
Process Virtual Machines 



Motivation for Process VMs 

• Systems VMs need skill and planning for setup 
and administration. Useful in large multi-
organizational or public cloud setups. 

• Process VMs are easy to launch and simple 
enough to cater to most organizational 
development and deployment groups. 

• Native support for same OS-ISA application base 
(containers as an example). 

• Different OS-ISA combination also easily 
supported by using emulation and/or binary 
translation (cygwin?). 
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Process Virtual Machine Implementation 
Different OS-ISA combination 

Loader 
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Structure of the Process VM 

• Loader 
– load guest code and data 
– load runtime code 

• Initialization 
– allocate memory 
– establish signal handlers 

• Emulation engine 
– interpreter and/or 

translator 

• Code cache manager 
– manage translated guest 

code 
– flush outdated translations 

• Profile database 
– hold program profile info. 
– block/edge/invocation 

profile 

• OS call emulator 
– translate OS calls 
– translate OS responses 

• Exception emulator 
– handle signals 
– form precise state 

• Side tables 
– structures used during 

emulation 
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Compatibility Aspects 
• How accurately does the emulation of the guest’s functional 

behaviour compare with its behaviour on its native platform 
– two systems are compatible if, in response to the same sequence of 

input values, they give the same sequence of output values  

• Intrinsic compatibility  
– precise behaviour i.e.,  behaviour inside VM equivalent to the one on 

native platform 
– Used and verified while generating the virtualization software 
– difficult to achieve, this method is practically used by hardware 

designers to ensure ISA compatibility  

• Extrinsic compatibility 
– accuracy within some well-defined constraints like specific compiler 

requirements or logical resources required 
• based on VM implementation, architecture/OS specifications, and external 

guarantees or certificates  
• some burden on the users to ensure that guarantees are met 

– acceptable for most systems 
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Verifying Compatibility 

• Too complex to theoretically prove 
– except in simple systems 

• In practice 
– use informal reasoning 
– use test suites 

• Sufficient conditions 
– decompose compatibility into parts 
– allows the reasoning process to be simplified 

• Assume state of guest is 1 to 1 mapped to host 
– but same “type” of state is not necessary 
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Compatibility Framework 

• The need for a framework 
– rigorously proving that compatibility holds is hard 

– allow to reason about compatibility issues 

– decide when/where during program execution 
should compatibility be guaranteed/verified 

• Model of program execution 
– machine state, defined by registers, memory, I/O, 

etc. 

– operations that change state 
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Isomorphism Property 

• Isomorphism is 
having an equal 
representation or 
state between the 
guest and host. 
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Two-level State Management 

• Managing (changes to) program state at two 
levels 
– user-managed state 

• main memory, registers 

• straightforward mapping between guest and host states 

• operated on by user-level instructions 

– OS-managed state 
• disk contents, I/O state, networks 

• operated via OS calls, traps, interrupts 

• operations can affect user-level state as well 
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Compatibility Verification 

• Compatibility is 
only verified at 
points where 
control is 
transferred 
between the user 
code and OS 
– establish one-to-

one mapping 
between control 
transfer points 

– in both native 
platform and VM 
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Compatibility Validation 

• Conditions for compatibility 

– guest state should be equivalent to host state at 

• control transfer from user instructions to OS 

• control transfer from OS to user instructions 

– all user-managed state must be compatible 

– instruction-level equivalence not required 
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Trap Compatibility 
• If source traps, then target traps 

– If target traps, then source would have trapped 

– runtime can filter target traps, to remove false ones 

• Page faults are special case 
– page fault behaviour is non-deterministic w.r.t. user process 

 

Source   Target 

. . .    . . . 
r4  r6 + 1   R4  R6 + 1 

r1  r2 + r3   trap  R1  R4 + R5  remove dead assignment 

r1  r4 + r5   R6  R1 * R7 

r6  r1 * r7 

. . .    . . . 
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Register State Compatibility 

• At the time of an exception is the register state 
exactly as in the real machine? 
– including dead register values? 

