PARAM Pravega

User’s Manual

Ver. 1.0

Last updated: Dec 16, 2021

www.cdac.in

PARAM Pravega — User’s Manual

@ Copyright Notice

Copyright © 2021 Centre for Development of Advanced Computing
All Rights Reserved.

Any technical documentation that is made available by C-DAC (Centre for Development of Advanced
Computing) is the copyrighted work of C-DAC and is owned by C-DAC. This technical documentation is being
delivered to you as is, and C-DAC makes no warranty as to its accuracy or use. Any use of the technical
documentation or the information contained therein is at the risk of the user. C-DAC reserves the right to
make changes without prior notice.

No part of this publication may be copied without the express written permission of C-DAC.

® Trademarks

CDAC, CDAC logo, NSM logo are trademarks or registered trademarks.

Other brands and product names mentioned in this manual may be trademarks or registered trademarks of
their respective companies and are hereby acknowledged.

f4d Intended Audience

This document is meant for PARAM Pravega users.

Typographic Conventions

Symbol Meaning

Blue underlined text A hyperlink or link you can click to go to a related
section in this document or to a URL in your web
browser.

Bold The names of menus, menu items, headings, and
buttons.

Italics Variables or placeholders or special terms in the
document.

Comsale tamx Console commands

A Getting help

For technical assistance or license renewal, please send an email to
support.parampravega@iisc.ac.in.

Page | 1

mailto:support.parampravega@iisc.ac.in

PARAM Pravega — User’s Manual

Give us your feedback
we value your feedback. Kindly send your comments on content of this document to
support.parampravega@iisc.ac.in Please include the page number of the document along with your feedback.

/1\ DISCLAIMER

The information contained in this document is subject to change without notice. C-DAC shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the performance or use
of this manual.

Page | 2

mailto:support.parampravega@iisc.ac.in

PARAM Pravega — User’s Manual

Table of Contents

INtrOdUCEION.....ceiiiiiirrrrc e 9
System Architecture and Configuration..........ccccceeiiiiiieneiiiiiinenciininenniiinnnene. 10
System Hardware SpecifiCations........coccuiiii i et 10
MASEEE NOGES.... e s e e s e s e e s be e e sanee e 10

[=41 o T LYo L= PP UPPRRPPPRN 11
SEIVICE NOUES. ...ttt ettt et e s bt e e et e e e bt e e sabe e e sabe e e sabeeesaseeeeane 11
CPU COMPULE NOGES. . .uiiiiiiiiieeieiiieeeesttee sttt e e ettt e e e st ee e s s abr e e e ssbaeeeessbeeeesssbaeeessnsseeeean 11
(€] W 0o T o o UL TN AT o [12
(o] - 14 T PO UPPPPPPPPUPS 12
Operating SYStemM .. 12
NETWOrK iNFrastrUCTUIEcooiuiiiiiiee e e 13
Primary Interconnection NETWOIKoooiiiiiii i 14
INfiniBand: HDR 100 GhPS.......uiiiiiiiiiee ettt e et e e e e e e e e eanea e e e e e e e e e e nnnes 14
Secondary Interconnection NetWOIK........coiiiieciiiiiiee e e 14
Gigabit Ethernet: 10 GhPS...uui i iiicciieieee et e e et e e e e e e e s e e e e e e e e e eanneeeeeeas 14
SOTEWAIE STACK ..t 14
TR O 0 113 V=3 T RN 17
Getting an Account 0N PARAM Pravegacuuuuiiiiiiiiieeiiieee et e e e e e e e e e e e e e eenenas 17
[ISC USEIS ittt e 17
EXTEINAI USEIS .ttt et e 17
1] o o = T o P EPPRPS 17
FOr EXTEINAl USEIS ONIY.ceiiiiiiiiiiiiiiie ettt e e e e st e e e e e e e e sebrraeeeeeeeesennnnes 17
FOIEOt PASSWOIT?. .. .uiiiiiiiieeiieiciteee e e e eeecare et e e e e e setbbraeeeeeeeeesssbssseeeeeeessesassrssereeeeeeesnsanes 18
FOr EXTEINal USEIS ONIY: coiiiiiiiiiieeiee ettt e e e et e e e e e eeeeanreeeeeeeeesennnnes 18

) A K= Yoo =LY OO PUPPPUPPPR 18
ACCESSING the CIUSEEI .. e e e e e e e anaraaeeas 18
REMOTE ACCESS ...ttt e e e e r e e e e e e s s 19
USING SSH N WINAOWS .eeeeiiiiiiiiiiiiee ettt eeeeearre et e e e e e s esesbrareeeeeeeessssnseeseeeeeesennnnes 19
USING SSH N IMAC OF LINUX.eeitttiiieieeeieeiiiceee e ee et teee e e e e e e e et e e e e e e e e e easaaeeeeeeeesesssnnannnns 19

PARAM Pravega — User’s Manual

FOr EXTOINAl USEIS: ...ttt ettt ettt e e st e e eanee e 20
PASSWOIT ..ttt ettt et e et e e b e e bt e et e e st e e ereeenane 20
Transferring files between local machine and HPC clustercccceeeiiiicciiiiieiee e, 20
TOOIS ettt e s b e s eare e 22
MobaXterm (Windows installable application):......cccccueveeeiiieeieciiee e, 22
Command Prompt (Windows native application):ccccceeeviieiiieeciieecee e 22
PowerShell (Windows native application)ccceeecueeeiieeeiiie e 23
WinSCP (Windows installable application)cccuveeeiieiciieciece e 23
Running Interactive JObS......cccccereeeiirrencrrennncrenne. Error! Bookmark not defined.
Managing Jobs through its Lifecycle......c.ccccerreeiirieeiiieeiireccrreeccreeecereneeens 25
WAITTIME ettt et e et e e bt e s bt e e s bt e e e b e e e e abe e e eareeeeans 26
LISt Partition c...eveeiiiiiiiee e e 26
Y01 o2 0 o o o =T o o FR PR 26
Iy o « 13 PEPRPR 28
(CT=y o] o e [=1 - 11 3PS 29
Addressing Basic SEcurity CONCEINScccceireeerennerenerenierencernnerenserensesnssesnnens 32
More about Batch Jobs (SLURM)......ccccereeeeiieencertencrrenncereeneeennneesenssesrannnnns 33
Parameters used in SLURM JOD SCIIPt.....cccciurriiieeieiieiiiiteeee et e e e eeentrnre e e e e e e e e enanns 33
Script for a Sequential JODooovviiiiiiiiiee Error! Bookmark not defined.
Script for a Parallel OpenMP JODuuviiiiii e 34
Script for Parallel Job — MPI (Message Passing Interface).......ccccccoecvveeeeccieeecccieee e, 34
Script for Hybrid Parallel Job — (MP1l + OPenMP).......ccoeiuiiieieiiiee et 35

I am familiar with PBS/ TORQUE. How do | migrate to SLURM?ccoceeevveeecreeeeieeceieeens 35
Preparing Your Own Executable.........cccoiveeiiiieiiiieiiiieinieccnreeeccneeeennenenens 37
(O o o =4 = o PN 39

(O O T oY=y o] Y/ o oY = = 2 o RPN 39

(O V1 B o o= £ o o AR PO PPPPUPPPPRN 39

(O V| (I o 0T ={ =T o o PP PPPPUPPPPRN 39
CUDA PrOSramM: i iieiiiiiiiie ettt e e e ettt e s e e e e et e aeba e e e e eeeeeeaba e seeeeeeaessaaaseeeaaaesessnnn 39

(LU 7ANE N @1 a1V 1 o o o= - o RPN 39

Page | 4

PARAM Pravega — User’s Manual

OPENACC PrOgSram: o 40

Job Scheduling on PARAIM Pravegacccceieeeireeniiencrnncerancrennerenserensessssssanens 41
Yol 1= [0 =] OO PP P PROPPPPPPTO 41
7101 (TR OO PSPPI 41
WAIITIME Lo 42
o] o o) Y/ 43
Debugging YOUr COEScciiiiimmneiiiiiimnniiiiiienniiinimesnssiniiesssisiisssssssssssssssss 46
INEFOTUCTION ..t s e e s e e s e 46
BaSICS HOW TOS ... ittt ettt e e e e e e e e e s e e e e e e e e e s e nreneeeeeeessaannnes 46
(00T 00 o 1 - 4 o Yo FS PSR 46
RUNNING WIth BB .. e e e s s aaeee s 46
Basic gdb commands (to be executed in gdb command line window):c.cccceeuuneee.. 47
Using gdb (example — inspecting the COde)ccuiiiiiiiiii e 48
Using gdb (example — using the debUZEEr)ccccuveieieiiiiii e 51
CONCIUSIONS .ottt ettt e st e s abb e e e bt e e s bt e e s bt e e sabeeesabeeesaneeennns 65
POINES 10 NOTE ..eeiiiiiiiie 65
Overall Coding Modifications DONEueeiiii i e e e 66
Machine Learning / Deep Learning Application Development...........cccceeeeeee 67
How to Install local DL ENVIFONMENT 2 ...eiiiiiiiiiiiiiiieeeeee e 68
How to Install your OWN SOTEWArE? ... 68
LOCAl INSTAlATION ... e e 68
Some IMportant Facts....c..coiiiiiiiiiiiiiiiiiiiiirrcrcrsrsresressessesessassssssnsnnns 70
ADOUL FlE SIZ@ ..t 70
Little-Endian and Big-ENdian iSSUES?ccccuvvieiieeiieiciireeeee e eecettrree e e e e eesnbrrreeeeeeeeeennanns 71
Best Practices for HPC...........ccoiiiiiiiiimiiiiiiiiiiiininneecnsssn s nessesseesssse e 72
Installed Applications/LiDrarieseeeseeeeeee 73
Standard Application Programs on PARAM Pravega.......ccccuveeeeeeeeeieiiirrereeeeeeeeeeinnreeeeeeeens 73
LAMMPS APPIICAtIONS cevvieiieiieiiitieeiee ettt eeeetbrer e e e e e e e e ebbraeeeeeeeesesastrseereeeeeessnnanns 74
GROMACS APPLICATION ... 76
GROM ACS 76

PARAM Pravega — User’s Manual

Acknowledging the National Supercomputing Mission in Publications......... 79
Getting Help — PARAM Pravega SUPPOrtccciveueiiiiinnnesiniieenesssinenssssssseenes 80
Steps to Create a NEW TiCKEE ..ccii e e e e e e e e e 80
Closing Your Account 0N PARAIM Pravegaceeiecueeeiiiiuiiieeiiiiieeessiieeeessveeesssisneesssnssneeens 83
RStUAIO, APACHE SPArK ..o ee s 89

3= =T =T 4 o= 90

Page | 6

PARAM Pravega — User’s Manual

List of Figures

Figure 1 - PARAM Pravega Architecture Diagramccceveeeieieiiiiiiiiee e 13
Figure 2- SOFtWAre STACKeiiiiiiiee e e e s s aaeee s 15
Figure 3 - A snapshot of command using MobaXtermcccccovvveeeiniiieee e 22
Figure 4 - A snapshot of "scp" command using Windows command prompt...........cccceuueeee. 22
Figure 5 - A snapshot of "scp" command using Windows PowerShell............ccccoevveeeennnnennn. 23
Figure 6 - A snapshot of "scp" tool to transfer file to and from remote computer. 23
Figure 7—Enter Capteha/StriNg . ..ottt e re e s e e e 24
Figure 8- Output of SINfO COMMANGooiiiiiiieice e 26
Figure 9 — Snapshot depicting the usage of “Job Array”cccoooiieeeeiiiie e, 28
Figure 10 — scontrol show node displays compute node information.........cccccceeeeeeiennnnnenn. 29
Figure 11 — scontrol show partition displays specific partition detailsccccceeeevveeeennnnnnnn. 29
Figure 12 — scontrol show job displays specific job information..........ccccceevviiieiniiieeeiniee, 30
Figure 13 —Sinfo COMMANGuiiiiiiiiiie e e e e e e e e ara e e e e snnaeeee s 41
Figure 14- Listing the shares of association to a cluster.........cccovviveiiiiiiiee e, 44
Figure 15 — Snapshot of debugging ProCesscoovviiiiiiiiii e 49
Figure 16 — Snapshot of debugging ProCesscoovviiiiiiiiee e 50
Figure 17- Output at @ debUZEING STAZE ...uvvreiiiiii i 51
Figure 18 — Snapshot of debUgEIiNG ProCESSceiiiiieiiiiiieeiee e 51
Figure 19 — Output depicting “Arithmetic EXCEPLION”cvveeieeieeiiiieeeeee e, 52
Figure 20 — Snapshot of debugging ProCess ..o 52
Figure 21 — Well, we dumped Core Il . et 53
Figure 22 - Snapshot of debUZEING ProCESS ...uvviiii e e e e 53
Figure 23 — Setting Breakpointe...ci oottt e e e e e e e s sanraeeeees 54
Figure 24 —single stepping through to catch error, 55
Figure 25 — Debugging CONtINUEMccoo i e e e 56
Figure 26 — Debugging CONtINUEMccoo it e e e 56
Figure 27 — Setting @ WatCh POINtooi i e e e 57
Figure 28 — DebuUggiNg CONTINUETooiviiireieee ettt e e e e e e anrreeeeas 58
Figure 29 — Well, Back 10 SQUAre 0Net 59

Page | 7

PARAM Pravega — User’s Manual

Figure 30 — Again Dumping Core!! Things are getting interesting or frustrating or both !!...59

Figure 31 — Debugging CONTINUEMcoiiiiiiiie et e e e saaeee s 60
Figure 32 — Debugging CONtINUEMccoe i e e e e 60
Figure 33 — Debugging continued (Will it ever end?)coccvieeiiiiiee e 61
Figure 34 —We are almost there e 61
Figure 35 — Debugging CONTINUEMcciiiiiiiie it saaeee s 62
Figure 36 — At 1ast @ ClUEII .o e e st e e e s aaeeee s 63
Figure 37 - Correction applied ... e 64
Figure 38 — ReSOIVEA I e e e e e e et e e e e e e e e e nneaeeees 65
Figure 39 — What all we did to get things right |ccovmiiriiiii e, 66
Figure 40 — Snapshot of Ticketing SYStEMcci i e 80
Figure 41- Snapshot of Ticketing SYStemcoov i 81
Figure 42 - Snapshot of Ticketing SYStemMcoviiiii e 81
Figure 43 - Snapshot of Ticketing SYStemMoeviiiii e 82

Page | 8

PARAM Pravega — User’s Manual

Introduction

This document is the user manual for the PARAM Pravega Supercomputing facility at 1ISc
Bangalore. It covers a wide range of topics ranging from a detailed description of the
hardware infrastructure to the information required to utilize the supercomputer, such as
information about logging on to the supercomputer, submitting jobs, retrieving the results
on to user’s Laptop/ Desktop etc. In short, the manual describes all that one needs know to
effectively utilize PARAM Pravega.

The supercomputer PARAM Pravega is based on heterogeneous and hybrid configuration of
Intel Xeon Cascade lake processors, and NVIDIA Tesla V100. The system was designed and
implemented by HPC Technologies team, Centre for Development of Advanced Computing
(C-DAC).

It consists of 2 Master nodes, 11 Login nodes, 2 Firewall nodes, 4 Management, 1 NIS Slave
and 624 (CPU+GPU) compute nodes with total peak computing capacity of (CPU+GPU) 3.3
PFLOPS performance.

