DEEP LEARNING L
NVIDIA TENS(

Ashish Sardana | De

“ NVIDIA

AGENDA

Deep Learning in Production

Current Approaches
Deployment Challenges

NVIDIA TensorRT

Programmable Inference Accelerator
Performance, Optimizations and Features

Example
Import, Optimize and Deploy

TensorFlow Models with TensorRT

Key Takeaways and Additional Resources

Q&A

DEEP LEARNING IN PRODUCTION

Speech Recognition
Recommender Systems
Autonomous Driving

Real-time Object
Recognition

Robotics

Real-time Language
Translation

Many More...

CURRENT DEPLOYMENT WORKFLOW

TRAINING UNOPTIMIZED DEPLOYMENT

-
— N ™ Deploy training
framework

Data
Management

o [o »

Training Trammg Trained Neural *)
Data Network Deploy custom
I I application using
Model NVIDIA DL SDK
Assessment _J
PYTHRCH A
Ch Cognltlvzt ‘F- l'ameWOI'k OI'
ca e? ainer Toolkit TensorFlow t h eano
custom CPU-Only
application y

CUDA, NVIDIA Deep Learning SDK (cuDNN, cuBLAS, NCCL)

CHALLENGES WITH CURRENT APPROACHES

Unable to processing high-volume, high-velocity data
High Throughput > Impact: Increased cost (S, time) per inference

Applications don’t deliver real-time results
> Impact: Negatively affects user experience (voice recognition,

Low Response Time personalized recommendations, real-time object detection)

Inefficient applications
Power and Memory > |mpact: Increased cost (running and cooling), makes deployment
Efficiency infeasible

Research frameworks not designed for production
» Impact: Framework overhead and dependencies increases time
to solution and affects productivity

Deployment-Grade
Solution

5 NVIDIA.

NVIDIA TENSORRT

Programmable Inference Accelerator

FRAMEWORKS

developer.nvidia.com/tensorrt

@ PaddlePaddle

PYTORCH

* TensorFlow

theano

GPU PLATFORMS

TESLA P4 7z

JETSON TX2

B

<’

DRIVE PX 2 >

<\ /e
A
K NVIDIA DLA
TESLA V100

TENSORRT PERFORMANCE

40x Faster CNNs on V100 vs. CPU-Only 140x Faster Language Translation RNNs on
Under 7ms Latency (ResNet50) V100 vs. CPU-Only Inference (OpenNMT)

40 600 = 500
450

400

6,000 5700

2 500

5,000

—
o 4,000 25 4 @
w0 cr ~ 300 3
~ ® v 280 ms 5}
2 3 & <
oh 3,000 2002 & 300 250 3
£ 3 E 2
= 14 ms 15 a 200
2’000 200 153 ms 150
10
6.674ns
1,000 5 100 100
140 305
| o 25 50
0 . E -
CPU-Only V100 + V100 + TensorRT 0 0
TensorFlow CPU-Only + Torch V100 + Torch V100 + TensorRT

Inference throughput (images/sec) on ResNet50. V100 + TensorRT: NVIDIA TensorRT (FP16), batch size 39, Tesla V100-SXM2- Inference throughput (sentences/sec) on OpenNMT 692M. V100 + TensorRT: NVIDIA TensorRT (FP32), batch size 64, Tesla V100-

16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On V100 + TensorFlow: Preview of volta optimized TensorFlow (FP16), PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. V100 + Torch: Torch (FP32), batch size 4, Tesla V100-PCIE-

batch size 2, Tesla V100-PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. CPU-Only: Intel Xeon-D 1587 16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. CPU-Only: Torch (FP32), batch size 1, Intel E5-2690 v4@2.60GHz

Broadwell-E CPU and Intel DL SDK. Score doubled to comprehend Intel's stated claim of 2x performance improvement on Skylake 3.5GHz Turbo (Broadwell) HT On

with AVX512.

7 <ANVIDIA.

developer.nvidia.com/tensorrt

TENSORRT DEPLOYMENT WORKFLOW

Step 1: Optimize trained model

Import Tensor| RT Optimizer Ser.ial.ize ﬁg Plan 1

[} . -
—MOdel o’ %o Engme v d,g Plan 2

o — -

o o a1
@ Q 2~ | Plan 3
Trained Neural . ..

Network TensorRT Optimizer Optimized Plans

Step 2: Deploy optimized plans with runtime

E Plan 1 De-Ser]allze TensorRT Runtime Deploy
Engine Runtime
4] ® &

Zlranz p—) .8

% plan 3 ® o
Optimized Plans TensorRT Runtime Engine

Automotive Embedded

8 <INVIDIA.

