runtime data
and code

– guest state does not have
to be maintained in the
same type of resource

• Register mapping
– straight-forward
– depends on number of

guest and host registers

11-03-2020 Process Virtual Machines 18

Memory State Mapping

• Memory address space mapping

– map guest address space to host address space

– maintain protection requirements

• Methods – results in different performance
and flexibility levels

– software supported translation table

– direct translation

11-03-2020 Process Virtual Machines 19

Software Translation Tables

• VM software maintains
translation table
– map each guest memory

address to host address

– similar to hardware page
tables / TLBs

– used when all other
approaches fail

– provides most flexibility
and least performance

11-03-2020 Process Virtual Machines 20

Address Translation Tables

Initially, R1 holds source address
R30 holds base address of mapping table

srwi r29,r1,16 ;shift r1 right by 16
slwi r29,r29,2 ;convert to a byte address
lwzx r29,r29,r30 ;load block location in host memory
slwi r28,r1,16 ;shift left/right to zero out
srwi r28,r28,16 ;source block number
slwi r29,r29,16 ;shift up target block number
 or r29,r28,r29 ;form address
 lwz r2,0(r29) ;do load

11-03-2020 Process Virtual Machines 21

Direct Memory Translation
• Use underlying hardware

– guest memory allocated contiguous host space

– guest address space + runtime <= host address space

– minimal overhead, most performance

11-03-2020 Process Virtual Machines 22

Memory Compatibility - Summary

• Runtime + guest space <= host space

– direct memory translation

– can achieve performance and intrinsic compatibility

• Runtime + guest space > host space

– software translation

– will lose intrinsic compatibility, performance or both

• Guest space == host space

– happens often, same-ISA dynamic translation

– no room for runtime

• use software translation, extrinsic compatibility

11-03-2020 Process Virtual Machines 23

Memory Architecture Emulation

• Aspects of memory
architecture of the ABI

– Address space
structure: segmented
or flat

– Access privilege types:
N, R, W, E

– Protection/allocation
granularity: memory
block size that can be
allocated by the OS

11-03-2020 Process Virtual Machines 24

Guest Memory Protection

• Access restrictions placed on different regions of
memory.

• Can be achieved during software supported
translation
– slow and inefficient, but very flexible

• Host supported memory protection
– runtime sets access restrictions using OS system calls

– OS delivers signals to runtime on access violations

– protection faults reported to runtime

– requires host OS support

11-03-2020 Process Virtual Machines 25

Host OS Support

• Direct mechanism
– runtime sets protection

levels via system calls
(mprotect)

– protection faults trap
to handler in runtime
(SIGSEGV)

• Indirect mechanism
– mapping region of

memory to file with
access protections
(mmap)

VM’s Virtual
Address Space

Physical
Memory File

(VM Memory)

Indirect Mechanism

11-03-2020 Process Virtual Machines 26

Guest Memory Protection
• Implementation issues

– host and guest ISAs provide different protection
types

– host provides a superset of guest protections

• host provides a subset of guest protections
– host and guest support different page sizes

• difficult to map access privileges

• simple if guest page size is a multiple of host page size

11-03-2020 Process Virtual Machines 27

Self Referencing/Modifying Code
• Program may either refer

to itself, or attempt to
modify itself.

• Solution
– maintain guest program

code memory image
– load/store addresses are

mapped into source
memory region

– loads from code region
are ok

– writes to code region
trigger segmentation fault
• flush relevant cache entry,

enable writes to code
region, interpret the code
block that caused the fault,
re-enable write-protection

11-03-2020 Process Virtual Machines 28

Runtime Memory Protection
• Runtime and guest application share the same process

address space
– guest program can read/write portions of the runtime

• Addressing
– software translation tables
– hardware address translation, software protection checking
– hardware for both address translation and protection checking

• OS sets protections for emulation mode and runtime mode

• Change protections on context switch from runtime to
translated code

• Translated code can only access guest memory image
• Translated code cannot jump outside code cache

(emulation s/w sets up links)
• Multiple system calls at context switch time

– high overhead

11-03-2020 Process Virtual Machines 29

Memory Mapping for Protection

11-03-2020 Process Virtual Machines 30

Instruction Emulation
• Techniques for instruction

emulation
– interpretation, binary translation

• Start-up time (S)
– cost of translating code for

emulation
– one time cost for translating code

Steady-state performance (T)
cost of emulation
average rate at which instructions are
emulated

Overall performance (S + NT)
N is the number of times an
instruction is executed
S=1000, T=2/20, tradeoff point=55ins

11-03-2020 Process Virtual Machines 31

Staged Emulation
• Application of emulation techniques in stages

– start with low start-up overhead tech. (interpretation)

– profile data determines hot dynamic blocks of code

– if execution count > threshold, then compile

– place in code cache, update links and side table entries

– optimize hotter code further ?