 

. . .     . . . 

R1 <- R2 + R3   R1 <- R2 + R3 

R9 <- R1 + R5 re-schedule   R6 <- R1 * R7 trap? 

R6 <- R1 * R7   R9 <- R1 + R5 

R3 <- R6 + 1   R3 <- R6 + 1 

. . .     . . . 
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Memory State Compatibility 

• Memory state compatibility is maintained if, at the time 
of a trap or interrupt, the contents of memory are exactly 
the same in the translated target program as in the 
original source program 

Source    Target 

. . .    . . . 

R7  R6 << 8   R7  R6 << 8 

A: mem (R6)  R1  B: mem (R7)  R2 

B: mem (R7)  R2  A: mem (R6)  R1protection fault? 

. . .    . . . 
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Memory Ordering Compatibility 

• Maintain equivalent consistency model 

– Important for multiprocessors 

 
   A=Flag=0; 

P1      P2 

A = 1;     while (Flag == 0); 

Flag = 1;     … = A; 

 

Good refresher on Memory Consistency  Models: 
www.cs.pdx.edu/~walpole/class/cs510/spring2010/slides/4.ppt 
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Undefined Architecture Cases 

• Some (most?) ISAs have undefined cases 
– example: self-modifying code with I-caches 

– unless special actions are performed, result may be 
undefined 

• Different, undefined behavior is compatible behavior 
– can be tricky  

– what if undefined behavior is different from all existing 
implementations? 

– what if existing implementations do the “logical” thing? 
• e.g., self-modifying code works as “expected” 
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Constructing a Process VM 

• Mapping of user-managed state 
– held in registers 

– held in memory 

• Perform emulation (operations to transform 
state) 
– memory architecture emulation 

– instruction emulation 

– exception emulation 

– OS emulation 
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State Mapping 

• Map user-managed 
register & memory state 
– guest data and code map 

into host’s address space 
– host address space 

includes runtime data 
and code 

– guest state does not have 
to be maintained in the 
same type of resource 

• Register mapping 
– straight-forward 
– depends on number of 

guest and host registers 
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Memory State Mapping 

• Memory address space mapping 

– map guest address space to host address space 

– maintain protection requirements 

• Methods – results in different performance 
and flexibility levels 

– software supported translation table 

– direct translation 
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Software Translation Tables 

• VM software maintains 
translation table 
– map each guest memory 

address to host address 

– similar to hardware page 
tables / TLBs 

– used when all other 
approaches fail 

– provides most flexibility 
and least performance 
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Address Translation Tables 

Initially, R1 holds source address 
R30 holds base address of mapping table 
 
srwi r29,r1,16  ;shift r1 right by 16 
slwi r29,r29,2   ;convert to a byte address 
lwzx r29,r29,r30  ;load block location in host memory 
slwi r28,r1,16   ;shift left/right to zero out 
srwi r28,r28,16  ;source block number 
slwi r29,r29,16  ;shift up target block number 
   or r29,r28,r29  ;form address 
 lwz r2,0(r29)   ;do load 
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Direct Memory Translation 
• Use underlying hardware 

– guest memory allocated contiguous host space 

– guest address space + runtime <= host address space 

– minimal overhead, most performance 
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Memory Compatibility - Summary 

• Runtime + guest space <= host space 

– direct memory translation 

– can achieve performance and intrinsic compatibility 

• Runtime + guest space > host space 

– software translation 

– will lose intrinsic compatibility, performance or both 

• Guest space == host space 

– happens often, same-ISA dynamic translation 

– no room for runtime 

• use software translation, extrinsic compatibility 

11-03-2020 Process Virtual Machines  23 



Memory Architecture Emulation 

• Aspects of memory 
architecture of the ABI  

– Address space 
structure: segmented 
or flat 

– Access privilege types: 
N, R, W, E 

– Protection/allocation 
granularity: memory 
block size that can be 
allocated by the OS  
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Guest Memory Protection 

• Access restrictions placed on different regions of 
memory. 

