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Need for System VMs 

• Multiple single-application Virtual Machines 

• Multiple secure environments 

• Managed application environments 

• Mixed-OS environments 

• Legacy applications 

• Multi-platform application development and 
testing environment 

• System Encapsulation 
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Conceptual view of System VMs 

Feb 25, 2020 System Virtual Machines 4 



Key concepts of System VMs 

• Outward appearance  

• State Management 

• Resource Control 

• VM realization:  

– Native VMs 

– Hosted VMs 

Assumptions: Uni-processor machine supporting 
same ISA VMs 
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Outward Appearance 

• System VMs give the illusion of hosting multiple 
systems on a single machine 

• Using software virtualizers: 
– Time-multiplexing of resources from one VM to another 

• Using Hardware replication: 
– Independent sets of replicated hardware resources 

dedicated to specific VMs 
– Common resources are time-shared 

• Hosted VMs: 
– One of the VM is more privileged than others 
– Other VMs are manifested in special environments of the 

hostOS. 
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State Management 
• The VM state is composed of 

collective information from 
processor registers, memory 
pages, files etc. 

• Single machine hardware may 
not be sufficient to hold 
multiple VMs state 
information. 

• Store each VM state in fixed 
locations in the VMM’s 
memory and identify using a 
pointer  to the present active 
VM. 

• VM State contents can be 
accessed through redirection 
or copy mode. 

Using Indirection Using Copy 
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Resource Control 
• The VMM maintains overall control of all hardware 

resources. 
• Each VM is allocated virtual resources according to 

configuration specifications. 
• VMM allows for direct execution of non-privileged 

instructions from within VM’s environment. 
• All privileged instructions trap to the VMM for processing. 
• VMM handles the timer interrupts 
• All shared resources are time-shared across contesting VMs 

using fair-shared or credit share scheduling. 
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VM Realization: 
Native & Hosted VMs 
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Resource Virtualization - Processors 

• Processors: 

– Same ISA VMs  

• Direct execution through VM 

• Emulation or para-virtualization of privileged instructions 

– Different ISA VMs 

• Emulation or binary translation 

 

Prerequisite come prepared for the rest of classes by 
reading Appendix A – Real Machines from Smith & 
Nair’s Virtual Machine text book. 
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ISA Virtualizability 
• User ISA: Instructions that enable use of hardware 

(innocuous instructions )  

• System ISA: Instructions that enable management of 
hardware and access to nonconcurrent devices 
(sensitive and privileged instructions) 

• ISA must allow multiple modes of operation 
– User mode (for innocuous instrs) 

– Privileged mode (for privileged instrs) 

• All privileged instructions when executed in user mode 
must trap to OS. 
– Control-sensitive instructions are those that change the 

configuration of the system resources 

– Behavior-sensitive instructions are those whose behavior 
or results change with the configuration of resources 
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Necessary condition for ISA 
Virtualizability 

User ISA 

System ISA 
System ISA 

User ISA 
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Components of a VMM 
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Handling of Privileged Instruction in 
GuestOS 
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Difficulty in i86 Virtualization 

• Some of the sensitive instructions in Intel IA-
32 are not privileged (POPF instruction) 

• Handling problem instructions 

– Interpret the guest software 

– Scan and patch before execution (standard 
techniques of binary translation are applied) 

– Every sensitive instruction leads to a change in 
privilege level since GuestOS is executing in non-
privileged mode. 
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Execution of Privileged instructions in 
VM/370 

• System VM/370 is 
ISA virtualizable 
– All sensitive and 

privileged 
instructions trap to 
OS when executed in 
user mode. 

– Supports two CPU 
modes – user and 
system Hardware 

OS 

Privileged Instrs 
directly executed 

Privileged Instrs  
trap to OS 

Application 

Application 
Privileged Instrs  
trap to VMM & 
reflected to OS 

OS 

Privileged Instrs 
trap to VMM and 
emulated in 
VMM 

VMM 

Privileged Instrs 
directly executed 

Hardware 
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Concept of Virtual CPUs 

• Implementation specifics of virtualizing a CPU 

• Hypervisor schedulers 

– What are they? 

• Multiple VMs share the same CPU 

• Variants of time-sharing CPU schedulers are mostly 
used  

– How do they impact the application performance 
when executed inside the VM? 
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Resource Virtualization - Memory 

• Most virtualization technologies extend the prevailing 
Virtual Memory concept to support memory virtualization 
for VMs. 