Page | 9

PARAM Pravega — User’s Manual

System Architecture and
Configuration

System Hardware Specifications

PARAM Pravega system is based on processor Intel Xeon Platinum 8268 and Intel Xeon Gold
6248 and with a total peak performance of 3.3 PFLOPS. The cluster consists of compute
nodes connected with BullSequana XH2000 HDR 100 InfiniBand interconnect network. The
system uses the Lustre parallel file system.

e Total number of nodes: 644 (20 + 624)
o Master nodes: 2
o Login nodes: 11
o Firewall nodes: 2
o Management nodes: 4
o NISslave node:1
o CPU only nodes: 428
o GPU nodes: 40
o High Memory cpu only nodes:156

Master Nodes

PARAM Pravega is an aggregation of a large number of computers connected through
networks. The basic purpose of the master node is to manage and monitor each of the
constituent components of PARAM Pravega from a system’s perspective. This involves
operations like monitoring the health of the components, the load on the components, and
the utilization of various sub-components of the computers in PARAM Pravega.

Master Nodes : 2

2* Intel Xeon G-6248 Total Cores = 80 cores
Cores =40, 2.5 GHz

Memory= 384 GB Total Memory =768 GB
HDD =1 TBx8

Page | 10

PARAM Pravega — User’s Manual

Login Nodes

Login nodes are typically used for administrative tasks such as editing, writing scripts,
transferring files, managing your jobs and the like. You will always get connected to one of
the login nodes. From the login nodes you can get connected to a compute node and submit
batch jobs through the batch system (SLURM) to run your jobs on compute nodes. For ALL
users PARAM Pravega login nodes are the entry points and hence are shared. By default,
there will be a limit on the CPU time that can be used on a login node by a user and there is
a limit/user on the memory as well. If any of these are exceeded, the job will get

terminated.
Login Nodes : 11
2* Intel Xeon G-6248 Total Cores = 440 cores
Cores =40, 2.5 GHz
Memory= 384 GB each Total Memory = 4136 GB

HDD = 1 TBx8 each

Service Nodes

Typically, the purpose of the service node is to provide Security, Management, monitoring
and other services to the cluster.

Firewall, management, NIS nodes : 7

2* Intel Xeon G-6248 Total Cores = 280 cores
Cores =40, 2.5 GHz

Memory= 384 GB Total Memory= 2688 GB
HDD =1 TBx5

CPU Compute Nodes

CPU nodes are indeed the work horses of PARAM Pravega. All the CPU intensive activities
are carried on these nodes. Users can access these nodes from the login node to run
interactive or batch jobs. Some of the nodes have higher memory, which can be exploited
by users in the aforementioned way.

CPU only Compute Nodes : 428

2* Intel Xeon Platinum 8268 Total Cores = 20544 cores
Cores =48, 2.9 GHz
Memory= 192 GB, DDR4 2933 MHz Total Memory=82176GB

SSD =480 GB (local scratch) per node

Page | 11

PARAM Pravega — User’s Manual

GPU Compute Nodes

GPU compute nodes are the nodes that have CPU cores along with accelerators cards. For
some applications GPUs get markedly high performance. For exploiting these, one has to
make use of special libraries which map computations on the Graphical Processing Units
(Typically one has to make use of CUDA or OpenCL).

GPU Compute Nodes : 40

2* Intel Xeon G-6248 Total Cores = 1600 cores
Cores =40, 2.5 GHz
Memory=192 GB, DDR4 2933 MHz Total Memory= 7680 GB

SSD =480 GB (local scratch) per node
2*nVidia V100 per node

GPU Cores per node=2*5120= 10240

GPU Memory = 16 GB HBM2 per nVidia V100

CPU only Compute Nodes with High memory : 156

2* Intel Xeon Platinum 8268

Cores =48, 2.9 GHz Total Cores = 7488 cores
Memory= 768 GB, DDR4 2933 MHz Total Memory=119808 GB
SSD =480 GB (local scratch) per node

Storage

e Based on Lustre parallel file system
e Total useable capacity of 4 PB Primary storage

e Throughput 100 GB/s

Operating System

e QOperating system on PARAM Pravega is Linux — CentOS 7.9

Page | 12

PARAM Pravega — User’s Manual

PARAM Pravega Architecture Diagram

SerewnMansperent Koces % nos. |

. =
Seurdy
12 s | b = ===

Conavansn anon
—
—— EECE .
=== 4. ==
Login Nocles H . — - v=_
112 m00) ’ - E Y T8
f——=—————4
—; —nTm
! |_S=is—
Canguie == T 7 Psher depdes 12 008d
Nty : . e
300 7981 BER ===
=== [——
==== Lld ——
- =
——— — .
Coxmputn wees == = i
Nigh Memaory :
;;‘Nﬂ:l L2 iwitend EDR Soage
—_——— = pis L2 =
= i —=— &
amtin s — — y
. . —
GPU Modkes == H =
WS KVIDIA : A4 -
Tesh V100 —— rwrr——Te—— e —
T [T
140 nos.) E -1 -3 3
bty 11 Winitang EOR S
100 Ghos
——— — — -—
U Rrsdy . — — —
: Gr— R
WMo .
-— :
(126 0en) —_—— — — H
e p——
aste st s e
m

e lewary i
-

Figure 1 - PARAM Pravega Architecture Diagram

Network infrastructure

A robust network infrastructure is essential to implement the basic functionalities of a
cluster. These functionalities are:

a) Management functionalities i.e. to monitor, trouble shoot, start, stop various
components of the cluster, etc. (Network/ portion of Network which implements
this functionality is referred to as Management fabric).

b) Ensuring fast read/ writes access to the storage (Network/ portion of Network
which implements this functionality is referred to as storage fabric).

c) Ensuring fast I/O operations like connecting to other clusters, connecting the
cluster to various users on the campus LAN, etc. (Network/ portion of Network
which implements this functionality is referred to as I/O Fabric).

d) Ensuring High-Bandwidth, Low-latency communication amongst processors to for
achieving high-scalability (Network/ portion of Network which implements this
functionality is referred to as Message Passing Fabric)

Technically, ALL the aforementioned functionalities can be implemented in a single network.
From the perspectives of requirements, optimal performance and economic suitability, the
aforementioned functionalities are implemented using two different networks based on
different technologies, as mentioned next:

Page | 13

PARAM Pravega — User’s Manual

Primary Interconnection Network

Computing nodes of PARAM Pravega are interconnected by a high-bandwidth, low-latency
interconnect network.

InfiniBand: HDR 100 Gbps

InfiniBand is a high-performance communication architecture owned by Mellanox. This
communication architecture offers low communication latency, low power consumption
and a high throughput. All CPU nodes are connected via the InfiniBand interconnect
network.

Secondary Interconnection Network

Gigabit Ethernet: 10 Gbps

Gigabit Ethernet is the interconnection network that is most commonly available. For
Gigabit Ethernet, no additional modules or libraries are required. The Open MPI, MPICH
implementations will work over Gigabit Ethernet.

Software Stack

Software stack is an aggregation of software components that work in tandem to
accomplish a given task. The task can be, to facilitate a user to execute his job/s or to
facilitate a system administrator to manage a system efficiently. In effect, the software will
have all the necessary components to accomplish a given task. There may be multiple
components of different flavors to accomplish a given sub-task. The user/ administrator may
mix and match these components depending on his choice. Typically, a user would be
interested in preparing his executable, executing the same with his data sets and visualize
the output generated by him. For accomplishing the same, the user would need to compile
his codes, link the codes with communication libraries, Math Libraries, Numerical algorithm
libraries, prepare the executables, run the same with desired data sets, monitor the
progress of his jobs, gathering the results and visualizing the output.

Typically, a system administrator would be interested in ensuring that all the resources are
optimally utilized. For accomplishing this, he may need some installation tools, tools for
checking the health of all the components, good schedulers, tools to facilitate allocation of
resources to users and monitor the usage of the resources.

The software stack provided with this system has a gamut of software components which
meets all the requirements of a user and that of a system administrator. The components of
the software stack are depicted in figure 2.

Page | 14

PARAM Pravega — User’s Manual

C-CHAKSHU: This is a multi-cluster management tool that facilitates the administrator to
efficiently operate the HPC facility. It also enables the user to monitor system metrics
relating to CPU, Storage, Interconnects, File system and Application specific utilization from
a single dashboard. For more information, please follow the link.
http://parampravega.iisc.ac.in:4200

System
Software Stack

-

c-ci%%%ﬂqu CHReME openHpPC

MULTI CLUSTER MONITORING PLATFORM

A AN N e D L Lo o s Lossce 0 b s
y * HPCC ey 10 NG

HPC
Programming
Tools

Middioware
Appliations
and
Managemant

Operating
Systems

C-DAC HPC System Software Stack

Figure 2- Software Stack

Functional Areas Components

Base OS Cent0S 7.9

Architecture X86_64

Provisioning xCAT 2.16.3

Cluster Manager Openhpc (ohpc-xCAT 1.3.9)

Page | 15

http://parampravega.iisc.ac.in:4200/

PARAM Pravega — User’s Manual

Monitoring Tools
Resource Manager
I/O Services

High Speed Interconnects

Compiler Families

MPI Families

C-CHAKSHU, Nagios, Ganglia
Slurm-20.11.8
Lustre Client

Mellanox InfiniBand (MLNX_OFED_LINUX-
5.4-1.0.3.0)

GNU (gcc, g++, gfortran)
Intel Compiler (icc, ifort, icpc)

MVAPICH, OpenMPI, MPICH

Page | 16

PARAM Pravega — User’s Manual

First Things First

Getting an Account on PARAM Pravega

To begin with, you need to get an account on PARAM Pravega. This is a very easy process.
Please follow the steps given below:

11ISc Users

e [ISc users will have the approving authority from 1ISc Bangalore. They can use their
existing NIS credential for accessing the Param Pravega. For any support related to
initial login users can mail at support.parampravega@iisc.ac.in.

External Users

e After approval of access request, users will receive an email in their official email ID
intimating the creation of the account along with a temporary password set by the
system to their account. Users will also get a copy of this document by email.

a) Loginto PARAM Pravega and users will be prompted to change the password. Once
you change the temporary password provided by the system to your own password,
you are ready to use PARAM Pravegal!

First login

For External users only

Whenever the newly created user on PARAM Pravega tries to login with the user Id and
password (temporary, system generated) provided over the Email through PARAM Pravega
support, he/she will next be prompted to create a “new password” of their choice which will
change the temporary, system generated password. This will enable you to keep your
account secure. It is recommended that you have a strong password which contains the
combination of alphabets (lower case / upper case), numbers, and a few special characters
that you can easily remember.

Given next is a screenshot that describes the scenario for “first login”

Page | 17

about:blank

PARAM Pravega — User’s Manual

Observe the picture below and answer the question listed afterwards:

PG L X PRL 8 PNE X NS X
(K| |k |d[T|Y]|b|n|M)
A s A NaYalaY Al

Type the string above: KkdTYbnM

Password:

You are required to change your password immediately (password aged)
password expired 18078 days ago

New password: |

Your password will be valid for 90 days. On expiry of 90 days period, you will be prompted
to change your password, on attempting to log in. You are required to provide a new
password.

Forgot Password?

For External users only:

There is nothing to panic!! Please raise a ticket regarding this issue and the system
administrators will resolve your problem. Please refer to the section “Getting Help — PARAM
Pravega Support, described elsewhere in this manual. Follow the GUI based, user-friendly
ticketing system. Please follow the steps given below:

1. Openthe PARAM Pravega support site i.e the ticketing tool by following the link
https://parampravega.iisc.ac.in/support

Login with your registered email id, complete name, Contact number.
There you can raise a ticket to get the password reset.

The system admin person will revert with an email for verification.

v ok W

Once acknowledged, the password is reset for the user and an email is sent back for
intimating the same.

6. Then the user can login with the temporary password and can set a new password of
his/her choice.

System Access

Accessing the cluster

The cluster can be accessed through login nodes, which allows users to login.

= You may access the login node through ssh.

= The login node is the primary gateway to the rest of the cluster, which has a job
scheduler (called Slurm). You may submit jobs to the queue and they will run when
the required resources are available.

Page | 18

https://parampravega.iisc.ac.in/support

PARAM Pravega — User’s Manual

= Please do not run programs directly on the login node. Login nodes are used to
submit jobs, transfer data and to compile source code. (If your compilation takes
more than a few minutes, you should submit the compilation job into the queue to
be run on the cluster.)

= By default, two directories are available (i.e. /hnome and /scratch). These directories
are available on the login node as well as the other nodes on the cluster. /scratch is
for temporary data storage, generally used to store data required for running jobs.

Remote Access

* Note : Port of SSH Service for external user is 4422 whereas for 11Sc users is 22

Using SSH in Windows

To access PARAM Pravega you need to “ssh” the login server. PuTTY is the most popular
open source “ssh” client application for Windows; you can download it from
(http://www.putty.org/). Once installed, find the PuTTY application shortcut in your Start
Menu, desktop. On clicking the PUTTY icon The PuTTY Configuration dialog should appear.
Locate the “Host Name or IP Address” input Field in the PuTTY Configuration screen. Enter
the user name along with IP address or Hostname with which you wish to connect.

(e.g. [username]@parampravega@iisc.ac.in —p 4422) for external users.
Enter your password when prompted, and press Enter.

Using SSH in Mac or Linux

Both Mac and Linux systems provide a built-in SSH client, so there is no need to install any
additional package. Open the terminal, connect to an SSH server by typing the following
command:

ssh[username] @[hostname]

For example, to connect to the PARAM Pravega Login Node, with the username

For 1ISc Users:

userl: ssh userl@parampravega.iisc.ac.in

Page | 19

about:blank
mailto:user1@parampravega.iisc.ac.in

PARAM Pravega — User’s Manual

For External Users:

userl: ssh userl@parampravega.iisc.ac.in -p 4422

You will be prompted for a password, and then will be connected to the server.

Password

How to change the user password?
a) For lISc Users
Please contact the SERC nodal person.
b) For External Users

Use the passwd command to change the password for the user from login node.

[nikhleshs@loginl ~]1% passwd
Changing password for user nikhleshs.
(current) LDAP Password:

New password:

Retype new password:

Transferring files between local machine and HPC cluster

Users need to have the data and application related to their project/research work on
PARAM Pravega.

To store the data special directories have been made available to the users with the name
“"home” the path to this directory is “/home”. Whereas these directories are common to all
the users, a user will get his own directory with their username in /home/ directories where
they can store their data.

/home/<username>/: ! This directory is generally used by the user to
install applications.

However, there is a limit to the storage provided to the users, the limits have been defined
according to quota over these directories, all users will be allotted the same quota by
default. When a user wishes to transfer data from their local system (laptop/desktop) to the
HPC system, they can use various methods and tools.

A user using ‘Windows’ operating system will get methods and tools that are native to
Microsoft windows and tools that could be installed on your Microsoft windows machine.
Linux operating system users do not require any tool. They can just use the “scp” command
on their terminal, as mentioned below.

Page | 20

mailto:user1@parampravega.iisc.ac.in

PARAM Pravega — User’s Manual

Users are advised to keep a copy of their data with themselves, once the project/research
work is completed by transferring the data in from PARAM Pravega to their local system
(laptop/desktop). The command shown below can be used for effecting file transfers (In all
the tools):

scp —-r <path to the local data directory><your username>W@d<IP of
paramPravega/Host Name>:<path to directory on HPC where to save the
data>

Example:

Same Command could be used to transfer data from the HPC system to your local system
(laptop/desktop).

scp -r /dir/dir/file testuser@<cluster IP/Name>:/home/testuser

Example:

scp —-r <path to directory on HPC><your username>@<IP of local
system>:<path to the local data directory>

scp -r /home/testuser testuser@<local system
IP/Name>:/dir/dir/file

Note: The Local system (laptop/desktop) should be connected to the network with which it
can access the HPC system.