• Can be achieved during software supported 
translation 
– slow and inefficient, but very flexible 

• Host supported memory protection 
– runtime sets access restrictions using OS system calls 

– OS delivers signals to runtime on access violations 

– protection faults reported to runtime  

– requires host OS support 
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Host OS Support 

• Direct mechanism 
– runtime sets protection 

levels via system calls 
(mprotect) 

– protection faults trap 
to handler in runtime 
(SIGSEGV ) 

• Indirect mechanism 
– mapping region of 

memory to file with 
access protections 
(mmap) 

VM’s Virtual 
Address Space 

Physical 
Memory File 

(VM Memory ) 

Indirect Mechanism  
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Guest Memory Protection 
• Implementation issues 

– host and guest ISAs provide different protection 
types 

– host provides a superset of guest protections 

• host provides a subset of guest protections 
– host and guest support different page sizes 

• difficult to map access privileges 

• simple if guest page size is a multiple of host page size 
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Self Referencing/Modifying Code 
• Program may either refer 

to itself, or attempt to 
modify itself. 

• Solution 
– maintain guest program 

code memory image 
– load/store addresses are 

mapped into source 
memory region 

– loads from code region 
are ok 

– writes to code region 
trigger segmentation fault 
• flush relevant cache entry, 

enable writes to code 
region, interpret the code 
block that caused the fault, 
re-enable write-protection 
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Runtime Memory Protection 
• Runtime and guest application share the same process 

address space 
– guest program can read/write portions of the runtime 

• Addressing 
– software translation tables 
– hardware address translation, software protection checking 
– hardware for both address translation and protection checking 

• OS sets protections for emulation mode and runtime mode 

• Change protections on context switch from runtime to 
translated code 

• Translated code can only access guest memory image 
• Translated code cannot jump outside code cache 

(emulation s/w sets up links) 
• Multiple system calls at context switch time 

– high overhead 

11-03-2020 Process Virtual Machines  29 



Memory Mapping for Protection 
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Instruction Emulation 
• Techniques for instruction 

emulation 
– interpretation, binary translation 

• Start-up time (S) 
– cost of translating code for 

emulation 
– one time cost for translating code 

Steady-state performance (T) 
cost of emulation 
average rate at which instructions are 
emulated 

Overall performance (S + NT) 
N is the number of times an 
instruction is executed 
S=1000, T=2/20, tradeoff point=55ins 
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Staged Emulation 
• Application of emulation techniques in stages 

– start with low start-up overhead tech. (interpretation) 

– profile data determines hot dynamic blocks of code 

– if execution count > threshold, then compile 

– place in code cache, update links and side table entries 

– optimize hotter code further ? 
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Execution Flow Through Emulation Engine 
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Exception emulation 

• Types of exceptions 
– trap: produced by a specific program instruction during 

program execution 
– interrupt: an external event, not associated with a 

particular instruction 

• Precise exceptions 
– all prior instructions have committed 
– none of the following instructions have committed 

• Further division of exceptions for a process VM 
– ABI visible: exceptions returned to the application via an 

OS signal 
– ABI invisible: ABI is unaware of the exception’s occurrence 
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Trap detection 

• Detecting trap conditions 
– interpretive trap detection: checking trap conditions during 

interpretation routine 

– trap condition detected by the host OS 

• Implementation 
– runtime registers all exceptions with the host OS 

– all signals registered by the guest program are recorded 

– on receiving OS signal, if signal is guest-registered then 
send to guest signal-handling code 

– else, runtime handles the trap condition 

– special tables needed during binary translation 
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Interrupt Handling  

• Interrupts are not associated with any instruction 
– a small response latency is acceptable 
– maintaining precise state easier than traps 