MODEL IMPORTING

@: > Al Researchers
‘ » Data Scientists

Python/C++ API

Model Importer

Other Frameworks

Python/C++ API

Network
Definition API

TensorRT Optimizer

developer.nvidia.com/tensorrt

Runtime inference
C++ or Python API

X

Step 1: Optimize trained model

Import [esaiy Serialize
Model Engine

Trained Neural) O
Network TensorRT Optimizer

Plan 1
I
u Plan 2
L —
Plan 3

Optimized Plans

Example: Importing a TensorFlow model

uff model = uff.from tensorflow frozen model ("frozen model.pb™,

"dense 2/Softmax™)

9 <NVIDIA.

Step 1: Optimize trained model
ot | S s g (7!
TENSORRT LAYERS SO) o
Built-in Layer Support Custom Layer API
Deployed Application

LSTM and GRU

Activation: RelLU, tanh, sigmoid
Pooling: max and average
Scaling

Element wise operations

LRN

Fully-connected

SoftMax

Deconvolution CUDA Runtime

Convolution TensorRT Runtime

Custom Layer

TENSORRT OPTIMIZATIONS

TensorRT Optimizer

0

TensorRT Optimizer

Layer & Tensor Fusion

&) &2

Weights & Activation
Precision Calibration

Ot

Kernel Auto-Tuning

Dynamic Tensor
Memory

Step 1: Optimize trained model

Import e Serialize Plan 1

Model tee, Engine : e Planz

* o
:"'O vPlans

TensorRT Optimizer Optimized Plans

» Optimizations are completely automatic
» Performed with a single function call

13
14
15
16
17
18

19

engine = trt.utils.uff to trt engine(G LOGGER,

uff model,

parser,

INFERENCE BATCH SIZE,
1<<20,
trt.infer.DataType.FLOAT)

11 <4 NVIDIA.

*o

e

Un-Optimized Network

concat

relu relu
bias bias
1x1 conv. 3x3 conv. 5x5 conv. 1x1 conv.

max pool
1x1 conv.

“ LAYER & TENSOR FUSION = =

Step 1: Optimize trained model

Seria_lize Plan 1
— & e
Plan 3
Trained Neural

Network TensorRT Optimizer Optimized Plans

TensorRT Optimized Network

next input

3x3 CBR 5x5 CBR 1x1 CBR

1x1 CBR maxpeot

12 <ANVIDIA.

Step 1: Optimize trained model

Import Serialize .Pl nt
Model Engine
e w Pl 2
.- LAYER & TENSOR FUSION = = =h
:) @_. | pran 3
Trawfgvﬁff ral TensorRT Optimizer Optimized Plans

TensorRT Optimized Network

* Vertical Fusion
* Horizonal Fusion next input
« Layer Elimination

L Layers 3x3 CBR 5x5 CBR 1x1 CBR
before after

VGG19 | 43 | 27 -

Inception 309 113 1x1 CBR

V3 | |

ResNet-152 670 159

13 <ANVIDIA.

Step 1: Optimize trained model

Serialize Plan 1
Engine - oan 2

———

. FP16, INT8 PRECISION v (T el

Import
Model

Reduced Precision Inference Performance
Dynamic Range (ResNet50)

FP32 -3.4x10" - +3.4x10° <= Training precision 6,000 .y
FP16 -65504 ~ +65504 <+ No calibration required 5 000 Tensor Core
INT8 -128 ~ +127 <4— Requires calibration
4,000
©
C
(@]
© 3,000
L
. O
Precision calibration for INT8 inference: g 2,000 s
» Minimizes information loss between FP32 and - - 000 LI
INT8 inference on a calibration dataset ’ . P32
- FP
» Completely automatic 0 [.
CPU-Only P4 V100

14 <A NVIDIA.

Step 1: Optimize trained model

e [T |E e =:l
. FP16, INT8 PRECISION w =T |

Plan 3

Trained Neural
C A I I B RATI O N Network TensorRT Optimizer Optimized Plans

Reduced Precision Inference Performance

ResNet50
.IE::% .:.[:;81 Difference 6,000 () o
Googlenet 68.87% 68.49% 0.38% 5, 000 Tensor Core
VGG 68.56% 68.45% 0.11%
Resnet-50 73.11% 72.54% 0.57% 4,000
Resnet-152 75.18% 74.56% 0.61% E
§ 3,000
Precision calibration for INT8 inference: é” 2,000 s
» Minimizes information loss between FP32 and =
INT8 inference on a calibration dataset 1,000 P32 I e
» Completely automatic 0 = [.
CPU-Only P4 V100

15 <4 NVIDIA.