To reiterate,
Copying Directory/File from local machine to PARAM Pravega:

To copy a local directory from your Linux system (say Wrf-2.0) to your home directory in
your PARAM Pravega HPC account, the procedure is:

1. From the terminal go to the parent directory using cd command.

userl@mylaptop:~Scd ~/MyData/

2. Under parent directory type Is <& press Enter key>, & notice Wrf-2.0 is there.
userl@mylaptop: ~$ls Files TempFiles-0.5 Wrf-2.0

3. Begin copy by typing:

Page | 21

PARAM Pravega — User’s Manual

userl@mylaptop:™~S scp -r Wrf-2.0 (username)@parampravega@iisc.ac.in
< you will be prompted for password ; enter your password >
4. Now login to your account as: userl@mylaptop:~S ssh (your username)@

parampravega.iisc.ac.in< you will be prompted for password ; enter password >
[userl@login ~]S

5. Is command, you should see Wrf-2.0 directory.
6. While copying from PARAM Pravega to your local machine, follow the same steps

By interchanging source and destination in the scp command. Refer to the generic copying
described earlier.

Tools

MobaXterm (Windows installable application):

It is a third party freely available tool which can be used to access the HPC system and
transfer file to PARAM Pravega system through your local systems (laptop/desktop).

Link to download this tool : https://mobaxterm.mobatek.net/download-home-edition.html

4422 Desktop/~\$nodes 1ist.xlsx rootiparampravegs

§ host, then you must indulige me 1n & simple challenge

Observe the plcture below and answer the question listed afterwards

Figure 3 - A snapshot of command using MobaXterm

Command Prompt (Windows native application):

This is a native tool for Windows machine which can be used to transfer data from the
PARAM Pravega system through your local systems (laptop/desktop).

o the list of known hosts.

Figure 4 - A snapshot of "scp" command using Windows command prompt.

Page | 22

https://mobaxterm.mobatek.net/download-home-edition.html

PARAM Pravega — User’s Manual

PowerShell (Windows native application)

This is a native tool for Windows machine which could be used to transfer data from the
PARAM Pravega system through your local systems (laptop/desktop).

Figure 5 - A snapshot of "scp" command using Windows PowerShell.

WinSCP (Windows installable application)

This popular tool is freely available and is used very often to transfer data from Windows
machine to Linux machine. This tool is GUI based which makes it very user-friendly.

Link for this tool is : https://winscp.net/eng/download.php

| B

|;1’f" Mew Site Session
File protocol:
SFTP ~
Host name: Port number:
|parampravega.iisc.ac.in | | 4422 = |
User name: Password:
Save - Advanced... |v

Tools - Manage - Login |v Close Help

Show Login dialog on startup and when the last session is dosed

Figure 6 - A snapshot of "scp" tool to transfer file to and from remote computer.

Page | 23

https://winscp.net/eng/download.php

PARAM Pravega — User’s Manual

Server prompt - parampravega.isc.ac.in >
Connecting to host... 2
ﬁ Authenticating...
W
If you truly desire access to this host, then you must indulge me in a simple
challenge.

Observe the picture below and answer the question listed afterwards:

ATATATATAYATAYA!
(vIGIFIsIOlglllt)
(VAW AWAWAWAWAWAW)

Type the string above:

Figure 7—Enter Captcha/String

Note: Port Used for SFTP connection is 4422 and not 22. Please change it to 4422

Page | 24

PARAM Pravega — User’s Manual

Managing Jobs through its Lifecycle

PARAM Pravega extensively uses spack. The purpose of spack is to provide freedom to user
for loading required application or package of specific version with all its dependencies in the
user environment. User can find the list of all installed packages with their specific versions
and dependencies. This also specifies which version of the application is available for a given
session. All applications and libraries are made available through spack. A User has to load
the appropriate package from the available packages.

Sspack find # This command lists all installed
packages
$spack find - - path # Shows path of all installed packages
with hash key
$spack load package name # Load specified package with all
dependencies in user environment
example:
$Sspack load gcc@ll.2.0 # Loads gcc@ll.2.0 in user environment
Sgcc -v # Shows path and currently using gcc. It must
show loaded gcc version
$spack unload package name # Remove specified package with all
dependencies from user environment
example:

$spack unload gcc@11.2.0 # Remove gcc@l11.2.0 from user
environment

Sgcc -v # Shows default gcc version available with
spack. It

must not show gcc@l1.2.0

A simple Slurm job script

#!/bin/sh

#SBATCH -N 1 // specifies number of nodes
#SBATCH --ntasks-per-node=48 // specifies cores per node
#SBATCH —--time=06:50:20 // specifies maximum duration of run
#SBATCH —--job-name=lammps // specifies job name
#SBATCH --error=job.%J.err node 48 // specifies error file name
#SBATCH --output=job.%J.out node 48 //specifies output file name

#SBATCH --partition=standard // specifies queue name

cd $SSLURM SUBMIT DIR // To run job in the directory from where it is
submitted

export I MPI FABRICS=shm:dapl //For Intel MPI versions 2019

onwards this value must be shm:ofi
mpiexec.hydra -n S$SSLURM NTASKSlammps.exe

Page | 25

PARAM Pravega — User’s Manual

walltime

Walltime parameter defines as to how long your job will run. The maximum runtime of a job
allowed as per QoS policy. The command line to specify walltime is given below.

srun -t walltime <days-hours:mins:seconds>

and also as part of the submit scripts described in the manual. If a job does not get
completed within the walltime specified in the script, it will get terminated.

The biggest advantage of specifying appropriate walltime is that the efficiency of scheduling
improves resulting in improved throughput in all jobs including yours. You are encouraged
to arrive at the appropriate walltime for your job by executing your jobs a few times.

NOTE: You are requested to explicitly specify the walltime in your command lines and scripts.

List Partition

sinfo displays information about nodes and partitions(queues).

S sinfo

[r @pravega ~]# sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
standard* up 3-00:00: 11 drawn* gpu[006-016]
standard* up 3-00:00:0 308 down* cn[230,250,307,3
standard* up 3-00:00; 67 idle ¢n[001-060,
standard+ up 3-00:00: 238 down cn[061-

up 3-00:00:00 11 drawn* gpu[006-016]

up 3-00:¢ 29 down* gpu[001-005,017-040]
up o 156 down* hm[001-156)

up 3-00:00:00 123 down* ¢n[230,250,307,

up 3-00: 67 idle ¢cn[001-060,301-

up 3-00:00; 238 down cn[061-229,231-2¢

Figure 8- Output of sinfo command
Submit the job

We can consider three cases of submitting a job

1. Submitting a simple standalone job

This is a simple submit script which is to be submitted

$ sbatch slurm-job.sh
Submitted batch job 106

2. Submit a job that's dependent on a prerequisite job being completed

Page | 26

https://www.brightcomputing.com/Blog/bid/172545/How-to-Submit-a-Simple-Slurm-GPU-job-to-your-Linux-cluster

PARAM Pravega — User’s Manual

Consider a requirement of pre-processing a job before proceeding to actual processing.
In this scenario, the actual processing script is dependent on the outcome of pre-
processing script.

Here’s a simple job script. Note that the Slurm -J option is used to give the job a name.

#!/usr/bin/env bash
#SBATCH -p standard
#SBATCH -J simple

sleep 60

Submit the job: S sbatch simple.sh
Submitted batch job 149

Now we'll submit another job that's dependent on the previous job. There are many
ways to specify the dependency conditions, but the "singleton" method is the simplest.
The Slurm -d singleton argument tells Slurm not to dispatch this job until all previous
jobs with the same name have completed.

$ sbatch -d singleton simple.sh //may be used for first pre-processing
and then submitting
Submitted batch job 150
$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)
150 standard simple wuserl PD 0:00 1 (Dependency)
149 standard simple wuserl R 0:17 1 atom0O1

Once the prerequisite job finishes the dependent job is dispatched.

$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)
150 standard simple userl R 0:31 1 atomO1

Submit a job with a reservation allocated

Slurm has the ability to reserve resources for jobs being executed by select users and/or
select bank accounts. A resource reservation identifies the resources in that reservation
and a time period during which the reservation is available. The resources which can be
reserved include cores, nodes.

Use the command given below to check the reservation name allocated to your user
account

$ scontrol show reserv

Page | 27

PARAM Pravega — User’s Manual

If your ‘user account’ is associated with any reservation the above command will show
you the same. For eg. The reservation name given is user_11. Use the command given
below to make use of this reservation

$ sbatch --reservation=user 11 simple.sh

4. Submitting multiple jobs with minor or no changes (array jobs)

A SLURM job array is a collection of jobs that differs from each other by only a single
index parameter. Job arrays can be used to submit and manage a large amount of jobs
with similar settings.

Submit a job array with index values between © and 31
sbatch --array=0-31 -N1 tmp

Submit a job array with index values of 1, 3, 5 and 7

sbatch --array=1,3,5,7 -N1 tmp

Submit a job array with index values between 1 and 7
with a step size of 2 (i.e. 1, 3, 5 and 7)
sbatch ——array=1-7:2 -N1 tmp

Figure 9 — Snapshot depicting the usage of “Job Array”

N1 is specifying number of nodes you want use for your job. example : N1 -one node ,N4 -
four nodes. Instead of tmp here you can use below example script.

#!/bin/bash

#SBATCH -N 1

#SBATCH --ntasks-per—-node=48
#SBATCH --error=job.%A %a.err
#SBATCH --output=job.%A %a.out

#SBATCH --time=01:00:00
#SBATCH --partition=standard

spack load intel-oneapi-compilers

cd /home/guest/Rajneesh/Rajneesh

export OMP NUM THREADS=${SLURM ARRAY TASK ID}
/home/guest/Rajneesh/Rajneesh/md omp

List jobs

Monitoring jobs on SLURM can be done using the command squeue. squeue is used to view
job and job step information for jobs managed by SLURM.

Page | 28

PARAM Pravega — User’s Manual

$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)
106 standard slurm-jo userl R 0:04 1 atomO1

Get job details

scontrol can be used to report more detailed information about nodes, partitions, jobs, job
steps, and configuration.

scontrol show node - shows detailed information about compute nodes.

[root@pravega ~]# scontrol show node cnb01
NodeName=cn@01 Arch=x86_64 CoresPerSocket=24
CPUAlloc=0 CPUTot=48 CPULoad=13.29
AvailableFeatures=cpu,centos?
ActiveFeatures=cpu,centos?
Gres=(null
NodeAddr=cn001 NodeHostName=cn001 Version=20.11.8
0S=Linux 3.10.0-1160.e17.x86_64 #1 SMP Mon Oct 19 16:18:59 UTC 2020
RealMemory=1 AllocMem=0 FreeMem=176764 Sockets=2 Boards=1
State=IDLE ThreadsPerCore=1 TmpDisk=0 Weight=1 Owner=N/A MCS_label=N/A
Partitions=standard, cpu
BootTime=2021-12-09T12:03:04 SlurmdStartTime=2021-12-09T12:17:41
CFfgTRES=cpu=48,mem=1M,b1111ng=48
AlLlocTRES=
CapWatts=n/a
CurrentWatts=83 AveWatts=202
ExtSensorsJoules=n/s ExtSensorsWatts=0 ExtSensorsTemp=n/s
Comment=()

Figure 10 — scontrol show node displays compute node information

scontrol show partition - shows detailed information about a specific partition

[root@pravega ~]# scontrol show partition hm
PartitionName=hm
AllowGroups=ALL AllowAccounts=ALL AllowQos=ALL
AllocNodes=ALL Default= QoS=N/A
DefaultT ume=! E DisableRootlobs= ExclusiveUser=N0 GraceTime=0 Hidden=
MaxNodes=UNLIMITED MaxTime=3-00:;00:00 MinNodes=0 LLN= MaxCPUsPerNode=UNLIMITED

Nodes=hm[001-156]

PriorityJobFactor=75 PriorityTier=75 RootOnly=N0 RegResv=N0 OverSubscribe=
OverTumeLimit=NONE PreemptMode=0FF

State=UP TotalCPUs=7488 TotalNodes=156 SelectTypeParameters=N
JobDefaults=()

DefMemPerNode=UNLIMITED MaxMemPerNode=UNLIMITED

Figure 11 — scontrol show partition displays specific partition details

scontrol show job - shows detailed information about a specific job or all jobs if no job id is
given.

Page | 29

PARAM Pravega — User’s Manual

[root@pravega ~J]# scontrol show job 8931

JobId=8931 JobName=test
UserId=root(0) GroupIld=root(0) MCS_label=N/A
Priority=111072 Nice=0 Account=root QO0S=normal
JobState=RUNNING Reason=None Dependency=(null)
Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
RunTime=00:00:13 TimeLim1t=3-00:00:00 TimeMin=N/A
SubmitTime=2021-12-09T712:38:09 EligibleTime=2021-12-09T712:38:09
AccrueTime=2021-12-09T12:38:09
StartTime=2021-12-09T712:38:09 EndTime=2021-12-12T712:38:09 Deadl ine=N/A
SuspendT ime=None SecsPreSuspend=0 LastSchedEval=2021-12-09T12:38:09
Partition=standard AllocNode:Sid=pravega: 170385
RegNodelList=(null) ExcNodeList=(null)
NodeList=cn[001-010]
BatchHost=cn0O1
NumNodes=10 NumCPUs=10 NumTasks=10 CPUs/Task=1 ReqB:S:C:T=0:0:#:*
TRES=cpu=10,node=10,b1111ing=10
Socks/Node=* NtasksPerN:B:S:C=0:0:*:* CoreSpec=*
MinCPUsNode=1 MinMemoryNode=0 MinTmpDiskNode=0
Features=(null) DelayBoot=00:00:00
OverSubscribe=0K Contiguous=0 Licenses=(null) Network=(
Command=/root/sample_script
WorkDir=/root
StdErr=/root/output_0806. txt
StdIn=
StdOut=/root/output_0806.txt
Power=
NtasksPerTRES:0

Figure 12 — scontrol show job displays specific job information

scontrol update job - change attributes of submitted job.like time limit,priority (root only)

$ scontrol show job 106

JobId=106 Name=slurm-job.sh
UserId=userl (1001) GroupId=userl (1001)
Priority=4294901717 Account=(null) QOS=normal
JobState=RUNNING Reason=None Dependency=(null)
Requeue=1 Restarts=0 BatchFlag=1 ExitCode=0:0
RunTime=00:00:07 TimeLimit=14-00:00:0 TimeMin=N/A
SubmitTime=2013-01-26T12:55:02 EligibleTime=2013-01-26T12:55:02
StartTime=2013-01-26T12:55:02 EndTime=Unknown
PreemptTime=None SuspendTime=None SecsPreSuspend=0
Partition=standard AllocNode:Sid=atom-headl:3526
RegNodeList=(null) ExcNodeList=(null)
NodeList=atomOl
BatchHost=atom01
NumNodes=1 NumCPUs=2 CPUs/Task=1 ReqS:C:T=*:*:%*
MinCPUsNode=1 MinMemoryNode=0 MinTmpDiskNode=0
Features=(null) Gres=(null) Reservation=(null)
Shared=0 Contiguous=0 Licenses=(null) Network=(null)
Command=/home/userl/slurm/local/slurm-job.sh
WorkDir=/home/userl/slurm/local

scontrol update job= 106 TimeLimit=15-00:00:0

Page | 30

PARAM Pravega — User’s Manual

Suspend a job (root only):

scontrol suspend 135

squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)
135 standard simple.s wuserl S 0:10 1 atom01

Resume a job (root only):

scontrol resume 135

squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)
135 standard simple.s wuserl R 0:13 1 atomO1

Kill a job. Users can kill their own jobs, root can kill any job.

$ scancel 135
$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)

Hold a job:
$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)
139 standard simple wuserl PD 0:00 1 (Dependency)
138 standard simple wuserl R 0:16 1 atomO1
$ scontrol hold 139
$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)
139 standard simple userl PD 0:00 1 (JobHeldUser)
138 standard simple wuserl R 0:32 1 atomO1

Release a job:

$ scontrol release 139

$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)
139 standard simple wuserl PD 0:00 1 (Dependency)
138 standard simple wuserl R 0:46 1 atom0O1

Page | 31

PARAM Pravega — User’s Manual

Addressing Basic Security Concerns

Your account on PARAM Pravega is ‘private to you’. You are responsible for any actions

emanating from your account. It is suggested that you should never share the password to

anyone including your friends and system administrators!!