11-03-2020 Process Virtual Machines 32

Execution Flow Through Emulation Engine

11-03-2020 Process Virtual Machines 33

Exception emulation

• Types of exceptions
– trap: produced by a specific program instruction during

program execution
– interrupt: an external event, not associated with a

particular instruction

• Precise exceptions
– all prior instructions have committed
– none of the following instructions have committed

• Further division of exceptions for a process VM
– ABI visible: exceptions returned to the application via an

OS signal
– ABI invisible: ABI is unaware of the exception’s occurrence

11-03-2020 Process Virtual Machines 34

Trap detection

• Detecting trap conditions
– interpretive trap detection: checking trap conditions during

interpretation routine

– trap condition detected by the host OS

• Implementation
– runtime registers all exceptions with the host OS

– all signals registered by the guest program are recorded

– on receiving OS signal, if signal is guest-registered then
send to guest signal-handling code

– else, runtime handles the trap condition

– special tables needed during binary translation

11-03-2020 Process Virtual Machines 35

Interrupt Handling

• Interrupts are not associated with any instruction
– a small response latency is acceptable
– maintaining precise state easier than traps

• Receiving interrupt during interpretation
– complete current routine
– service interrupt

• Receiving interrupt during binary translation
– execution may not be at an interruptible point
– precise recovery at arbitrary points difficult
– no idea when control will return to the emulator from

the code cache

11-03-2020 Process Virtual Machines 36

Determining Precise State

• Interpreter
– easy, each source instruction has its own routine

– source PC and state updated in each instruction routine

• Binary Translation
– hard, first determine the source PC

– source PC not continuously updated

– maintain reverse translation table mapping target PC to
source PC, inefficient

– target instruction can map to multiple source instructions

– target code may be optimized, and re-ordered

11-03-2020 Process Virtual Machines 37

Reverse Translation Table

11-03-2020 Process Virtual Machines 38

Restoring Precise State

• Register state (during binary translation)
– 2 cases, based on if source-to-target register mapping

remains constant throughout emulation

– if not constant, side tables can be maintained, or
analyzed from start of translation block again

• Memory State (during binary translation)
– changed by store instructions

– do not reorder stores, or other potentially trapping
instructions with stores

– restricts optimizations

11-03-2020 Process Virtual Machines 39

OS Call Emulation
• Emulates the function or semantics of the guest’s OS calls

– not emulate individual instructions in the guest OS

• Different from instruction emulation
– given enough time, any function can be performed on the input

operands to produce a result
– most ISAs perform same functions, ISA emulation is always

possible
– with OS, it is possible that providing some host function is

impossible, operation semantic mismatch

• Different source and target OS
– semantic translation of mapping required
– may be difficult or impossible
– ad-hoc process on a case-by-case basis

• Same source and target OS
– emulate the guest calling convention
– guest system call jumps to runtime, which provides wrapper code

11-03-2020 Process Virtual Machines 40

OS Call Emulation
• Same source and target OS (cont...)

– runtime may handle some guest OS calls itself
(signals, memory management)

– handling abnormal conditions like callbacks,
runtime maintaining program control, lack of
documentation

11-03-2020 Process Virtual Machines 41

Code Cache

• Storage space for holding translated guest code.

• Code cache is different from ordinary caches

– code cache blocks do not have a fixed size

– code cache blocks are chained with each other

– code cache blocks are not backed up

– has implications on code cache management
(replacement) algorithms used

• Code cache space is limited

– blocks need to be replaced if cache fills up

11-03-2020 Process Virtual Machines 42

Code Cache Replacement

• Least recently used (LRU)

– good in theory, problematic in practice

– overhead of keeping track of the LRU block

– backpointers are needed to eliminate chained
links

– fragmentation problem due to variable-sized
blocks

– unlink blocks before removing

• maintain backpointers

11-03-2020 Process Virtual Machines 43

Code Cache Backpointers

11-03-2020 Process Virtual Machines 44

Code Cache Replacement

• Cache flush

– when full or on phase change

– gets rid of stale blocks

– minimal maintenance overhead

– even actively used blocks may be removed, and
may need re-translation

11-03-2020 Process Virtual Machines 45

Code Cache Replacement

• First In First Out (FIFO)
– non-fragmenting, as cache can be maintained as a

circular buffer

– alleviates LRU problems at lower hit rates

– needs to maintain backpointers

• Course-grained FIFO
– partition code cache into large FIFO blocks

– Links only maintained between blocks that span
replacement boundaries

11-03-2020 Process Virtual Machines 46

CCR- Coarse Grained FIFO

11-03-2020 Process Virtual Machines 47

Performance of Process VM

• Important for VM acceptance
– optimization framework along with staged emulation

• Difference from static optimization
– conservative, over small code regions, traces,

superblocks

– high level semantic information not available

– profiling, architectural information can be used

• Dynamic Binary Optimization
– Used mostly in same ISA process VMs to improve on

native execution performance.

11-03-2020 Process Virtual Machines 48

Summary

• Process VM implementation using instruction
emulation:
– Interpretation

– Binary translation

– Staged interpretation with code caches

• Challenges in implementing Process VMs
– State management

– Exception handling

– Memory address space mapping

– OS call handling

11-03-2020 Process Virtual Machines 49