• Receiving interrupt during interpretation 
– complete current routine 
– service interrupt 

• Receiving interrupt during binary translation 
– execution may not be at an interruptible point 
– precise recovery at arbitrary points difficult 
– no idea when control will return to the emulator from 

the code cache 
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Determining Precise State 

• Interpreter 
– easy, each source instruction has its own routine 

– source PC and state updated in each instruction routine 

• Binary Translation 
– hard, first determine the source PC 

– source PC not continuously updated 

– maintain reverse translation table mapping target PC to 
source PC, inefficient 

– target instruction can map to multiple source instructions 

– target code may be optimized, and re-ordered 
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Reverse Translation Table 
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Restoring Precise State 

• Register state (during binary translation) 
– 2 cases, based on if source-to-target register mapping 

remains constant throughout emulation 

– if not constant, side tables can be maintained, or 
analyzed from start of translation block again 

• Memory State (during binary translation) 
– changed by store instructions 

– do not reorder stores, or other potentially trapping 
instructions with stores 

– restricts optimizations 
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OS Call Emulation 
• Emulates the function or semantics of the guest’s OS calls 

– not emulate individual instructions in the guest OS 

• Different from instruction emulation 
– given enough time, any function can be performed on the input 

operands to produce a result 
– most ISAs perform same functions, ISA emulation is always 

possible 
– with OS, it is possible that providing some host function is 

impossible, operation semantic mismatch 

• Different source and target OS 
– semantic translation of mapping required 
– may be difficult or impossible 
– ad-hoc process on a case-by-case basis 

• Same source and target OS 
– emulate the guest calling convention 
– guest system call jumps to runtime, which provides wrapper code 
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OS Call Emulation 
• Same source and target OS (cont...) 

– runtime may handle some guest OS calls itself 
(signals, memory management) 

– handling abnormal conditions like callbacks, 
runtime maintaining program control, lack of 
documentation 
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Code Cache 

• Storage space for holding translated guest code. 

• Code cache is different from ordinary caches 

– code cache blocks do not have a fixed size 

– code cache blocks are chained with each other 

– code cache blocks are not backed up 

– has implications on code cache management 
(replacement) algorithms used 

• Code cache space is limited 

– blocks need to be replaced if cache fills up 
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Code Cache Replacement 

• Least recently used (LRU) 

– good in theory, problematic in practice 

– overhead of keeping track of the LRU block 

– backpointers are needed to eliminate chained 
links 

– fragmentation problem due to variable-sized 
blocks 

– unlink blocks before removing 

• maintain backpointers 
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Code Cache Backpointers 
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Code Cache Replacement 

• Cache flush 

– when full or on phase change 

– gets rid of stale blocks 

– minimal maintenance overhead 

– even actively used blocks may be removed, and 
may need re-translation 
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Code Cache Replacement 

• First In First Out (FIFO) 
– non-fragmenting, as cache can be maintained as a 

circular buffer 

– alleviates LRU problems at lower hit rates 

– needs to maintain backpointers 

• Course-grained FIFO 
– partition code cache into large FIFO blocks 

– Links only maintained between blocks that span 
replacement boundaries  
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CCR- Coarse Grained FIFO 

11-03-2020 Process Virtual Machines  47 



Performance of Process VM 

• Important for VM acceptance 
– optimization framework along with staged emulation 

• Difference from static optimization 
– conservative, over small code regions, traces, 

superblocks 

– high level semantic information not available 

– profiling, architectural information can be used 

• Dynamic Binary Optimization 
– Used mostly in same ISA process VMs to improve on 

native execution performance. 
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Summary 

• Process VM implementation using instruction 
emulation: 
– Interpretation 

– Binary translation 

– Staged interpretation with code caches 

• Challenges in implementing Process VMs 
– State management 

– Exception handling 

– Memory address space mapping 

– OS call handling 

 
11-03-2020 Process Virtual Machines  49 