Please note that, by default, a new account created on PARAM Pravega is readable by

everyone on the system. The following simple commands will make your account

adequately safe.

chmod 700 /home/Suser

chmod 750 /home/Suser

chmod 755 /home/Suser

chmod 777 /home/Suser

I will ensure that only yourself can read, write and
I execute files in your home directory

I will enable yourself and the members of your
I group to read and execute files in your home
I directory

I will enable yourself, your group members and
I everyone else to read and execute files in your
I directory

I will enable EVERY ONE on the system to read,

I Write and execute files in your home directory.
I This is a sort of “free for all’ situation. This

I should be used very judiciously

Page | 32

PARAM Pravega — User’s Manual

More about Batch Jobs (SLURM)

SLURM (Simple Linux Utility for Resource Management) is a workload manager that provides a
framework for job queues, allocation of compute nodes, and the start and execution of jobs.

It is important to note:

* Compilations are done on the login node. Only the execution is scheduled via SLURM
on the compute nodes

* Upon Submission of a Job script, each job gets a unique Job Id. This can be obtained
from the ‘squeue’ command.

* ThelJob Id is also appended to the output and error filenames.

Parameters used in SLURM job script

The job flags are used with SBATCH command. The syntax for the SLURM directive in a
script is "#SBATCH <flag>". Some of the flags are used with the srun and salloc commands.

Resource Flag Syntax Description
partition --partition=partition name Partition is a queue for jobs.
time --time=01:00:00 Time limit for the job.
nodes --nodes=2 Number of compute nodes for
the job.
cpus/core --ntasks-per-node=8 Corresponds to number of cores
s on the compute node.
resource --gres=gpu:2 Request use of GPUs on
feature compute nodes
account --account=group-slurm- Users may belong to groups or
account accounts.
jobname --job-name="lammps" Name of job.
output file --output=lammps.out Name of file for stdout.
-w, --nodelist Request a specific list of hosts.
--mail-type= Notify user by email when

certain event types occur. Valid
type values are NONE, BEGIN,
END, FAIL, REQUEUE, ALL
TIME_LIMIT, TIME_LIMIT_90
(reached 90 percent of time
limit), TIME_LIMIT_80 (reached
80 percent of time limit), and
TIME_LIMIT_50 (reached 50

Page | 33

PARAM Pravega — User’s Manual

percent of time limit). Multiple
type values may be specified in a
comma separated list
email --mail- User's email address
address userusername@iisc.ac.inUser
to receive email notification of
state changes as defined by --
mail-type
access --exclusive Exclusive access to compute
nodes.
The job allocation cannot share
nodes with other running jobs

Script for a Parallel OpenMP Job

#!/bin/bash

#SBATCH -N 1 // Number of nodes

#SBATCH --ntasks-per-node=48 // Number of core per node

#SBATCH --error=job.%J.err // Name of output file

#SBATCH --output=job.%J.out // Name of error file

#SBATCH --time=01:00:00 // Time take to execute the program #SBATCH --
partition=standard // specifies queue name (standard is the default
partition if you does not specify any partition job will be submitted using
default partition) other partitions

You can specify hm and gpu

// To load the package //

spack load intel-oneapi-compilers

cd <path of the executable>

or

cd S$SLURM SUBMIT DIR //To run job in the directory from where it is
submitted

export OMP NUM THREADS=48 (Depending upon your requirement you can change
number of threads. If total number of threads per node is more than 48,

multiple threads will share core(s) and performance may degrade)

/home/cdac/a.out (Name of the executable)

Script for Parallel Job — MPI (Message Passing Interface)

#!/bin/sh

#SBATCH -N 16 // Number of nodes

#SBATCH --ntasks-per-node=48 // Number of cores per node

#SBATCH --time=06:50:20 // Time required to execute the program
#SBATCH --job-name=lammps // Name of application

#SBATCH --error=job.%J.err 16 node 48 // Name of the output file
#SBATCH --output=job.%J.out 16 node 48 // Name of the error file
#SBATCH --partition=standard // Partition or queue name

// To load the package //

Page | 34

PARAM Pravega — User’s Manual

spack load intel-oneapi-compilers

// Below are Intel MPI specific settings //
export I MPI FALLBACK=disable

export I MPI FABRICS=shm:dapl
export I MPI DEBUG=9 // Level of MPI verbosity //

cd $SLURM SUBMIT DIR
or
cd /home/manjuv/LAMMPS 2018COMPILER/lammps-22Augl8/bench

// Command to run the lammps in Parallel //
time mpiexec.hydra -n $SLURM NTASKS -genv OMP NUM THREADS 1

/home/manjuv/LAMMPS_ZO18COMPILER/lammps—22AugI8/s;c/lmp_intel_cpu_intelmpi
-in in.1j

Script for Hybrid Parallel Job — (MPIl + OpenMP)

#!/bin/sh

#SBATCH -N 16 // Number of nodes

#SBATCH --ntasks-per-node=48 // Number of cores for node

#SBATCH --time=06:50:20 // Time required to execute the program
#SBATCH --job-name=lammps // Name of application

#SBATCH --error=job.%J.err 16 node 48 // Name of the output file
#SBATCH --output=job.%J.out 16 node 48 // Name of the error file
#SBATCH --partition=standard // Partition or queue name

cd $SLURM SUBMIT DIR
// To load the package //

spack load intel-oneapi-compilers

// Below are Intel MPI specific settings //
export I MPI FALLBACK=disable

export I MPI FABRICS=shm:dapl

export I MPI DEBUG=9 // Level of MPI verbosity //

export OMP NUM THREADS=24 //Possibly then total no. of MPI ranks will be =
(total no. of cores, in this case 16 nodes x 48 cores/node) divided by (no.
of threads per MPI rank i.e. 24)

// Command to run the lammps in Parallel //

time mpiexec.hydra -n 32 lammps.exe —-in in.1j

| am familiar with PBS/ TORQUE. How do | migrate to SLURM?

Environment Variables PBS/Torque SLURM

Page | 35

PARAM Pravega — User’s Manual

JobId

Submit Directory
Node List

Job Specification
Script directive

Job Name

Node Count

CPU count
CPUs Per Task

Memory Size

Wall Clock Limit

Node Properties

Standard Output File

Standard Error File

Combine stdout/stderr

Job Arrays

Delay Job Start

$PBS_JOBID
SPBS_JOBID
SPBS_NODEFILE
PBS/Torque
#PBS

-N [name]

-1 nodes=[count]

-1 ppn=[count]

-1 mem-[MB]

-1 walltime=[hh:mm:ss]
-1
nodes=4.ppn=8:[property]
-o [file_name]

-e [file_name]

-j oe (both to stdout)

-t [array_spec]

-a [time]

$SLURM_JOBID
$SLURM_SUBMIT_DIR
$SLURM_JOB_NODELIST
SLURM

#BATCH

--job-name=[name] OR -J
[name]

--nodes=[min[-max]] OR -N
[min[-max]]

---ntasks-per-node=[count]
--cpus-per-task=[count]

--mem=[MB] OR —
mem_per_cpu=[MB]

--time=[min] OR —
mem_per_cpu=[MB]

--constraint=[list]

--output=[file_name] OR -0
[file_name]

--error=[file_name] OR -e
{file_name]

(This is default if you do not
specify —error)

--array=[array_spec] OR -a
[array_spec]

--begin=[time]

Page | 36

PARAM Pravega — User’s Manual

Preparing Your Own Executable

The compilations are done on the login node, whereas the execution happens on the
compute nodes via the scheduler (SLURM).

Note: The Compilation and execution must be done with same libraries and matching version to avoid
unexpected results.

Steps:

1. Load required modules on the login node.
2. Do the compilation.

3. Open the job submission script and specify the same modules to be loaded as used while
compilation.

4. Submit the script.

The directory contains a few sample programs and their sample job submission scripts. The
compilation and execution instructions are described in the beginning of the respective files.

The user can copy the directory to his/her home directory and further try compiling and
executing these sample codes. The command for copying is as follows:

cp -r /home/apps/Docs/samples/ ~/.

1. mm.c - Serial Version of Matrix-Matrix Multiplication of two NxN matrices

2. mm_omp.c - Basic OpenMP Version of Matrix-Matrix Multiplication of two NxN

matrices

3. mm_mpi.c - Basic MPI Version of Matrix-Matrix Multiplication of two NxN
matrices

4, mm_acc.c - OpenAcc Version of Matrix-Matrix Multiplication of two NxN
matrices

5. mm_blas.cu - CUDA Matrix Multiplication program using the cuBlas library.
6. mm_mkl.c - MKL Matrix Multiplication program.
7. laplace_acc.c - OpenACC version of the basic stencil problem.

It is recommended to use the intel compilers since they are better optimized for the
hardware.

Page | 37

PARAM Pravega — User’s Manual

Compilers
Compilers Description Versions Available
gcc/gfortran GNU Compiler 4.8.5,5.5.0,7.3.0,8.3.0,9.3.0
(C/C++/Fortran
)
icc/icpc/ifort Intel Compilers 16.x, 17.x, 18.x, 19.x,20.x
(C/C++/Fortran

)

mpicc/mpicxx/mpif90 Intel-MPlwith 16.x, 17.x, 18.x, 19.x
GNU compilers
(C/C++/Fortran

)

mpiicc/mpiicpc/mpiifor Intel- 16.x, 17.x, 18.x, 19.x
t MPlwithintel

compilers

(C/C++/Fortran

)

nvce CUDAC 7.5,8.0,9.0,9.2,10.0,10.1,
Compiler 10.2,11.2

pgcc/pgc++/pgfortran PGI Compiler 19.4, 19.10
(C/C++/Fortran

)

Optimization Flags

Optimization flags are meant for uniprocessor optimization, wherein, the compiler tries to
optimize the program, on the basis of the level of optimization. The optimization flags may
also change the precision of output produced from the executable. The optimization flags
can be explored more on the respective compiler pages. A few examples are given below.

Intel: -03 —-xHost
GNU: -03
PGI: -fast

Given next is a brief description of compilation and execution of the various types of
programs. However, for certain bigger applications, loading of additional dependency
libraries might be required.

Page | 38

PARAM Pravega — User’s Manual

C Program:

Setting up of environment:

spack load intel-oneapi-compilers gcc@l11.2.0
compilation: icc -03 -xHost <<prog name.c>>
Execution: ./a.out

C + OpenMP Program:

Setting up of environment:

spack load intel-oneapi-compilers gcc@l1l.2.0
Compilation: icc -03 -xHost -gopenmp <<prog name.c>>
Execution: ./a.out

C + MPI Program:

Setting up of environment:

spack load intel-oneapi-compilers gcc@l11.2.0
Compilation: mpiicc -03 -xHost <<prog name.c>>
Execution: mpirun -n <<num procs>> ./a.out

C + MKL Program:

Setting up of environment:

spack load intel-oneapi-compilers gcc@l1.2.0
Compilation: icc -03 -xHost -mkl <<prog name.c>>
Execution: ./a.out

CUDA Program:

Setting up of environment:
spack load cuda@l0.1l gcc@l11.2.0

Example (1)

Compilation: nvcc —arch=sm 70<<prog name.cu>>

Execution: ./a.out

Note: The optimization switch -arch=sm 70 is intended for Volta V100 GPUs
and is valid for CUDA 9 and later. Similarly, older versions of CUDA have
compatibility with lower versions of GCC only. Accordingly, appropriate
modules of GCC must be loaded.

Example (2)
Compilation: nvcc -arch=sm 70 /home/apps/Docs/samples/mm blas.cu -lcublas
Execution: ./a.out

CUDA + OpenMP Program:

§Setting up of environment:
- spack load cuda@l10.1 gcc@l1.2.0

Page | 39

PARAM Pravega — User’s Manual

Example (1)

Compilation: nvcc -arch=sm 70 -Xcompiler="-fopenmp" -lgomp
/home/apps/Docs/samples/mm blas omp.cu -lcublas
Execution: ./a.out

Example (2)

Compilation: g++ -fopenmp /home/apps/Docs/samples/mm blas omp.c-
I/opt/ohpc/pub/apps/cuda/cuda-10.1/include -L/opt/ohpc/pub/apps/cuda/cuda-
10.1/1ib64 -1lcublas

Execution: ./a.out

OpenACC Program:

Setting up of environment:
spack load pgi@19.10 cuda@10.1

Compilation for GPU: pgcc -acc -fast -Minfo=all -
ta=tesla:cc70,managed/home/apps/Docs/samples/laplace acc.c
Execution:./a.out

Compilation for CPU: pgcc -acc —-fast -Minfo=all -ta=multicore-tp=skylake
/home/apps/Docs/samples/laplace acc.c
Execution:./a.out

Job Submission on Scheduler (SLURM)

A sample job submission scripts for each of the sample programs is given. Upon
completion/termination of the execution, two files (output and error) are generated.

A few sample commands for SLURM are as follows:

sinfo Lists out the status of resources in the system
squeue Lists out the Job information in the system
sbatch Submitting a job to the scheduler

<<job_ script>>

scancel Delete a job
<<job name>>

Page | 40

PARAM Pravega — User’s Manual

Job Scheduling on PARAM Pravega

Scheduler

PARAM Pravega has Slurm-20.11.08 (open source) as a workload manager for HPC facilities.
Slurm is a widely used batch scheduler in top500 HPC list. PARAM Pravega consists of three
types of compute nodes: i.e. CPU only (192 GB) nodes, High memory (768 GB) nodes and
nVidia GPGPU (192 GB) enabled.

Following partitions/queues have been defined for different requirements

1. standard: CPU, High memory and GPU Jobs
2. gpu: GPU and CPU jobs
3. hm: High memory intensive jobs

All users can submit to the Standard partition. The standard Partition contains CPU,high
memory and GPU nodes. GPU partition contains only gpu nodes. If user wants to submit a
job only on gpu nodes, he/she can use gpu partition.If user wants to submit a job only on
high memory, he/she can use hm partition.

Note: Userhas to specify #SBATCH —gres=gpu:1/2 in their job script if user wants to use 1 or
2 GPU cards on GPU nodes

sinfo

This Slurm command is used to view available partition and node information on the
cluster.

.]# sinfo
TIMELIMIT NODES STATE NODELIST
0:00 11 drawn*)
308 [{230, 3)9 - 4 1-005,017-040] ,hm{001-156

up
up
IJp
up
up
up
up
cpu up
cpu up
cpu up
[root@pravega

67
238
11 gpul }
29 down* gpu[001-005,017-040]
156 down* hm[001-156
down* ¢n[230,250,307,309-428
1dle cn[001-060 06,308
down cn[061-229,231-249,251-300]

3-
3-
3=
3-
3-
3-
3-
3-
3-
3-

Figure 13 — sinfo Command

Page | 41

PARAM Pravega — User’s Manual

walltime

Walltime parameter defines as to how long your job will run. The maximum runtime of a job
allowed as per the QoS Policy. If more than 3 days are required, a special request needs to
be sent to HPC coordinator and it will be dealt with on a case to case basis. The command
line to specify walltime is given below.

srun -t walltime <days-hours:mins:seconds>

and also as part of the submit scripts described in the manual. If a job does not get
completed within the walltime specified in the script, it will get terminated.

The biggest advantage of specifying appropriate walltime is that the efficiency of scheduling
improves resulting in improved throughput in all jobs including yours. You are encouraged
to arrive at the appropriate walltime for your job by executing your jobs a few times.

NOTE: You are requested to explicitly specify the walltime in your command lines and scripts.