KERNEL AUTO-TUNING

DYNAMIC TENSOR MEMORY

Tesla V100

Kernel Auto-Tuning

100s for specialized kernels
Optimized for every GPU platform

» Batch size
* Input dimensions

Jetson TX2 Drive PX2 + Filter dimensions

Step 1: Optimize trained model

Trained Neural
Network TensorRT Optimizer

Import [esaiy Serialize
Model oo Engine
y »

[XEL]

Plan 1

] Pl 2
— el
Plan3

Optimized Plans

Multiple parameters:

Dynamic Tensor Memory

» Reduces memory footprint and

improves memory re-use

* Manages memory allocation for

each tensor only for the
duration of its usage

16

NVIDIA.

TENSORRT DEPLOYMENT WORKFLOW

Step 1: Optimize trained model

Import ' Serialize r'_ Plan 1
Model ¢ as

— —Engme *7| Plan 2

\

o

o

Plan 3

Trained Neural
Network

Optimized Plans

Step 2: Deploy optimized plans with runtime

E Plan 1 De'serialize Tensor RT Runtime Deploy Pe——
oxX o . @@)
— Engine O Runtime °s:
2| Plan2 —) o, E—) O owoceme
a ®® "’ |
~| Plan 3 o ,%
. . S =,
Optimized Plans TensorRT Runtime Engine Automotive Embedded

17 <4 NVIDIA.

EXAMPLE: DEPLOYING TENSORFLOW MODELS

WITH TENSORRT

Import, optimize and deploy
TensorFlow models using TensorRT
python API

Steps:

Start with a frozen TensorFlow
model

Create a model parser
Optimize model and create a
runtime engine

Perform inference using the
optimized runtime engine

developer.nvidia.com/tensorrt

Deployment and Inference

|é
Q
N New Data
’° - q Python API 1
TensorRT
Trained Neural R
Network e % e e
- .Q —> g
@ L]
TensorRT @ D
Optimizer Optimized

Runtime Engine

!

Inference Results

7 STEPS TO DEPLOYMENT WITH TENSORRT

uff model = uff.from tensorflow frozen model("frozen model file.pb", Step 1: Convert trained model into

OUTPUT _LAYERS)
TensorRT format
parser = uffparser.create uff parser()

Step 2: Create a model parser

parser.register_ input(INPUT_LAYERS[®], (INPUT_C,INPUT H,INPUT W),@)

parser.register_output(OUTPUT_LAYERS[@]) Step 3: Register inputs and outputs
engine = trt.utils.uff to trt engine(G_LOGGER, . CAAi
WFF model, Step 4: Optlmllze modgl and create
parser, a runtime engine
INFEREMCE BATCH SIZE,
1<<28,

trt.infer.DataType.FLOAT)

trt.utils.write engine to file(save path, engine.serialize()) Step 5: Serialize optimized engine

engine = Engine(PLAN=plan, Step 6: De-serialize engine
postprocessors={"output layer name":post processing function}) .
Step 7: Perform inference

result = engine single.infer(image)

RECAP: DEPLOYMENT WORKFLOW

Step 1: Optimize trained model

Import Serialize
Model ® o o Engine 4 I ,
> S o > o | Panfile
® o0
VGG19 FP32, FP16, keras_vgg19_b1_fp32.engine
Batch Size 1
Step 2: Deploy optimized plans with runtime \ﬁ
p De-ser]allze TensorRT Runtime Depl.oy nnnnnnnnnnnn / New flower
2| pran file Engine ®a Runtime . images
o — 8 > H
@@ 0 \
: Prediction
keras_vgg19_b1_fp32.engine
—veslrbI-Ip ° TensorRT Runtime Engine Results

20 <ANVIDIA.

CHALLENGES ADDRESSED BY TENSORRT

High Throughput

Low Response Time

Power and Memory
Efficiency

Deployment-Grade
Solution

Maximizes inference performance on NVIDIA GPUs

> INT8, FP16 Precision Calibration, Layer & Tensor Fusion, Kernel
Auto-Tuning

» Up to 40x Faster than CPU-Only inference and 18x faster inference
of TensorFlow models

» Under 7ms real-time latency

Performs target specific optimizations

» Platform specific kernels for Embedded (Jetson), Datacenter
(Tesla GPUs) and Automotive (DrivePX)

» Dynamic Tensor Memory management improves memory re-use

Designhed for production environments

> No framework overhead, minimal dependencies
» Multiple frameworks, Network Definition API

» C++, Python API, Customer Layer API

21 NVIDIA.

TENSORRT PRODUCTION USE CASES

NVIDIA’s Al platform, using TensorRT software on Tesla GPUs, is the best technology on the
market to support SAP’s requirements for inferencing. TensorRT and NVIDIA GPUs changed
our business model from an offline, next-day service to real-time. We have maximum Al
performance and versatility to meet our customers’ needs, while substantially reducing
energy requirements.

Source: JUERGEN MUELLER, SAP Chief Innovation Officer

Real-time execution is very important for self-driving cars. Developing state of the art
perception algorithms normally requires a painful trade-off between speed and accuracy,
but TensorRT brought our ResNet-151 inference time down from 250ms to 89ms.