• Each VM is given a logical view of its real memory using the 
virtual memory in VMM. 

• Each VM can support virtual memory in its address space 
on its real memory. 

• The real memory of any VM is further mapped to the 
physical memory by the VMM. 

• Every virtual address in application process undergoes two 
translations: 
– Application virtual address to VM’s real memory 
– VM’s real memory to Host’s physical memory 
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Support for Virtual Memory 

• Virtual Memory basics: 
– Application is provided with a logical view of memory in the form of 

virtual address space. 
– Underlying OS manages the real memory (hardware memory) 
– Per process Page-Tables used to map logical (virtual address) to real 

(physical address) memory. 
– TLBs cache the most commonly used mappings 
– ISA defines the support for page table walks and page sizes. 

• Segment registers or Relocation registers to support virtual 
addresses 

• Address translation hardware 
• Page-tables and TLBs to map physical to virtual addresses 
• Page table cache structures to fasten the address translation 

lookups. 
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Virtual Memory Abstraction 
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Virtual to Physical Address Translation 
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Page Table walk in x86-64 with 4KB Pages  
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Memory Virtualization Issues with 
page based structures 

• Hypervisors perform two-level address 
translation to support memory virtualization: 

– Guest Virtual Address to Guest Physical Address 

– Guest Physical Address to Host Physical Address 

• Every TLB/Cache miss introduces this penalty. 

•  Virtualization using this technique makes it 
unattractive for workloads that have 
significant memory reads and writes! 
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Software methods for memory 
virtualization – Shadow page tables 

• GuestOS of each VM 
maintains its own page 
tables to map GVA  
GPA 

• VMM maintains 
shadow page tables to 
map GVA  HPA 

• Shadow page tables 
are used by the 
hardware to translate 
virtual addresses to 
keep TLB updated 

• The Page Table Pointer 
is virtualized and VMM 
manages it. 

• This technique is used 
on hardware where 
the ISA dictates page 
table architecture. 
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Software methods for memory 
virtualization – Virtualized TLBs 

OS based TLB Management 
• Some ISAs allow OS to decide 

on the page table structure 
and hence page walks in such 
case are software based. 

• TLBs are architected and 
special instructions are 
available to update them. 

• A TLB miss results in an OS 
trap and the page table 
information is used by the OS 
to update the TLB. 

• Recent RISC ISAs use 
architected TLBs 
 

Virtualizing architected TLBs 
• The VMM manages each VM’s 

TLB by maintaining a copy and 
also the physical TLB. 

• Any instruction that modify 
the TLB are sensitive and trap 
to VMM. 

• When a VM is activated the 
VMM copies the virtual TLB’s 
entries into the physical TLB 
after appropriately translating 
the VM’s PA to Host’s PA. 
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Virtualizing an Architected TLB 
• VMM needs to virtualize the TLB 

when the ISA provides a software 
managed TLB (SPARC ISA). 

• VMM maintains a copy of the VM’s 
TLB contents and manages it. 
– VMM copies the Guest OS specific 

TLB contents whenever the VM is 
activated (has an issue?). 

– Each entry in TLB is associated 
with an ASID (address space 
identifier) and the TLB can host 
multiple VM address mappings. 

• VMM copies the VM’s TLB contents 
to the real TLB after appropriately 
translating the GPA->HPA. 
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Hardware support for memory 
virtualization – Nested Page Tables 

• Nested page tables need 
hardware support and 
enables memory 
virtualization 

• Processor has two page 
table pointers to complete a 
page table translation 
– One points to the guest page 

table gptr 
– Other points to the host 

page table hptr 

• Guest page table holds the 
translation for GVAGPA 

• Host page table holds 
GPAHPA translation 
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I/O Device Virtualization 

• The complicated part of system virtualization is 
the Input/Output device virtualization. 

• No standard interface; each device has it’s own 
intricacies with regard to control and access. 

• A general purpose OS has support for a large and 
a variety of I/O devices; number of different I/O 
devices also is growing. 

• Unlike the processor and memory, I/O devices are 
oblivious of sharing and concurrency; OS 
supports these features by way of OS level 
resource abstractions. 
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Virtualizing I/O Activity 

I/O Instruction Level 

• I/O devices communicate with the 
processors using special PIO 
instructions  or using memory 
mapping feature. 

• All PIO instructions are privileged 
so execute in privileged mode and 
hence trap to VMM when executed 
in GuestOS. 

• Execution of PIO instruction by the 
GuestOS needs support at the 
VMM end in terms of address 
translation. 