Per user

* Every user will have quota of XX GBof soft limit and XTB of hardlimit with grace
period of X days in HOME file system (/home) and XTB of soft limit and XTB of hard
limit with grace period of X days in SCRATCH file system

* Users are recommended to copy their execution environment and input files to
scratch file system (/scratch/<username>) during job running and copy output data
back to HOME area

* File retention policy has been implemented on Lustre storage for the "/scratch™ file system.
As per the policy, any files that have not been accessed for the last 3 months will be deleted
permanently

* Three QoS (Quality of services) are created according to different job sizes and wall
time .Resource limits for users are defined as per below QoS policy
QoS policy
1. Small QoS:

Maximum No.of. nodes= 4

wall time=3 days

Maximum running jobs per user at a time=5
priority=0

Note: This is the default QoS, no need to mention this QoS in the job script.

Page | 42

PARAM Pravega — User’s Manual
2. Medium QoS:

Maximum No.of. Nodes=16

Wall time=2 days

Maximum running jobs per user at a time =3
priority=50(more than small QoS)

Note: To use this QoS, you must mention this QoS in the job script while submitting the job

Example for using this QoS in the job script
#SBATCH --gos=medium
3. Large QoS:

Maximum No.of. Nodes=32

wall time=1 day

Maximum running jobs per user at a time=1
priority=100(more than small and medium)

Note: To use this QoS, you must mention these QoS in the job script while submitting the job

Example for using this QoS in a job script

H#SBATCH --qos=large

Note:QoS policy only applicable for internal users.

Scheduling Type

PARAM Pravega has been configured with Slurm’s backfill scheduling policy. It is good for
ensuring higher system utilization; it will start lower priority jobs if doing so does not delay
the expected start time of any higher priority jobs. Since the expected start time of pending
jobs depends upon the expected completion time of running jobs, reasonably accurate time
limits are important for backfill scheduling to work well.

Job Priority

The job's priority at any given time will be a weighted sum of all the factors that have been
enabled in the slurm.conf file. Job priority can be expressed as:

Job priority =

(PriorityWeightAge) * (age factor) +
PriorityWeightFairshare) (fair-share factor) +
PriorityWeightJobSize) * (job size factor) +
PriorityWeightPartition) (partition factor) +
PriorityWeightQOS) * (QOS factor) +

* o~ |

(
(
(
(

Page | 43

PARAM Pravega — User’s Manual

SUM(TRES weight cpu * TRES factor cpu,
TRES weight <type> * TRES factor <type>,
-)

All of the factors in this formula are floating point numbers that range from 0.0 to 1.0. The
weights are unsigned, 32 bit integers. The job's priority is an integer that ranges between 0
and 4294967295. The larger the number, the higher the job will be positioned in the queue,
and the sooner the job will be scheduled. A job's priority, and hence its order in the queue,
can vary over time. For example, the longer a job sits in the queue, the higher its priority will
grow when the age weight is non-zero.

Age Factor:The age factor represents the length of time a job has been sitting in the queue
and eligible to run. Current value for Age factor is 10000.

Job Size Factor:The job size factor correlates to the number of nodes or CPUs the job has
requested. Current value for Job Size factor is 1000.

Partition Factor: Each node partition can be assigned an integer priority. The larger the
number, the greater the job priority will be for jobs that request to run in this partition.
Current value for partition factor is 15000.

Quality of Service (QOS) Factor: Each QOS can be assigned an integer priority. The larger
the number, the greater the job priority will be for jobs that request this QOS. Current value
for QOS factor is 100000.

Fair-share Factor: The fair-share component to a job's priority influences the order in which
a user's queued jobs are scheduled to run based on the portion of the computing resources
they have been allocated and the resources their jobs have already consumed. Current
value for fair-share factor is 100000.

SSHARE

This tool is for listing the shares of association to a cluster.

[root@pravega ~]# sshare
Account User RawShares NormShares Rawlsage EffectvUsage FairShare

0.000000 78894699 1.000000
root root 1 1.000000 78894699 1.000000 1.000000

Figure 14- Listing the shares of association to a cluster

ACCOUNTING

Accounting system tracks and manages HPC resource usage. As jobs are completed or
resources are utilized, accounts are charged and resource usage is recorded. Accounting
policy is like a bank/Credit System, where each department can be allocated with some pre-

Page | 44

PARAM Pravega — User’s Manual

defined budget on a quarterly basis for CPU usage. As and when the resources are utilized,
the amount will be deducted. The allocation will be reset at end of every quarter.

sacct

This command can report resource usage for running or terminated jobs including individual
tasks, which can be useful to detect load imbalance between the tasks.

sstat
This command can be used to status only currently running jobs.
sreport

This command can be used to generate reports based upon all jobs executed in a particular
time interval.

Page | 45

PARAM Pravega — User’s Manual

Debugging Your Codes

Introduction

A debugger or debugging tool is a computer program that is used to test and debug other
programs (the "target" program).

When the program "traps" or reaches a preset condition, the debugger typically shows the
location in the original code if it is a source-level debugger or symbolic debugger, commonly
now seen in integrated development environments.

Debuggers also offer more sophisticated functions such as running a program step by step
(single-stepping or program animation), stopping (breaking) (pausing the program to
examine the current state) at some event or specified instruction by means of a breakpoint,
and tracking the values of variables.

Some debuggers have the ability to modify program state while it is running. It may also be
possible to continue execution at a different location in the program to bypass a crash or
logical error.

Basics How Tos

Compilation

Compilation with a separate flag ‘-g’ is required since the program needs to be linked with
debugging symbols.

gcc -g <program name.c>
e.X. gcc -g random generator.c

Running with gdb:

gdb is a command line utility available with almost all Linux systems’ compiler collection
packgages.

gdb <executable.out>
e.x. gdb a.out

Page | 46

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Stepping_(debugging)
https://en.wikipedia.org/wiki/Program_animation
https://en.wikipedia.org/wiki/Breakpoint

PARAM Pravega — User’s Manual

Basic gdb commands (to be executed in gdb command line window):

Start:

Starts the program execution and stops at the first line of the main procedure. Command
line arguments may be provided if any.

Run:

Starts the program execution but does not stop. It stops only when any error or program
trap occurs. Command line arguments may be provided if any.

Help:

Prints the list of command available. Specifying ‘help’ followed by a command (e.x. ‘help
run’) displays more information about that command.

File <filename>:
Loads a binary program that is compiled with ‘-g’ flag for debugging.
List [line_no]

Displays the source code (nearby 10 lines) of the program in execution where the execution
stopped. If ‘line_no’ is specified, it display the source code (10 lines) at the specified line.

Info:

Displays more information about the set of utilities and saved information by the debugger.
For example; ‘info breakpoints” will list all the breakpoints, similarly ‘info watchpoints” will
list all the watchpoints set by the user while debugging their programs.

Print <expression>:
Prints the values of variables / expression at the current running instance of the program.
Step N:

Steps the program one (or ‘N’) instructions ahead or till the program stops for any reason.
Steps through each and every instruction even if it is function call (only function or
instruction compiled with debugging flags).

next:

This command also steps through the instructions of the program. Unlike ‘step’ command, if
the current source code line calls a subroutine, this command does not enter the
subroutine, but instead steps over the call, if effect treating it as a single source line.

Page | 47

PARAM Pravega — User’s Manual
Continue:

This command continues the stopped program till the next breakpoint has occurred or till
the end of the program. It is used to continue from a paused/debug point state.

Break [sourcefile:]<line_no> [if condition]:

Stops the program at the specified line number and provides a breakpoint for the user.
Specific source code file and breakpoint based on a condition can also be set for specific
cases. You can also view the list of breakpoints set, by using the ‘info breakpoints’
command.

watch <expression>:

A watchpoint means break the program or stop the execution of the program when the
value of the expression provided is changed. Using watch command specific variables can be
watched for value changes. You can also view the list of watchpoints by using the ‘info
watchpoints’ command.

Delete <breakpoint number>

Delete command deletes a breakpoint or a watchpoint that has been set by a user while
debugging the program.

Backtrace:

Prints the backtrace of all stack frames of the program. Provides the call stack and more
other information about the running program.

These are some of the most powerful utilities that can be used to debug your programs
using gdb. gdb is not limited to these commands and contains a rich set of features that can
allow you to debug multi-threaded programs as well. Also, all the commands, along with the
ones listed above have ‘n’ number of different variants for more in-depth control. Same can
be utilized using the help page of gdb.

Using gdb (example — inspecting the code)

For this case study, we have a small program that generates a long unique random number
for each run.

Let’s look at the code we have.

Page | 48

PARAM Pravega — User’s Manual

#include <stdio.h> //printf
#include <stdlib.h> //malloc, srand, rand
#include <unistd.h> //getpid

#define N 100
#define N LEN 100

//Generate a short random number
short rand fract(void) {
short sum = 1;
for (short 1 = 0; 1 < (rand() % N); ++1i)
for (short j =0; 1 < N; ++]) {
int value = (i * j) / (1 + j);
) ? value : sum;

]
sum += (value != 0

}

return sum;

}

//Returns the factorial of a number
long long factorial(unsigned int x) {
if (x =1 || x = 0)
return 1LL;
else
return (x * factorial(x - 1));

Figure 15 — Snapshot of debugging process

Things to note:

1) We have a few libraries included for the functions that are used in the program.

2) We have two ‘#define’ statements:

a. ‘N’ for the number of times the ‘rand_fract’ function will spend in calculating
the random number.

b. ‘N_LEN’ for the length of the final random number string generated.
Currently it is set to ‘100’ which means that the long random number will be
of length 100.

3) Then, we have a function by name ‘rand_fract’ that iterates over two loops and using
the values of iterators (‘i’ and ‘j’), it calculates a small random number. Since, ‘rand()’
function is used for the outer loop, its number of iterations cannot be clearly defined
which gives the function a random nature.

4) The next function is as simple as its name is. It just takes an unsigned integer and
returns its factorial.

Page | 49

PARAM Pravega — User’s Manual
PART 2:

int main (int argc, char *argv(]) {
short f1 = 0;

//Create a random seed based on process id.
srand((unsigned int) getpid());

//Generate a random number salt.
fl = rand fract() % 10;

//Get the factorial of the number
long long random fact = factorial(fl);

//Normalize the factorial to number modulo N LEN + 1
int normalized fact = random fact % (N LEN + 1)

int *array = NULL;
//Create an array of size obtained from normalized factorial modulo N LEN + 1

array = {(int *) malloc (sizeof (int) * normalized fact);
if (array == NULL) { printf("Not enough memory\n"); return -1; }

//Populate the array with integers ni reverse order

//Double the number five times if it is even

for (int 1 = 0; 1 < npormalized fact; ++i) {
array[i] = (normalized fact - 1i);

}

//Print the serial number

for (int 1 = normalized fact - 1; 1 >= 0; --1)
printf("%0d", (array[i] + rand()) % 10);

for (int 1 = (N LEN normalized fact); i > 0; --i)
printf("%ed", (rand() % 10));

printf("\n");

//Free allocated memory
free(array);

return 0;

Figure 16 — Snapshot of debugging process

Things to note:

1) This is the main function of the program.
2) The flow of the main function is as follows:
a. The program first sets a random seed using the process-id of the program.
b. Itcalls ‘rand_fract’ function and the resultant random number is operated by
a modulo 10 operation. Finally, the result is stored in the variable ‘f1’.
c. Next the factorial of the obtained ‘f1’ is calculated and stored in
‘random_fract’.
d. This result is again passed through a modulo ‘N_LEN + 1’ and stored in
‘normalized_fact’.
e. Then a dynamic array is constructed and partially filled will integer values in
descending order from the ‘normalized_fact’ value.

Page | 50

PARAM Pravega — User’s Manual

f. Finally, the partial array is printed by mixing the value of the array with rand()
function values followed by a modulo 10 operation.

g. The remaining partial part of final random value is generated using a basic
rand() modulo 10 operation.

Using gdb (example — using the debugger)

The code that we looked upon seems correct, as well as it compiles successfully without any
errors. But, when we run this code snippet, this is the result we get.

$ gcc random generator.c
$./a.out

Floating point exception (core dumped)

o |

Figure 17- Output at a debugging stage

The program ended up with a core dump without giving much information but just ‘Floating
point exception’. Now let’s compile the code with debugging information and run the
program simply with gdb.

$ gcc -g random generator.c

$ gdb a.out

GNU gdb (GDB) Fedora 8.3.50.20190824-25.fc31

Copyright (C) 2019 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86 64-redhat-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from e

(gdb) set style enabled off

(gdb) run

Starting program: /home/vineetm/debugger/a.out

Program received signal SIGFPE, Arithmetic exception.
0x00000000004011cc in rand fract () at random generator.c:13
int value = (1 * j) / (1 + j);

Figure 18 — Snapshot of debugging process

Page | 51

PARAM Pravega — User’s Manual

Here we compiled the code using ‘-g’ and then used the ‘run’ command we studied earlier
for running the program. You can observe that the debugger stopped at line number 13
where the ‘Floating point exception (SIGFPE)’ occurred. At this point we can even go and
check the code at line number 13. But for now, let’s check what other information we can
get from the debugger. Let’s check the values of the variables ‘i’ and ‘j’ at this point.

(gdb) run
Starting program: /home/vineetm/debugger/a.out

Program received signal SIGFPE, Arithmetic exception.
0x00000000004011cc in rand fract () at random generator.c:13
int value = (1 * j) / (1 + j);

Figure 19 — Output depicting “Arithmetic Exception”

The values of both ‘i’ and ‘j’ appear to be ‘0’ and thus a divide by zero exception is what
caused our program to terminate. Let’s update the code such that the value of ‘i’ and ‘j" will
never become ‘0’. This is the modified code:

//Generate a short random number
short rand fract(void) ({
short sum = 1;
for (short 1 = 1; 1 < (rand() % N); ++1i)
for (short j = 1; 1 < N; ++j) {
int value = (1 * j) /7 (1 + j);
sum += (value != 0) ? value : sum;

}

return sum;

Figure 20 — Snapshot of debugging process

Thus, we just updated the loop index variables to start from ‘1’ instead of ‘0’. Thus, using
gdb, it was very simple to identify the point where the error occurred. Let’s re-run our
updated code and check what we get.

$ gcc random generator.c
$./a.out

Floating point exception (core dumped)

Y |

Page | 52

PARAM Pravega — User’s Manual

Figure 21 — Well, we dumped core !!

WHAT!? This is unexpected. We just cured the error part of our program and still getting an
FPE. Let’s go through the debugger and check where the error point is right now.

$ gcc -g random generator.c

$ gdb a.out

GNU gdb (GDB) Fedora 8.3.50.20190824-25.fc31

Copyright (C) 2019 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86 64-redhat-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from o

(gdb) set style enabled off

(gdb) run

Starting program: /home/vineetm/debugger/a.out

Program received signal SIGFPE, Arithmetic exception.
0x00000000004011cc in rand fract () at random generator.c:13
13 intivalue = (i * 3) / (i-+% 3);
(gdb) print i
$1 =k
(gdb) print j
$2 = -1
(gdb) list
//Generate a short random number
short rand fract(void) {
short sum = 1;
for (short 1 =1; i < (rand() % N);
for (short j = 1; i < N;
int value = (i * j
sum += (value !=
}

return sum;

Figure 22 - Snapshot of debugging process

The debugger output shows that the error occurred on the same line as earlier. But in this
case, the value of ‘i’ and ‘j’ are not ‘0,0’ but they are ‘1, -1’ which is causing the denominator
at line 13 to be ‘0’ and thus, causing an FPE. In addition to print commands, we have also
issued the ‘list’ command which shows the nearby 10 lines of the code where the program
stopped.

Page | 53

PARAM Pravega — User’s Manual
You can observe that some bugs in the programs are easier to debug but some aren’t.

We will have to dig in much more to find out what is going on. Also, to be noted, we have
our inner loop iterating from 1 to N (which is 100), but still the value of ‘j’ is printed out to
be ‘-1’. How is this even possible!? Smart programmers would have the problem identified,
but let’s stick to the basics on how to gdb. Let us use the ‘break’ command and set a
breakpoint at line number 13 and observe what is going on.