Source: Drew Gray - Director of Engineering, UBER ATG

TensorRT is a real game changer. Not only does TensorRT make model deployment a snap
but the resulting speed up is incredible: out of the box, BodySLAM™, our human pose
estimation engine, now runs over two times faster than using CAFFE GPU inferencing.

Source: Paul Kruszewski, CEO - WRNCH

wrnch

TENSORRT KEY TAKEAWAYS

Generate optimized, deployment-ready
runtime engines for low latency inference

Import models trained using Caffe or
TensorFlow or use Network Definition API

Deploy in FP32 or reduced precision INT8,
FP16 for higher throughput

Optimize frequently used layers and integrate
user defined custom layers

Layer & Tensor Fusion

Weight & Activation
Precision Calibration

Trained Neural
Network

Dynamic Tensor
Memory

Kernel Auto-Tuning

TensorRT Runtime

Compiled &
Optimized Neural
Networks
Multi-Stream
Execution

NVIDIA TENSORRT 5 RC NOW AVAILABLE

Volta TensorCore e TensorFlow Importer e Python API

Volta TensorCore

3.7x faster inference on Tesla
V100 vs. Tesla P100 under 7ms
real-time latency

Import TensorFlow

Models

o0 [

T -

TensorFlow Compiled &
Optimized Model

Python API
s)
" Yummmmmall Python API

Data
Scientists

TensorRT

o

Optimize and deploy TensorFlow
models up to 18x faster vs.
TensorFlow framework

Improved productivity with easy
to use Python API for data
science workflows

Free download to members of NVIDIA Developer Program

developer.nvidia.com/tensorrt

PRODUCT PAGE

developer.nvidia.com/tensorrt

2 NVIDIA ACCELERATED COMPUTING

Programmable Inference Accelera

QUICKLINKS

LEARN MORE

DOCUMENTATION

dia.com/deeplearning/sdk

docs.nvi

<A DEVEL opeR

NVIDIA Doep Learning SDK

TersorRT User Guide

> 1. Overview

» 2. TensorRT Workflow
* 3. Using TensorRT 2.1

> 4. Troubleshooting

DEEP LEARNING DOCUMENTATION

uxwanswer.ov- (DD @A A

nsorRT User Guide provides a deeper understanding of TensorRT and pr examples that shoy
0 optinize a network definftion by merging tensors and Leyers, transforming welghts, choosiog efficient
intermediate data formats, and selecting from a large kernel catalog based on layer parameters and messured

performance.

NVIDIA® TensorRT™ s a C++ library that facilitates high performance inference on NVIDIA GPUs. TensorRT takes a
network definition and optimizes it by merging tensors and layers, transforming weights, choasing efficient
mediate data formats, and selecting from a large kernel catalog based on layer parameters and measured

performance.
TensorRT consists of import methods to help you express your trained deep learning model for TensorRT to
optimize and run. It is an optimization tool that applies graph optimization and layer fusion and finds the fastest
implementation of that model leveraging a diverse collection of highly optimized kernels, and a runtime that you
can use to execute this network in an inference context.

TensorRT fncludes a full infrastructure that allows you to leverage high speed reduced precision capabilities of
Pascal ™ GPUs as an optional optimization.

TensorRT is built with

TensorRT directly supports the folloving layer types:
Activation
The Acitvathor e irplnrians per et actfstion fuctons, Supported actiation pes s
RelU, TanH and

Concatenation
he concatenation layer links together multiple tensors of the same height and width across the

channel dimension.

Convolution
The Coavolution layer computes a 3D (channel, height, width) convolution, with or without bias
Deconvolution
The Deconvolution layer implements a deconvolution, with or without bias.
ElementWise
The ElementWise, also known as Eltwise, layer implements per-element operations. Supported
operations are sum, product , and maximum.
FullyConnec tod
FullyConnected layer implements a matrix-vector product, with or without bias.
LRN
The LRN layer implements cross-channel Local Response Normalization.
Plugin
The Plugin Layer allows you to integrate layer implementations that TensorRT does not natively
support

TRAINING

nvidia.com/dli

DEEP LEARNING Al WHATSNEW INDUSTRIES w FORDEVELOPERS ~ PRODUC

Education

DEEP
@D LEARNING
NVIDIA. INSTITUTE

The NVIDIA Deep Learning Institute [DLI) offers hands-on training for
developers, data scientists, and researchers looking to solve the world’s most
lenging problems with deep learning
Through self-paced online labs and instructor-led workshops, DLI provides
training on the latest techniques for designing, training, and cep oying neural
ely

of application domains. Students will explore widely

used open-source frameworks as well as NVIDIA's latest GPU-accelerated deep

learning platforms

networks across a vari

25 <ANVIDIA.