• Issues also with bulk execution of 
I/O requests and from various VMs. 

• Normally adopted in device 
emulation modes of virtualization 

• Has high performance overheads. 
 

Device Driver Level 

• Device drivers abstract out the 
device specific I\O instructions 
and provide the interface to 
support OS level resource 
abstractions. 

• Virtual device abstractions are 
created in the GuestOS which 
then connect to the physical 
device drivers for execution of 
PIO instructions.  

• Commonly used techniques are 
emulation and para-virtualization 
with front-end and backend pairs. 

• Front-end drivers are resident in 
the GuestOS, back-end drivers 
reside in the hypervisor or the 
hostOS. 
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I/O Devices - Recap 

• In most general purpose 
OS’s I/O devices are 
accessed using the system 
call interface. 

• The OS has different 
abstractions for different 
devices, viz files for disk 
storage, sockets for network 
interfaces, terminals for 
display devices, etc. 

• Most I/O devices today 
using memory mapping to 
interface with the system. 
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Virtualizing Devices 
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Performance side-effects of VMs 
• VM setup: Extra time is involved in setting up the 

appropriate registers, program counters and timing 
facilities before a VM can be activated. 

• Emulation/para-virtualization: Privileged instructions need 
to be emulated or para-virtualized by the VMM. This leads 
to higher time spent on executing such instructions. 

• Interrupt handling: All interrupts are intercepted by the 
VMM before being passed on to the GuestOS of a VM.  

• State saving: For every VMM entry, a VM’s state needs to 
be saved to enable control transfer. 

• Bookkeeping: VMM has to perform special operations to 
reflect equivalent behavior of that of a real machine. 

• Time elongation: Some instructions, particularly those 
involved with memory management, require more 
processing time because of the requirement to 
walkthrough multiple structures for the same operation. 
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Virtual Machine Assists 

• Hardware extensions or support to improve 
performance of applications when executing 
inside a VM are called VM assists. 

• Instruction emulation assists:  
– VMM emulates an instruction using a routine whose 

operation depends on whether the VM is executing in 
a system mode or user mode. 

– IBM system/370 used a hardware assist that would 
detect the VM’s execution mode while performing 
emulation.  

– Such assists use the knowledge that the hardware is 
virtualized! 
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VMM assists 
• VMM improvement can potentially benefit all hosted 

VMs. 
– Hardware assisted context switch between VM and VMM – 

storing and restoring of machine state registers using 
hardware 

– Privileged Instructions Decode – Hardware assisted 
decoding might help improve performance along with 
software techniques to optimize. 

– Virtual Timers – True implementation of timers in VMs 
need hardware assistance. Ex. System/370 ISA requires 
that the virtual timers in a VM be located in a specific 
place inside the VM’s memory and the VMM decrements 
this timer counter every time a true timer interrupt occurs. 

– Enhanced ISA for VMM support – I/O device assignment, 
DMA remapping, Interrupt remapping, interrupt posting 
are some of the evolving list of assists. 
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OS use of DMA Remapping  
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VMM usage of DMA Remapping Direct IO 

Feb 25, 2020 System Virtual Machines 39 



IO-Virtualization Assists 

• Single Root IO Virtualization (SR-IOV) 

– Effort by the PCI-SIG to enable I/O device 
virtualization ensuring clean isolation interfaces 

– Isolation of 

• Device memory 

• I/O streams 

• I/O interrupts 

• Control and I/O operations 

• Errors 
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SR-IOV NIC Example 
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Multi-Processor Virtualization 

• Multi-core and many-core architectures have 
higher number of processors that share 
memory and I/O devices. 

• Techniques for system isolation 
– Dynamic partitioning 

• Time-sharing 

– Static partitioning 
• Space-sharing 

• When does static partitioning help? 
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Prerequisite 

• https://classes.soe.ucsc.edu/cmps111/Fall02/
Chapter08.pdf 

• Appendix A section 7 of Virtual Machines, 
Smith & Nair  
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Partitioning Techniques 

• Physical Partitioning 
– Failure Isolation 

– Security Isolation 

– Oriented towards 
specific system level 
objectives 

• Logical Partitioning 
– Flexible resource 

sharing 

– Improved utilization 

– Fault Tolerant 

Partitioning 
Techniques 

Hardware 
Supported 

Software 
Supported 

Physical 
Partitioning  

System 
VMs 

Logical 
Partitioning 

Micro-code 
Based 

Process 
VMs 

Different 
ISA Same ISA 

Hypervisor 
Based 
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Case Study 