(gdb) list 13
//Generate a short random number
short rand fract(void) ({
short sum = 1;
for (short 1 = 1; 1 < (rand() % N); ++i)
for (short J = 1; 1 < N; ++]) {
int value = (1 * j) /7 (1 + j);
sum += (value != @) ? value : sum;
}

return sum;
17]
(gdb) break 13
Breakpoint 1 at 0x4011b5: file random generator.c, line 13.
(gdb) info breakpoints
Num Type Disp Enb Address wWhat
| breakpoint keep y 0x00000000004011b5 in rand fract at random generator.c:13
(gdb) run
The program being debugged has been started already.
Start 1t from the beginning? (y or n) y
Starting program: /home/vineetm/debugger/a.out

Breakpoint 1, rand fract () at random generator.c:13

13 int value = (1 * §) / (1 + §);
(gdb) print 1

$3 =1

(gdb) print

$4 = 1

(gdb) |

Figure 23 — Setting Breakpoint

Thus, using the command ‘break 13" we have set the breakpoint at line number 13 which
was verified using the ‘info breakpoint’ command. Then, we reran the program with the
‘run’ command. At line 13 the program stopped and using ‘print’ command we checked the
values of ‘i’ and j’. t this point, all seems to be well. Now, let’s proceed further. For stepping
1 instruction we can use the ‘step’ command. Let’s do that and observe the value of ‘j'.

Page | 54

PARAM Pravega — User’s Manual

(gdb) step
14 sum += (value !'= 0) ? value : sum;
(gdb) step
for (short j = 1; 1 < N; ++j) {
) step

Breakpoint 1, rand fract () at random generator.c:13
13 int value = (1 * j) /7 (1 + j);
(gdb) print j

sum += (value != 8) ? value : sum;

for (short j = 1; i < N; ++j) {

Breakpoint 1, rand fract () at random generator.c:13
int value = (1 * j) /7 (i + j);

Figure 24 — single stepping through to catch error !!

You can observe the usage of the ‘step’ command. We are going through the program line
by line and checking the values of the variable ‘j'.

There seems to be a lot of writing/typing of the ‘step’ command just to proceed with the
program. Since, we have already set a breakpoint at line 13, we can use another command
called as ‘continue’. This command continues the program till the next breakpoint or the
end of the program.

Page | 55

PARAM Pravega — User’s Manual

(gdb) continue
Continuing.

Breakpoint 1, rand fract () at random generator.c:13

int value = (1 * j) / (i + j);

(gdb) continue
Continuing.

Breakpoint 1, rand fract () at random generator.c:13

int value = (i * j) / (i + j);
(gdb) continue
Continuing.

Breakpoint 1, rand fract () at random generator.c:13
int value = (1 * j) / (i + j);

Figure 25 — Debugging continued

You can see that we reduced the typing of ‘step’ command by 3 times to a ‘continue’
command just 1 time. But this is also having us write ‘continue’ and ‘print’ multiple times.
Let us use some other utility in gdb known as ‘data breakpoints’ also known as watchpoints.
But before that, let us delete the existing breakpoint using the ‘delete’ command.

(gdb) info breakpoints

Num Type Disp Enb Address What

1 breakpoint keep y 0x00000000004011b5 in rand fract at random generator.c:13
breakpoint already hit 6 times

(gdb) delete 1

(gdb) info breakpoints

No breakpoints or watchpoints.
(gdb) l

Figure 26 — Debugging continued

Page | 56

PARAM Pravega — User’s Manual
Now let us see how to set a watchpoint.

(gdb) watch j

Hardware watchpoint 2: j

(gdb) info watchpoints

Num Type Disp Enb Address
2 hw watchpoint Kkeep y

(gdb) continue

Continuing.

Hardware watchpoint 2: j

Old value = 6

New value = 7

0x00000000004011f5 in rand fract () at random generator.c:12
12 for (short j = 1; 1 < N; ++j) {
(gdb)

Continuing.

Hardware watchpoint 2: j

0ld value = 7

New value = 8

0x00000000004011f5 in rand fract () at random generator.c:12
12 for (short j = 1; 1 < N; ++j) {
(gdb)

Continuing.

Hardware watchpoint 2: j

Old value = 8

New value = 9

0x00000000004011f5 in rand fract () at random generator.c:12
for (short j =1; 1 < N; ++j) {

Figure 27 — Setting a watch point

Thus, using the command ‘watch j’ we have set a watchpoint over ‘j’. Now every time when
the value of ‘j’ changes, a break will occur. You can also note the old and new values of ‘j’
printed out at each break. Another point to note is that after having one ‘continue’
command, the program had a break. Further, by just pressing the ‘Enter/Return’ button on
the keyboard, the continue command was repeated. Thus, by pressing the ‘Enter/Return’
button, the last command is repeated. At this point, we have learned much about the
debugger, but we are still not able to proceed fast with our error. Is there any other way to
procced? Well, yes!!

Page | 57

PARAM Pravega — User’s Manual

We want to observe at the point where the value of ‘j’ reaches closer to ‘N i.e. 100’. Which
means that we are only concerned about what happens after ‘j’ reaches 99. Here, we land
up on using what is called as conditional breakpoints. First, we will delete our watchpoint
and then make use of the conditional breakpoint.

(gdb) info watchpoints
Num Type Disp Enb Address
2 hw watchpoint keep y
breakpoint already hit 4 times
(gdb) delete 2
(gdb) list 13
//Generate a short random number
short rand fract(void) {
short sum = 1;
for (short 1 = 1; 1 < (rand() % N); ++1)
for (short j = 1; 1 < N; ++j) {
int value = (i * j) / (i + j);
sum += (value != 0) ? value : sum;
}
return sum;
}
(gdb) break random generator.c:13 if j == 99
Note: breakpoint 3 also set at pc 0x4011b5.
Breakpoint 4 at 0x4011b5: file random generator.c, line 13.
(gdb) continue
Continuing.

Breakpoint 3, rand fract () at random generator.c:13
int value = (i * j) / (i + j);

Figure 28 — Debugging continued

You can observe another variant of the ‘break’ command. We have explicitly stated the file
and the line number along with a condition to stop. This is useful, when the source code is
large and having multiple files. After setting a conditional break, we stopped at the point
where the value of ‘j becomes ‘99’. Now, let us see what happens next. Since, this is a
critical point at which we could observe the program, it is better if we step in the program
using the ‘step’ command instead of relying on any break/watch points.

Page | 58

PARAM Pravega — User’s Manual

sum += (value != 0) ? value : sum;

for (short j = 1; i < N; ++j) {

int value = (i * j) / (1 + j);

sum += (value != 0) ? value : sum;
for (short j = 1; 1 < N; ++j) {

int value = (i * j) / (1 + j);

Figure 29 — Well, Back to square one !!

This, is unexpected!! The value of ‘j’ should never be 100 or anything above it.
Thus, something is wrong with the conditional statement!!

By observation, we have figured out that the condition is itself wrong. It should have been ‘j
< N’ instead of ‘i < N’. This is a silly mistake of the programmer that lead us to this much of
an effort.

Also, the value of ‘j’ which was observed as ‘-1’ was an outcome of the ‘short’ datatype
overflow i.e. the value of ‘j’ went from 1 to 32767 (assuming short as 2 bytes) and then
from -32768 to -1.

Finally, a hard programming bug was discovered. Let us correct this error and rerun the
program.

$ g¢c random generator.c
$.Ja.out
Segmentation fault (core dumped)
$./a.out
16488151969349369077128474116752693638724651789686529368991266426799683278548438180624803725602089977
$./a.out
Segmentation fault (core dumped)
Ja.out
S697819855537763960836830
<
6150930494475890863050318719122734582864309765193799040843958123681888230308039318234438024068348747
Ja.out
Segmentation fault (core dumped)
h

$
$./a.out
$

Figure 30 — Again Dumping Core!! Things are getting interesting or frustrating or both !!

Page | 59

PARAM Pravega — User’s Manual
This is strange!!

Sometimes the program is getting the correct output, but sometimes, we are getting a
segmentation fault. Debugging such a program may be tricky since the occurrence of the
bug is low. We will proceed with our standard debugger steps to identify the error.

-g random generator.c
out
v) o A% A e~y !
t (C) 2019 Free Software Foundation, Inc.
3+: GNU GPL version 3 or lat
free software: you are free to chan 3
NO WARRANTY, to the ent permitted by law
ng" and “show warranty* for details.
figured as “x86 -redhat-linux-gnu”.
"show configuration" for configuration details
reporting instructions, please 3
: db/bugs/>
e GDB manual and other documentation resources online at:
/wwvi.Qnu.org/software/gdb/documentation/>,

y search for commands related to "word",,,

home/vineetm/debugge .out
)9873643180521681086975694174815924540859823191291008689026666122878853935:
55 61832) exited normally]

(qdb) |"

Figure 31 — Debugging continued

We compiled the code and ran it using the debugger. But the program completed
successfully. Let us rerun it till a point where the program fails.

{(gdb) run

Starting program (

5411371059776 3¢ y 3 4174815924540859823191291008689626600122878853935366497
[Inferior 1 (proc

(gdb) run

=

8948048917009272836772572766214368134147179616591178

Starting program: /home/vineetm/debugger/a.out

eived signal SIGSEGV, Seagmentation fault.
9126¢ in factorial (x 94792703) at random generator.c:24
return (x * factorial(x 1));

Figure 32 — Debugging continued

Here we observe a point where the program exited at the function “factorial’.

This is a point where the debugger didn’t give much information about what the value of
the variable ‘x” was. It just pointed out that the program failed at the function named
‘factorial’. That’s it!

Another reason for such kind of output would be because of the recursive nature of the
function. The stack frame where the function ‘factorial’ failed could be in a long nest of
recursive calls. At such points, it would be better to inspect the program at an earlier point

Page | 60

PARAM Pravega — User’s Manual

and look for errors. Let us have a breakpoint before the ‘factorial’ function was called and
view the value of the parameters that are passed to the function.

(gdb) list main
22 return 1LL;

return (x * factorial(x 1));

}
int main (int argc, char *argvi]) {
short 71 = 9;
//Create a random seed based on process 1d.

srand((unsigned int) getpid());

S WNAOQwOoWOLUWORONNOW & W

//Generate a random number salt
fl = rand fract{) % 10;

//Get the Tactorial of the number
Llong long random fact = factorial(fl)

) O~ ovn

D 0

//Normalize the factorial to number modulo
1 int normalized fact = random fact % (N LEN
(gdb) break 36

Breakpoint 1 at 6x4012da: file random generator.c, line 38.
{(gdb)} run

Starting program: /home/vineetm/debugger/a.out

2
.
2
=
2
>
5
2
2
2
y
3
3
{
3
e |
3
3
=
2
’
2
-
il
3
4
4

Breakpoint 1, main (argc=1l, arqgv=Ox7fffffffdod8) at random generator.c:38

38 long long random fact = factorial(fl);

(gdb) print f1

$1 = 1

(gdb) continue

Continuing.
9962554943440906583333593426000827274699155147995250801174774876796185292736525250533642241728519329
{Inferior 1 (process 62328) exited normally]

(gdb) i

Figure 33 — Debugging continued (Will it ever end?)

Thus, we have set a breakpoint before the call of the function ‘factorial’ and ran the
program. For the value of ‘f1 = 8" for the ‘factorial’ function the process seems to exit
normally. Let us rerun.

(gdb) run
Starting program: /home/vineetm/debugger/a.out

Breakpoint 1, main (argc=1, argv=0x7fffffffdod8) at random generator.c:38
38 long long random fact = factorial(fl);

(gdb) print f1

$1 = -8

(gdb) continue

Continuing.

Program received signal SIGSEGV, Segmentation fault.
0x000000000040126¢c in factorial (x=4294792699) at random generator.c:24
return (x * factorial(x - 1));

Figure 34 — We are almost there !!

Page | 61

PARAM Pravega — User’s Manual

Unexpectedly, we have got the value of ‘f1’ as ‘-8’ and the program seems to have crashed.
Let us observe the ‘rand_fract’ function and ‘factorial’ function once again. And study the
behavior of the functions where we could get a negative number.

gdb) list rand fract

#define N 100
#define N LEN 100

//Generate a short random number
short rand fract(void) {
short sum = 1;
for (short 1 = 1; i < (
for (short j =
int value =

sum += (value != 0) ? value : sum;
}
return sum;

}

//Returns the factorial of a number
long long factorial(unsigned int x) {
if (x =1 || x = 0)
return 1LL;
else
(gdb) run
Starting program: /home/vineetm/debugger/a.out

Breakpoint 1, main (argc=1, argv=0x7fffffffdod8) at random generator.c:38
38 long long random fact = factorial(fl);
(gdb) print f1

-8

Figure 35 — Debugging continued

Important points here to observe are:

The ‘rand_fract’ function is returning a datatype of ‘short’ while the calculation of the return
value could be significantly large which may overflow the size of ‘short’, thus, causing a
negative answer.

The function “factorial’ is expecting a value of type ‘unsigned int’. Since the value passed to
the function is a negative value, having an implicit conversion from a negative number to an
unsigned number means that we are having a very large value passed to the factorial
function.

Also, since the ‘factorial’ function is recursive, passing a very large number to it could cause
multiple calls to the same function and thus, overflowing the stack provided to the user.

Page | 62

PARAM Pravega — User’s Manual

Now let us, step further into our program and see whether what we are discussing is the
same behavior that is being observed.

(gdb) print f1

$4 = -8

(gdb) step

factorial (x=4294967288) at random generator.c:21
21 if (x =1 || x == 0)

return (x * factorial(x - 1));

factorial (x=4294967287) at random generator.c:21
if (x =1 |] x == 0)

return (x * factorial(x - 1));

factorial (x=4294967286) at random generator.c:21
if (x =1 || x == 0)

return (x * factorial(x - 1));

factorial (x=4294967285) at random generator.c:21
if (x =1 || x == 0)

return (x * factorial(x - 1));

factorial (x=4294967284) at random generator.c:21
if (x =1 || x == 0)

Figure 36 — At last a clue!!!

This is what we had expected!!
A number ‘-1’ passed to the ‘factorial’ function is being implicitly converted to a very large
number ‘4294967295’.

Stepping in more reveals the recursive behavior of the ‘factorial’ function i.e. each call is
having a sub call to the same function with one value less. Thus, what to do in these types of
cases. Assume you have a large code where these functions are called from multiple
locations.

Page | 63

PARAM Pravega — User’s Manual

Modifying the signature of any of the function means changing the code everywhere where
the function is called. This is not affordable!! These are some cases, where a choice is to be
made where patching the code is necessary for semantics of the program.

Let us observe a piece of code where this change can be made and then test our program
for the expected results.

int main (int argc, char *argv([]) {
short f1l = 0;

//Create a random seed based on process id.
srand((unsigned int) getpid());

//Generate a random number salt.
fl = rand fract() % 10;

fl = abs(f1);

//Get the factorial of the number
long long random fact = factorial(fl);

//Normalize the factorial to number modulo N LEN + 1
int normalized fact = random fact % (N LEN + 1);

int *array = NULL;

Figure 37 - Correction applied !!

By observing the code, we find out that the expected value of ‘f1’ is between ‘0 to 9’
(because of the modulo 10 operation).

Thus, without changing the signature of any function, we have inserted a patch (the
highlighted) portion, that maintains the semantics of the code as well cures the problem
that we had. Now let us just run and check our final program.

Page | 64

PARAM Pravega — User’s Manual

¢ random generator.c

D N b A N
e}
. P e
-~

860912942437
2241022856218813466552404939310556650057700582848705965
536773483363835181911
)747978327156874514

23124125516733944531476306887909314926490273

28703654790231307059184469090834702633543759919836 DO58384841530848408963208645

196562912823688450791390952187926971917642093048030371586726511320524/ H8790301966812889064

612776510222275380497441425328380877450674923651896544608240290

$71806325311796389

Figure 38 — Resolved !!!

