Atul Yadav

Introduced yourself to DGX1

Images vs Containers

Images

- Docker images are the basis of containers
- An image is an ordered collection of root file system
- An image does not have state and it never changes

Containers

- A container is a runtime instance of a docker images.
- A Container consists of a docker image and execution environment

Accessing the system

- The NVIDIA-DGX1 cluster has one node(Login & Compute), nvidia-dgx, through which the user can access the cluster and submit jobs.
- The machine is accessible for login using ssh from inside IISc network.
 - ssh <computational_userid>@nvidia-dgx.serc.iisc.ac.in
- The machine can be accessed after applying for basic HPC access, for which:
- Fill the online HPC application form here & submit at Room: 109, SERC.
- HPC Application form must be duly signed by your Advisor/Research Supervisor.

♦ Where do you start?

Cluster basics

Logging in

Scheduling a job

- ♦ Need to tell scheduler what you want to do
 - Information about how long your job will run
 - How many GPUs you want and how you want them grouped
 - How much RAM your job will use
 - The commands that will be run

General Cluster Schematic

Submission Script

#!/bin/bash

```
#SBATCH --job-name=serial job test
                                      # Job name
#SBATCH --ntasks=1
                                      # Run on a single CPU
#SBATCH --time=02:00:00
                                      # Time limit hrs:min:sec
#SBATCH --output=serial test %j.out
                                      # Standard output and error
log
#SBATCH --cpus-per-task=1
#SBATCH --gres=gpu:1
#SBATCH --mem=12GB
#SBATCH --partition=qreserve
pwd; hostname; date | tee result
echo "Running program on $SLURM CPUS ON NODE CPU cores"
echo "Running program on $CUDA VISIBLE DEVICES GPU Devices"
nvidia-smi
```

Scheduler

Compute

Your job runs on the

cluster

Tell the scheduler what you want to

Running Jobs on the Cluster

- You must make reservations!
 - Cluster is a shared resource, so you must ask for exclusive use of nodes and cores
 - The job request goes into a queue, and is granted when resources are available
 - How to do this? bsub!

Environment

- Resource Manager
 - Responsible to allocate resources within a cluster
 - What are the resources?
 - CPUs
 - Memory
 - Time
 - GPUs

- Scheduler (limited resource for lot of work)
- Manages queues

My First Program

nvidia-docker run -t \${USE_TTY} --name
 \$SLURM_JOB_ID --user \$(id -u \$USER):\$(id -g \$USER) --rm -v /home/proj/18/secguest1/atul:/workspace -v /etc/passwd:/etc/passwd -v /etc/group:/etc/group -v /etc/shadow:/etc/shadow nvcr.io/nvidia/tensorflow:18.09-py3 python -c 'import tensorflow as tf; print (tf.__version__);'

My First Program

- nvidia-docker run
 - Syntax for calling docker for running the deep learning framework
- -t \${USE_TTY}
 - Terminal
- --name \$name
 - Name Of the Images
- --rm -p 9999:8888
 - Setting up the port

- --user \$(id -u \$USER):\$(id -g \$USER)
- -v /etc/passwd:/etc/passwd
- -v /etc/group:/etc/group
- -v /etc/shadow:/etc/shadow
 - Mounting the User Variable
- -v /home/\$USER:/workspace
- -v /localscratch/demo:/workspace
 - Mounting the Working Directory
- nvcr.io/nvidia/tensorflow:18.09-py3 python -c
 'import tensorflow as tf; print (tf.__version__);'
 - Framework'

Helpful command

- #sinfo
 - reports the state of partitions and nodes
- #sbatch
 - submits a job script
- #squeue
 - reports the state of jobs in the batch queue
- #scancel
 - cancels a pending or running job jobid

Linux Command Line

- ◆ Lots of online resources
 - Google: cheat sheet
- User manuals for applications
- → The faster you can type, the faster you will be done

The Shell

- When you type commands and run programs, you are actually running a program called a <u>shell</u>
 - Designed to take user input, run programs and display output
 - Started automatically when Terminal app started or when you log into a computer
 - Linux runs the <u>bash</u> shell, by default
- Maintains useful environment variables
 - ***PWD**, which holds your <u>current working directory</u> path
 - <u>\$HOME</u> or ~, which holds your home directory path
 - **\$PATH**, which holds locations of programs
- Powerful tool for organizing and executing commands
 - Useful to combine programs or redirect inputs and outputs, without having to write a program to do that
 - Full-fledged programming language, used to write shell scripts to run sets of commands

Key Points

- Submit all jobs from non-root user only
- ssh should be password-free from master node to other compute nodes particularly non-root users
- Job submission Directory/Home Directory should be shared across the nodes
- Applications Directory should be shared / stored same location across the nodes
- After kill job it is better to check that whether job is properly killed or not.
- Check availability of licenses before submitting the job if you are running licensed application
- Always check the queue status before submitting the job.

What do you need to know how to do to "survive"?

- How to get into the cluster, and back out again.
- How to run commands in the shell.
- How to navigate around the directories (and make and remove them).
- How to create, look at and edit text files.
- How to write scripts to do the computations you need to do.
- How to submit jobs, to run things on the nodes.

Helpful Tips

- Ask these questions to keep you oriented
 - What computer am I on?
 - Look at the prompt, 'hostname'
 - What directory am I in?
 - Look at the prompt and window top
 - 'pwd', 'cd'
 - Where are the files for my analysis?
 - '|s'
 - 'mkdir', 'rm', 'rmdir'
 - 'more' or 'less', 'head', 'tail'
 - What program(s) do I have running?
 - 'ps', 'top', 'screen'
 - What jobs do I have running?
 - 'bsub'

- Help and Support
 - We are here to help!