• Micro-code based Logical Partitioning: 
– Extended ISA provides the necessary support in hardware 

for partitioning 
• IBM System/390 LPAR 

• Hypervisor based Logical Partitioning 
– Hardware support for extra supervisory level allows 

hypervisors (system software layer) to execute under 
privileged mode that is different from privileged mode of 
the GuestOS. GuestOS still executes under privileged mode 
and its applications execute in user mode. 
• HP Superdome servers 
• IBM Dynamic LPAR 
• Cellular Disco 
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Virtualization:  
Different Host and Guest ISAs 

• What could be the reasons for supporting this 
model of virtualization? 

• Additional complexities to handle: 

– Instructions of target ISA must be transparently 
and dynamically translated to the host ISA. 

– Memory model of the target ISA must be 
observed in the VM so the VMM/hypervisor 
needs to handle the memory ordering and 
coherence rules of the target ISA 
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Virtualizing Uniprocessor Cluster 

P 
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Real Processor 
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Virtual Machine 1 Virtual Machine 2 Virtual Machine 3 
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Virtualizing SMP Host 
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Concerns with multi-core systems for 
virtualizing 

• Concurrency capability of the hypervisor or host-OS 
can cause bottlenecks for consolidation 
– Serial data structures of the kernel 
– Increased resource usage (CPU cycles/Memory) 
– Serial interrupt and device drivers  

• Mitigation strategies 
– Concurrent device design with device interrupt delivery 

to any core 
– Concurrent kernel design 
– Assigning specific cores to kernel services 
– Scheduling VMs on the same cores even without affinity 

assignment 
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Co-designed Virtual Machines 
• Co-design exploration space: 

– To maintain code portability and backward compatibility, ISA 
supported on hardware evolves in restricted sense when 
compared to hardware that executes its and software that uses 
it! 

– Virtual Machines offer an opportunity to explore new ISA 
features using a co-design approach. 

– Host ISA is designed keeping in view the Virtual Machine that 
runs on it. 

– Target ISA uses a software/hardware approach to support the 
host ISA dynamically keeping performance, efficiency and power 
as the target goals. 

– Mostly restricted to processor virtualization. 
– Currently has been restricted to research interest and not 

explored for workload consolidation. 
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Examples of Co-Designed VMs 

• Transmeta Crusoe TM5000 series Processor: Implements 
Intel IA-32 to proprietary VLIW ISA mapping using dynamic 
binary translation and code cache. 

• IBM AS/400 Systems:  
– Full system developed with a co-design perspective 
– Host ISA is built using a high-level instruction set called Machine 

Interface (MI)  
– Implementing the MI is a set of standard libraries called 

Licensed Internal Code (LIC) that dealt with implementation 
specific resource management. 

– Initially AS/400 systems were built on a proprietary VLIW ISA 
and later evolved over to PowerPC ISA. 

• Exploring para-virtualization for co-design is a fertile ground 
for innovation!  
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Unikernel - Single Purpose System VM 

• Unikernels build on the idea that 
single application is executed in 
an isolated environment. 

• Hypervisor exports virtual 
resources 

• The specialised runtime 
encapsulates OS specific 
functions and enables their use 
through user-space libraries  

• Applications choose the required 
libraries during compile time and 
get statically built with them 
encapsulated in the executable 

• Deployment of applications 
happens by instantiating over the 
hypervisor without the need for a 
separate GuestOS 

Feb 25, 2020 System Virtual Machines 53 



Library Operating Systems 

• Exokernel defined a different way of 
using systems resources by way of 
library OS 

• The exokernel is built on the separation 
principle of resource access from 
management. 

• Exokernel manages resources by 
providing constructs for secure 
binding/resource revocation to the 
application and abort protocols for 
forceful deallocation by the exokernel 

• Applications along-with user-space 
library OS access and use the resources. 

• Exokernel provides the virtual resource 
like abstractions to libOS and 
applications choose to load and bind 
with necessary libOSes.  
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Summary  

• System Virtual Machines: 
– Requirements for virtualizability 

• Basic concepts 
– User Interface and Appearance 
– State Management 
– Resource Control 
– Bare Metal and Hosted Virtual Machines 
– Co-designed Virtual Machines 

• Case-Studies (To be part of student seminars) 
– Native Virtual Machines: Xen,  Vmware-Esxi 
– Hosted Virtual Machines: Vmware-Workstation, Palazzo, 

Linux-KVM 
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