Thus, we are getting the correct results as expected.

Conclusions

We started with a program that we assumed to be functional but then the program ended
up with bugs that were not straightforward. We then explored the power of the debugger
and the various ways to identify the bugs in our program. We looked upon the easy
solutions, and slowly migrated towards the type of bugs that are not easily traceable.

Finally, we identified and corrected all the bugs in our program with the help of the
debugger and arrived at a bug free code.

Points to Note

e Bugs in the program cannot be necessarily a compilation error.

e One type of error can be caused by multiple bugs in the same line of code.

e Sometimes, it is not possible to change the code even when the problem is
identified. The best way to cure this is to study the behavior of the code and apply
patches wherever necessary.

e Using simple utilities from the ‘GNU Debugger’ can help in getting rid of problem
causing bugs in large programs.

Page | 65

Overall Coding Modifications Done

X | random_generator.c [

//Ganerate a short randow number
short rand_fract(voia) (
_short sum » 13

for (short 3 = WEEE < %; ++1) {
int value = (1 « 3) / (1 + 1);
sum v+ (value |« 8) 2 value ; sum;
)

return sum;
)

/{Returns the factorial of & nusber
Tong long factorial({unsigned int x) {
ffF(r=1]| x==0)
return ILL;
else
N return (x « factorial(x - 1));
)

int main (int argc, char «argv(]) (
short fl = 0}

//Create a random seed based on process id.
srand({unsigned int) getpid{});

J/Generate a random number salt.
11 « rand_fract() ¥ 18;

I 1= abs(fL)i

//Get the factorial of the number

Unicode (UTF.8j» Cwv (ngB Col2 v

for ¢short 1 = B 1 € (rand() & N)§ ++1) - *| for (short 1 = B; 1 < (rand() % N}; =+1)

| 1m= =M= randon fact « factorial(fi); =

PARAM Pravega — User’s Manual

£ ' random_generator_buggy.c [+

/lGenerate a short random number lH
shert rand_fract(void) { g
short sum « 15 |

for (short 3 = WERH < M ++1) (
int value = (1 « 3) / (1 = 703
sum ++ (value 1= B) 7 value ! sum;
}
return sum;
)

JIReturns the factorial of o number
Tong lang factordal(unsigned int x) {
if(e==11]| x==8)
return ILL;
else
return (x « factorial(x - 1))
}

int main (int arge, char sargv(]) |
short f1 = 0}

//Create a randoms seed based on process id.
srand((unsigned int) getpid());

//Genorate a randon number salt,
fl « rang_fract() N 18;

{/Get the factarfal of the number
long long randam_fact = factorial(fl);

“Noru“to tu lutoﬁil to rusber modulo N LEN +
D —

Unicode (UTF-B}» C+ LnllCollw

Figure 39 — What all we did to get things right !

Page | 66

PARAM Pravega — User’s Manual

Machine Learning / Deep Learning Application
Development

Most of the popular python based machine learning/deep learning libraries are installed on
PARAM Pravega system. While developing and testing their applications, users can use
“conda runtime based python libraries” installation.

For conda environment different module are prepared. Users can check the list of the
modules by using “module avail” command. Shown below is an example of loading conda
environment in current bash shell and continue with application development.

Once logged into PARAM Pravega HPC Cluster, check which all libraries are available, loaded
in current shell. To check list of modules loaded in current shell, use the command given
below:

S module list

To check all modules available on the system, but not loaded currently, use the command
given below:

S module avail

To activate conda environment on PARAM Pravega, load module “conda-python/3.7” as
shown below:

$ module load conda-python/3.7

Conda environment has been installed with most of the popular python packages as shown

below
Tensorflow Tensorflow—-gpu Mpidpy Keras
Theano Scipy Scikit-Learn Pytorch

Once “conda-python/3.7” module is loaded, end-users can use all libraries inside their
python program. Users can load those libraries using “module load” command and use
them for their applications.

Page | 67

PARAM Pravega — User’s Manual

How to Install local DL Environment ?

Conda based installation provide the latest version of DL framework, however user can
install their own choice of DL framework or library version locally by following below steps.

Step 1. Login to Pravega cluster by using your credential.

Step 2. Activate conda environment.

$ module load python/conda-python/3.7

Step 3. Create the local environment myenv (myenv is the environment name, you can give
any name of your choice).

$ conda create --name myenv

Step 4. Activate newly created environment.

$ conda activate myenv

Step 5. Install your own DL framework / python library.

$ conda install <package-name>

Now you can use the newly installed package in your python program.

How to Install your own Software?

There are two approaches to install software.

1. System wide installation
2. Local installation.

System wide installation can be done by only admin. If you wish to do this, please approach
system administrator. User can do local installation in their home directory. In this section
we are describing the installation of HMMER application in user’s home directory.

Local installation

Step 1. Login to Pravega cluster by using your credential.

Step 2. Download the software that you want to install. For example to download HMMER
software uses the command given below.

Page | 68

PARAM Pravega — User’s Manual

$ wget http://eddylab.org/software/hmmer/hmmer.tar.gz

Step 3. Untar the file. (if your software in zip format use unzip command)

$ tar zxf hmmer.tar.gz

Step 4. go to the software folder.

S cd hmmer-3.3

Step 5. configure the installation path.

$./configure --prefix /your/install/path

Step 6. now run the 'make' command for install the software on installation path.

S make

The newly compiled binaries are now in the src directory.

Step 7. Runs a test suite that checks for errors in the software (optional)

S make check

Step 8. run 'make install' to install the programs and man pages in your location mention in
step2 #

S make install

By default, programs are installed in /usr/local/bin and man pages in
/usr/local/share/man/man1/, if you do not provide installation path in step 2.

* This is general instruction for installation, please refer the installation instruction or
manual or readme file that comes with software for more details.

if you get any dependency error, resolve that or ask system admin to install that
dependency if not installed.

Reference link: http://hmmer.org/documentation.html

Page | 69

http://hmmer.org/documentation.html

PARAM Pravega — User’s Manual

Some Important Facts

About File Size

The global/home is served by a number of storage arrays. Each of the storage array contains
a portion of the global/home. The size of a disk in the storage array is 285TB. Technically,
the size of a file can be about 285 TB (which is really big). However, since the disk is shared
by a large number of files, effectively the size of a single file will be far smaller. Normally,
this file size is kept to be about few GBs which is sufficient for most of the users. However,
if you wish to have file sizes which are larger than this, you need to create files ACROSS disks
and this process is known as ‘striping’.

1fs setstripe -c 4

After this has been done all new files created in the current directory will be spread over 4
storage arrays each having 1/4th of the file. The file can be accessed as normal no special
action needs to be taken. When the striping is set this way, it will be defined on a per
directory basis so different directories can have different stripe setups in the same file
system, new subdirectories will inherit the striping from its parent at the time of creation.

We recommend users to set the stripe count so that each chunk will be approx. 200-300GB
each, for example

File Size Stripe count Command
500-1000 GB 4 Ifs setstripe -c 4 .
1000 - 2000 GB 8 Ifs setstripe -c 8

Once a file is created with a stripe count, it cannot be changed. A user by themselves are
also able to set stripe size and stripe count for their directories and A user can check the set
stripe size and stripe count with command:

1fs getstripe <path to the direcory>

To set the stripe count as

1fs setstripe -c 4 -s 10m <path to the direcory>

Page | 70

PARAM Pravega — User’s Manual
The options on the above command used have these respective functions.

* -cto set the stripe count; 0 means use the system default (usually 1) and -1 means
stripe over all available OSTs (lustre Object Storage Targets).

* -sto set the stripe size; 0 means use the system default (usually 1 MB) otherwise use
k, m or g for KB, MB or GB respectively

Little-Endian and Big-Endian issues?

By and large, most of the computers follow little-endian format. This essentially means that
the last byte of the binary representation of data is stored first. However, there is another
way of representing data (used in some machines) where in the first byte of the binary
representation of data is stored first. When binary files are to be read across these different
kinds of machines, bytes need to be re-ordered. Many compilers do support this feature.
Please explore this aspect, if a perfectly working code on a given machine, fails to get
executed of another machine (with a different processor).

Page | 71

PARAM Pravega — User’s Manual

Best Practices for HPC

1. Do NOT run any job which is longer that few minutes on the login nodes. Login node is
for compilation of job. It is best to run the job on computes. (compute nodes)

2. Itis recommendedto go through the beginner’s guide in fhome/apps/Docs/samplesthis
should serve as a good starting point for the new users.

3. Use the same compiler to compile different parts/modules/library-dependencies of an
application. Using different compilers (e.g. pgcc + icc) to compile different parts of
application may cause linking or execution issues.

4. Choosing appropriate compiler switches/flags/options (e.g. —03) may increase the
performance of application substantially (accuracy of output must be verified). Please
refer to documentation of compilers (online / docs present inside compiler installation
path / man pages etc.)

5. Modules/libraries used for execution should be the same as that used for compilations.
This can be specified in the Job submission script.

6. Be aware of the amount of disk space utilized by your job(s). Do an estimate before
submitting multiple jobs.

7. Please submit jobs preferably in SSCRATCH. You can back up your results/summaries in
your SHOME

8. SSCRATCH is NOT backed up! Please download all your data to your Desktop/ Laptop.

9. Before installing any software in your home, ensure that it is from a reliable and safe
source. Ransomware is on the rise!

10. Please do not use spaces while creating the directories and files.

11. Please inform PARAM Pravega support when you notice something strange - e.g.
unexpected slowdowns, files missing/corrupted etc.

Page | 72

PARAM Pravega — User’s Manual

Installed Applications/Libraries

Following is the list of few of the applications from various domains of science and

engineering installed in the system.

HPC Applications

MUMmer, HMMER, MEME,

Bio-informatics Schrodinger, PHYLIP,
mpiBLAST, ClustalW,

Molecular Dynamics NAMD (for CPU and GPU),
LAMMPS, GROMACS

Material Modeling, Quantum-Espresso, Abinit,

Quantum Chemistry CP2K, NWChem,

CFD OpenFOAM, SU2

Weather, Ocean, Climate WRF-ARW, WPS (WRF),
ARWPost (WRF), RegCM,
MOM, ROMS

Deep Learning Libraries

cuDNN, TensorFlow, Tensorflow with Intel Python,
Tensorflow with GPU, Theano, Caffe , Keras, numpy,
Scipy, Scikit-Learn, pytorch.

Visualization Programs

GrADS, ParaView, Vislt, VMD

Dependency Libraries

NetCDF, PNETCDF, Jasper, HDF5, Tcl, Boost, FFTW

Standard Application Programs on PARAM Pravega

The purpose of this section is to expose the users to different application packages which

have been installed. Users interested in exploring these packages may kindly go through the
scripts, typical input files and typical output files. It is suggested that, at first, the users may
submit the scripts provided and get a feel of executing the codes. Later, they may change
the parameters and the script to meet their application requirements.

Page | 73

PARAM Pravega — User’s Manual

LAMMPS Applications

LAMMPS is an acronym for Large-scale Atomic/ Molecular Massively Parallel Simulator. This

is extensively used in the fields of Material Science, Physics, Chemistry and may others.

More information about LAMMPS may please be found at https://lammps.sandia.gov .

1. The LAMMPS input is in.lj file which contains the below parameters.

Input file = in.lj

3d Lennard-Jones melt

variable
variable
variable

variable
variable
variable

units
atom style

lattice
region
create box
create atoms
mass

velocity

pair style
pair coeff

neighbor
neigh modify

fix

run

x index 1
y index 1
z index 1

xx equal 64*S$x
yy equal 64*Sy
zz equal 64*S$z

13
atomic

fcc 0.8442

box block 0 ${xx} 0 ${yy} 0 ${zz}
1 box

1 box

1 1.0

all create 1.44 87287 loop geom

1j/cut 2.5
1 11.01.0 2.5

0.3 bin
delay 0 every 20 check no

1 all nve

1000000

2. THE LAMMPS RUNNING SCRIPT

#!/bin/sh

#SBATCH -N 8

#SBATCH --ntasks-per-node=40

#SBATCH --time=08:50:20

#SBATCH --job-name=lammps

#SBATCH --error=job.%J.err 8 node 40
#SBATCH --output=job.%J.out 8 node 40

Page | 74

https://lammps.sandia.gov/

PARAM Pravega — User’s Manual

#SBATCH --partition=standard

spack load intel-oneapi-compilers

spack load intel-mpi

spack load gcc@11.2.0

source
/opt/ohpc/pub/apps/intel/2018 2/compilers and libraries 2018.2.199/1
inux/mkl/bin/mklvars.sh intel64

export I MPI FALLBACK=disable

export I MPI FABRICS=shm:ofa

#export I MPI FABRICS=shm:tmi

#export I MPI FABRICS=shm:dapl

export I MPI DEBUG=5

cd /home/manjunath/NEW LAMMPS/lammps-7Augl9/bench

export OMP_NUM THREADS=1

time mpiexec.hydra -n $SLURM NTASKS -genv OMP NUM THREADS 1

/home/manjunath/NEW LAMMPS/lammps-7Augl9/src/lmp intel cpu intelmpi
—-in in.13j

3. LAMMPS OUTPUT FILE.

LAMMPS (7 Aug 2019)
using 1 OpenMP thread(s) per MPI task
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
Created orthogonal box = (0 0 0) to (107.494 107.494 107.494)
5 by 8 by 8 MPI processor grid
Created 1048576 atoms
create atoms CPU = 0.00387692 secs
Neighbor list info
update every 20 steps, delay 0 steps, check no
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 2.8
ghost atom cutoff = 2.8
binsize = 1.4, bins = 77 77 77
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair 1j/cut, perpetual
attributes: half, newton on
pair build: half/bin/atomonly/newton
stencil: half/bin/3d/newton
bin: standard
Setting up Verlet run

Unit style R
Current step : O
Time step : 0.005

Page | 75

PARAM Pravega — User’s Manual

Per MPI rank memory allocation (min/avg/max) = 3.154 | 3.156 | 3.162

Mbytes
Step Temp E pair E mol TotEng Press
0 1.44 -6.7733681 0 -4.6133701 -
5.0196704
1000000 0.65684946 -5.7123998 0 -4.7271266
0.49078272

Loop time of 2955.97 on 320 procs for 1000000 steps with 1048576
atoms

Performance: 146145.063 tau/day, 338.299 timesteps/s
99.4% CPU use with 320 MPI tasks x 1 OpenMP threads

MPI task timing breakdown:

Section | min time | avg time | max time | $varavg| S%$total
Pair | 1284.2 | 1512.3 | 1866.9 | 494.3 | 51.16
Neigh | 178.94 | 207.58 | 261.09 | 217.8 | 7.02
Comm | 793.59 | 1207.7 | 1468.3 | 654.3 | 40.86
Output | 0.00011516 | 0.00084956 | 0.0027411 | 0.0 | 0.00
Modify | 19.566 | 22.639 | 29.863 | ©67.3 | 0.77
Other | | 5.744 | | | 0.19
Nlocal: 3276.8 ave 3325 max 3231 min

Histogram: 4 7 21 63 67 80 50 22 5 1

Nghost: 5011.29 ave 5063 max 4956 min

Histogram: 5 9 26 45 57 76 51 34 12 5

Neighs: 122781 ave 127005 max 118605 min

Histogram: 3 5 36 59 63 52 66 24 11 1

Total # of neighbors = 39290074
Ave neighs/atom = 37.4699
Neighbor list builds = 50000
Dangerous builds not checked
Total wall time: 0:49:15

GROMACS APPLICATION

GROMACS

GROningen MAchine for Chemical Simulations (GROMACS) is a molecular dynamics package

mainly designed for simulations of proteins, lipids, and nucleic acids. It was originally

developed in the Biophysical Chemistry department of University of Groningen, and is now

maintained by contributors in universities and research centres worldwide. GROMACS is one
of the fastest and most popular software packages available, and can run on central
processing units (CPUs) and graphics processing units (GPUs).

Input description of Gromacs

Page | 76

https://en.wikipedia.org/wiki/Molecular_dynamics
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Lipid
https://en.wikipedia.org/wiki/Nucleic_acid
https://en.wikipedia.org/wiki/University_of_Groningen
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit

PARAM Pravega — User’s Manual

Input file can be download from
ftp://ftp.gromacs.org/pub/benchmarks/water GMX50 bare.tar.gz

The mdp option used is pme with 50000 steps

Submission Script:

#!/bin/sh

#SBATCH -N 10

#SBATCH --ntasks-per—-node=48
##SBATCH --time=03:05:30
#SBATCH --job-name=gromacs
#SBATCH --error=job.16.%J.err
#SBATCH --output=job.16.%J.out
#SBATCH --partition=standard

cd /home/shweta/water-cutl.0 GMX50 bare/3072
spack load intel-oneapi-compilers

spack load gromacs@5.1.4

export I MPI DEBUG=5

export OMP_NUM THREADS=1

mpirun -np 4 gmx mpi grompp -f pme.mdp -c conf.gro -p topol.top

time mpirun -np S$SLURM NTASKS gmx mpi mdrun -s topol.tpr) 2>&l | tee
log gromacs_ 40 50k mpirun

Output Snippet:

Number of logical cores detected (48) does not match the number reported by
OpenMP (1).

Consider setting the launch configuration manually!

Running on 10 nodes with total 192 cores, 480 logical cores

Cores per node: 0 - 48
Logical cores per node: 48

Hardware detected on host cn072 (the node of MPI rank O0):
CPU info:

Vendor: GenuinelIntel
Brand: 1Intel (R) Xeon(R) Platinum 8268 CPU @ 2.90GHz
SIMD instructions most likely to fit this hardware: AVX2 256
SIMD instructions selected at GROMACS compile time: AVX2 256
Reading file /home/shweta/Gromacs/water-cutl.0 GMX50 bare/3072/topol.tpr,
VERSION 5.1.4 (single precision)
Changing nstlist from 10 to 20, rlist from 1 to 1.032
The number of OpenMP threads was set by environment variable
OMP_NUM THREADS to 1 (and the command-line setting agreed with that)
NOTE: KMP AFFINITY set, will turn off gmx mdrun internal affinity
setting as the two can conflict and cause performance degradation.
To keep using the gmx mdrun internal affinity setting, set the
KMP AFFINITY=disabled environment variable.
Overriding nsteps with value passed on the command line: 50000 steps, 100
pPs
Will use 360 particle-particle and 120 PME only ranks
This is a guess, check the performance at the end of the log file
Using 480 MPI processes

Page | 77

ftp://ftp.gromacs.org/pub/benchmarks/water_GMX50_bare.tar.gz

PARAM Pravega — User’s Manual

Using 1 OpenMP thread per MPI process

Back Off! I just backed up ener.edr to ./#ener.edr.2#
starting mdrun 'Water'

50000 steps, 100.0 ps.

Average load imbalance: 5.5 %

Part of the total run time spent waiting due to load imbalance: 3.0 %
Average PME mesh/force load: 1.252

Part of the total run time spent waiting due to PP/PME imbalance: 13.2 %

NOTE: 13.2 % performance was lost because the PME ranks
had more work to do than the PP ranks.
You might want to increase the number of PME ranks
or increase the cut-off and the grid spacing.
Core t (s) Wall t (s) (%)
Time: 204872 .624 427.847 47884.5
(ns/day) (hour/ns)
Performance: 20.195 1.188

Page | 78

PARAM Pravega — User’s Manual

Acknowledging the National Supercomputing Mission
in Publications

If you use supercomputers and services provided under the National Supercomputing
Mission, Government of India, please let us know of any published results including Student
Thesis, Conference Papers, Journal Papers and patents obtained.

Please acknowledge the National Supercomputing Mission as given below:

We acknowledge National Supercomputing Mission (NSM) for providing computing resources
of ‘PARAM PRAVEGA'’ at S.E.R.C. Building, IISc Main Campus Bangalore, which is implemented
by C-DAC and supported by the Ministry of Electronics and Information Technology (MeitY)
and Department of Science and Technology (DST), Government of India.

Also, please submit the copies of dissertations, reports, reprints and URLs in which “National
Supercomputing Mission, Government of India” is acknowledged to:

HoD HPC Technologies,

Centre for Development of Advanced Computing,
CDAC Innovation Park,

S.N. 34/B/1,

Panchavati, Pashan,

Pune —411008

Maharashtra

Communication of your achievements using resources provided by National
Supercomputing Mission will help the Mission in measuring outcomes and gauging the
future requirements. This will also help in further augmentation of resources at a given site
of National Supercomputing Mission.

Page | 79

PARAM Pravega — User’s Manual

Getting Help — PARAM Pravega Support

We suggest that you please refer to these four easy steps to generate a Ticket related to the
issue you are experiencing.

Your Ticket will be assisted by the Pravega Support team. The ticket generated will be closed
only when the related issue gets resolved.

You can generate a new ticket for any of the new issue that you are experiencing.

Steps to Create a New Ticket

1. Place the URL (https://parampravega.iisc.ac.in/support) in your browser.

2. On the right-top corner of the page click Sign In. Refer to Fig: 36 for the same.

L5 Mram Pravegn % e

SUPPORT CENTER Guest User | i
Support Ticket System

4% Support Center Home LaOpena _lt_c!.‘nny sl Check Tioves Satus

Opan a Now Ticket

Welcome to the Support Center

In nrder % stimamine support roguests and bater serve you. we utdzn & suppott

Vicket systerm Every support reques! is ssmgnod a snigue Doke! ramber which you
AN use 1o tach (he progress and recporsas onine. For your roferance we provice
camplats archives and histary ol sk pour ssppert intpensts. A st sl atksioes s

Teguired 1o sutirs! & hohet

Caparpht € JUZL Mt Faerpn - A Fohes inserues

Figure 40 — Snapshot of Ticketing System

3. Signin by using the Username and Password that you use for logging to the Cluster.
Refer to Fig37 for the same.

Page | 80

https://parampravega.iisc.ac.in/support

PARAM Pravega — User’s Manual

SUPPORT CENTER Guest User | Sign In

Support Ticket System

£t Support Center Home |3 Open a New Ticket [qf Check Ticket Status

Sign in to Param Pravega

To better serve you, we encourage our Clients to register for an account.

| sahil ’ Not yet registered? Create an account
I I'm an agent — sign in here

This connection is not secure, Logins
entered here could be compromised.
Learn More

View Saved Logins ‘ (— ﬂ
|

Enter the text shown on the image. *

| signin |

If this is your first time contacting us or you've lost the ticket number, please open a new ticket

Figure 41- Snapshot of Ticketing System

4. Select a Help Topic from the Dropdown and then Click on Create Ticket. Refer to Fig:38

for the same

2t Apps . Macker News SR C-DACWebmail @ Centralzed Log Ma o Linux Audktd Best P Q lagging - How ta la.. ' 300gs

SUPPORT CENTER verikatesh Profle | Tickes () - Sign Out

Support Ticket System

£} Support CenerHome |4 Open aNew Ticket || Tickets (0)

Open a New Tickst

Pisase M in the form below to open a new ticket:

Ematt uvenkatesh@localhost
Client: venkatesh
Halp Topic

— Select a Help Topic — v |*

Create Ticket | Reset || Cancel

Figure 42 - Snapshot of Ticketing System

Page | 81

PARAM Pravega — User’s Manual

5. Please fill in the details of your issue in the fields given and then click on Create ticket.

2% Apps Hacker News 5% C-DAC Webmail @ Centralized Log Ma.. O Linux Auditd Best P,.. »

SUPPORT CENTER venkatesh | Profile | Tickets (0) - Sign Out
Support Ticket System

£ Support Center Home [} Open a New Ticket) Tickets (0)

Open a New Tickat

Please fill in the form below to open a new ficket.

Emait: uvenkatesh@localhost
Client: venkatesh

Help Topic

[System Suppot v |+

Ticket Details
Please Describe Your Issue

Issue Summary *

! X

£> Y O s B !

=
il
=
o
i
3
l

@ Drop files heré or chioose them

| Create Ticket || Reset || Cancel |

Capyright £ 2020 Pasmm Yok <Al nghts reserves.

Figure 43 - Snapshot of Ticketing System

Once the Ticket is generated, an acknowledgement e-mail will be sent to your official e-mail
address. The e-mail will also contain the Ticket number along with reference to the ticket
that you have generated.

In case of any difficulty while accessing Pravega Support you can reach us via e-mail at
support.parampravega@iisc.ac.in

Page | 82

mailto:support.parampravega@iisc.ac.in

PARAM Pravega — User’s Manual

Closing Your Account on PARAM Pravega

When once you have completed your research work and you no longer need to use PARAM
Pravega, you may please close your account on PARAM Pravega. Please raise a ticket by
following the urlhttps://parampravega.iisc.ac.in/supportThe system administrator will guide

you about the “Closure Procedure”. You will need clearance from your project-coordinator/
Supervisor/ Head of the Department about you having surrendered this resource for getting
“no dues” certificate from the institute.

Page | 83

https://parampravega.iisc.ac.in/support

PARAM Pravega — User’s Manual

. .a
aer
s

nsm 4 NATIONAL SUPERCOMPUTING MISS TiS®
NATIONAL . CONC
P INFRASTRUCTURE | APPLICATIONS | R&D | covmson orvisomssros

PARAM PRAVEGA ACCOUNT REQUEST FORM

User Details:

First Name: Last Name:

Organization Name:

Organization Address:

Gender:

Department:

Designation:

(Designation: If student, provide the details below)

Roll No.: Course: Academic Year:

Official Email address:

Page | 84

PARAM Pravega — User’s Manual

Office no.: Mobile no.:

(If Research, provide the details below)

Nature of the
Research:

Project Details:

Project Name:

Nature of the Project:

Brief Description of the Project:

Project Start Date: Project Duration:

Proposed work on PARAM PRAVEGA& Requirement of resources:

PARAM PRAVEGA HPC facility usage policies:

Page | 85

PARAM Pravega — User’s Manual

The Resources provided to you on PARAM PRAVEGA facility should not be used for any
commercial purpose i.e. it is restricted for the academic use like research projects, academic
projects, NSM projects, NSM approved MSME projects and scientific projects.

Sharing your login credentials with some third person will revoke the responsibility of
PARAM PRAVEGA administration committee for data theft and your account will also be
disabled. The third person will also be held accountable for misusing the PARAM PRAVEGA
facility.

It is strictly recommended that you should not run jobs on login node and any such incident
reported will result in cancellation of the job and any repeat action will result in closure of
your account.

You will be responsible for informing the PARAM PRAVEGA administration about your
project completion, project cancellation and moving or copying data related to your project
from PARAM PRAVEGA.

You will be solely responsible for keeping your password strong and safe.

If found in any engagement or promotion of activities like hacking, reverse-engineering,
violating intellectual property rights on or using the PARAM PRAVEGA facility, you will be
barred from having account on any Supercomputer setup under the National
Supercomputing Mission.

The facility is built with least downtime requirement; however, it depends on various factors
like Hardware reliability, Power outage, network outage, scheduled maintenance due to
which the facility could be unavailable completely/partially. Notification of all scheduled /
unscheduled maintenance will be made known to the users via Website, Email, broadcast
message, newsgroups etc.

This facility will not be used for any purpose connected with Chemical or Biological or
Nuclear weapons or missiles capable of delivering such Weapons.

Acknowledging the usage of the facility is mandatory.

If you use supercomputers and services provided under the National Supercomputing Mission,
Government of India, please let us know of any published results including Student Thesis,
Conference Papers, Journal Papers and patents obtained.

Performa for Acknowledging the usage:

We acknowledge National Supercomputing Mission (NSM) for providing computing resources
of ‘PARAM PRAVEGA’ at SERC Building IISc Main Campus Bangalore, which is implemented by
C-DAC and supported by the Ministry of Electronics and Information Technology (MeitY) and

Department of Science and Technology (DST), Government of India.

Also, please submit the copies of dissertations, reports, reprints and URLs in which “National

Supercomputing Mission, Government of India” is acknowledged to:

HoD, HPC Technologies,
Centre for Development of Advanced Computing,
CDAC Innovation Park,

Page | 86

PARAM Pravega — User’s Manual

S.N. 34/B/1,
Panchavati, Pashan,
Pune —411008
Maharashtra

Email: support.parampravega@iisc.ac.in

Communication of your achievements using resources provided by National
Supercomputing Mission, will help the Mission in measuring outcomes and gauging the
future requirements. This will also help in further augmentation of resources at a given site
of National Supercomputing Mission.

| acknowledge the above mentioned usage policies & terms and conditions.

User’s signature

Recommended/Not Recommended
Signature and seal of HoD/Head of Organization:

Name:

Designation:

Department:

Official Email address:

Only for Official Use
Approving Authority for NSM

Verified by:
Approving Authority:

Approved/Not Approved

Page | 87

Remarks:

PARAM Pravega — User’s Manual

Name, Signature and seal of approving authority

Information required for NSM (National Supercomputing Mission) users

Domain(s)*:
Sub-domain(s)*:

Application name(s)*:

(Indicative list of Domains and some of its applications)

Domain Name

Application Name

Astronomy & Astrophysics

ATHENA, CosmoMC

Atomic & Molecular Sciences

Gromacs, LAMMPS, NAMD,AMBER (Open
Source)

Computational Biology

Biopython

Bioinformatics

mpiBlast, Clustaw- MPI,Fasta, Artemis, T-
coffee

Chemical Sciences

Gromacs, LAMMPS, NAMD

Climate & Environment Sciences

MOM,Weather Research Forecasting model
(WRF), COSMO

Computational Fluid Dynamics

OpenFoam, Tycho, Gerris flow Solver

Computational Physics

OOFEM

Computational Sciences

Gromacs, LAMMPS, NAMD,AMBER (open
source)

Page | 88

PARAM Pravega — User’s Manual

Data analytics

RStudio, Apache Spark

Geological Sciences

Ferret

Data Visualization

GRADS, Ferret, ParaView

Material Sciences

Quantum Espresso, Q-chem

Quantum Mechanics

Abinit, NWChem,CP2K

Structural Engineering Mechanics

CODE-ASTER

Al/ML/DL

Tensorflow, Nvidia digits, pandas, numpy

Image Processing

OpenCV, Matplotlib, Scikit-image

Atmospheric/Ocean Modelling

MOM,Weather Research Forecasting model
(WRF)

Please specify other application name if not
listed above

(* form may get rejected if no mandatory information is provided)

Page | 89

https://spark.apache.org/

PARAM Pravega — User’s Manual

References

© 00 N o U kB W DN PRE

N NN R R R R R R R R R R
N B O VU O N O U1 M W N B O

https://lammps.sandia.gov/

https://www.openacc.org/

https://www.openmp.org/

https://computing.linl.gov/tutorials/mpi/
https://developer.nvidia.com/cuda-zone
https://www.mmm.ucar.edu/weather-research-and-forecasting-model
http://www.gromacs.org/

https://www.openfoam.com/

https://slurm.schedmd.com/

. https://www.tutorialspoint.com/gnu_debugger/what_is_gdb.htm
. https://nsmindia.in/

. https://en.wikipedia.org/wiki/Deep_learning

. https://docs.conda.io/en/latest/

. https://docs.conda.io/en/latest/miniconda.html
. https://www.tensorflow.org/

. https://www.tensorflow.org/install

. https://github.com/PaddlePaddle/Paddle

. Keras, https://keras.io/

. Pytorch, https://pytorch.org

. https://mxnet.apache.org

. https://software.intel.com/en-us/distribution-for-python

guide

. https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-

Page | 90

