

Spack

User Guide

Ver. 1.0

Last updated: Dec 08, 2021

www.cdac.in

Spack – User Guide

For PARAM Pravega Page | 1

Copyright Notice

Copyright © 2021 Centre for Development of Advanced Computing

All Rights Reserved.

Any technical documentation that is made available by C-DAC (Centre for Development of Advanced

Computing) is the copyrighted work of C-DAC and is owned by C-DAC. This technical documentation is being

delivered to you as is, and C-DAC makes no warranty as to its accuracy or use. Any use of the technical

documentation or the information contained therein is at the risk of the user. C-DAC reserves the right to

make changes without prior notice.

No part of this publication may be copied without the express written permission of C-DAC.

Trademarks

CDAC, CDAC logo, NSM logo are trademarks or registered trademarks.

Other brands and product names mentioned in this manual may be trademarks or registered trademarks of

their respective companies and are hereby acknowledged.

Intended Audience

This document is meant for PARAM Pravega users.

Typographic Conventions

Symbol Meaning

Blue underlined text A hyperlink or link you can click to go to a related

section in this document or to a URL in your web

browser.

Bold The names of menus, menu items, headings, and

buttons.

Italics Variables or placeholders or special terms in the

document.

Console text Console commands

Getting help

For technical assistance, use ticketing tool.

Spack – User Guide

For PARAM Pravega Page | 2

Give us your feedback

We value your feedback. Kindly send your comments on content of this document to samirs@cdac.in .

Please include the page number of the document along with your feedback.

DISCLAIMER

The information contained in this document is subject to change without notice. C-DAC shall not be liable for

errors contained herein or for incidental or consequential damages in connection with the performance or use

of this manual.

mailto:samirs@cdac.in

Spack – User Guide

For PARAM Pravega Page | 3

Contents

Spack ... 4

Introduction .. 4

To Use Pre-installed Applications from Spack .. 5

To install new application... 7

Uninstalling Packages ... 10

Using Environments ... 11

Packaging (For Application developers) ... 13

Sample SLURM script for OpenMP applications/programs. to use spack 15

Sample SLURM script for MPI applications/programs. to use spack 15

References ... 16

Spack – User Guide

For PARAM Pravega Page | 4

Spack

Introduction

Spack automates the download-build-install process for software - including dependencies -

and provides convenient management of versions and build configurations. It is designed to

support multiple versions and configurations of software on a wide variety of platforms and

environments. It is designed for large supercomputing centers, where many users and

application teams share common installations of software on clusters with exotic

architectures, using libraries that do not have a standard ABI. Spack is non-destructive:

installing a new version does not break existing installations, so many configurations can

coexist on the same system.

Getting Started

On your login node command prompt execute below commands:

$ module load spack - To load SPACK module and setting up environment for SPACK.

Kindly see the above screenshot and source below line including initial dot.

$. home/apps/spack/share/spack/setup-env.sh

Spack – User Guide

For PARAM Pravega Page | 5

To Use Pre-installed Applications from Spack

Spack find

The spack find command is used to query installed packages on Param Pravega. Note that

some packages appear identical with the default output. The -l flag shows the hash of each

package, and the -f flag shows any non-empty compiler flags of those packages.

Spack load application name

The easiest way is to use spack load <application name@version>

Spack – User Guide

For PARAM Pravega Page | 6

To Know the Pre-Loaded Application/Compliers

$ spack find --loaded

==> 6 installed packages

-- linux-ubuntu18.04-x86_64 / gcc@7.5.0 -------------------------

gcc@8.3.0 gmp@6.1.2 isl@0.18 mpc@1.1.0 mpfr@3.1.6 zlib@1.2.11

Spack – User Guide

For PARAM Pravega Page | 7

To install new application

First check the available compilers in Spack with below command:

spack compilers

Spack manages a list of available compilers on the system, detected automatically from the

user’s PATH variable. The spack compilers command is an alias for the command spack

compiler list.

To Check the Compliers Available in the System

$ spack compiler list

==> Available compilers

-- clang ubuntu18.04-x86_64 -------------------------------------

clang@6.0.0

-- gcc ubuntu18.04-x86_64 ---------------------------------------

gcc@8.3.0 gcc@7.5.0 gcc@6.5.0

Check if application is available in Spack repo with command-

spack list

The spack list command shows available packages.

The spack list command can also take a query string. Spack automatically adds wildcards to

both ends of the string, or you can add your own wildcards.

Spack – User Guide

For PARAM Pravega Page | 8

Before installing application check its spec with command

 spack spec zlib

Show what would be installed, given a spec. The spec syntax also includes compiler flags.

Spack accepts cppflags, cflags, cxxflags, fflags, ldflags, and ldlibs parameters. The values of

these fields must be quoted on the command line if they include spaces. These values are

injected into the compile line automatically by the Spack compiler wrappers.

To change default compiler for zlib installation to oneapi

Spack – User Guide

For PARAM Pravega Page | 9

spack spec zlib %oneapi

spack install

Below is an example of installation of package using spack:

spack install gromacs@2020.5 +cuda~mpi+blas %intel ^intel-mkl

Above command will install gromacs version 2020.5 with blas and cuda support and without

MPI support. For blas there are multiple providers like OpenBLAS, Intel MKL, amdblis, and

essl, ^intel-mkl will tell spack to use intel-mkl for blas routines.

Operators in Spack

% to select compiler out of available compilers

^ to use variant of package

@ to define the version number of packages to be installed.

+ to enable variant for package

~ to disable variant for package

Spack – User Guide

For PARAM Pravega Page | 10

Uninstalling Packages

Earlier we installed many configurations each of zlib. Now we will go through and uninstall

some of those packages that we didn’t really need.

$ spack uninstall zlib %gcc@6.5.0
 (type : y)

Spack – User Guide

For PARAM Pravega Page | 11

Using Environments

Spack has an environment feature in which you can group installed software. You can install

software with different versions and dependencies in each environment and can change

software to use at once by changing environments. You can create a Spack environment by

spack env create command. You can create multiple environments by specifying different

environment names here.

spack env create myenv

To activate the created environment, type spack env activate. Adding -p option will display

the current activated environment on your console. Then, install software you need to the

activated environment.

spack env activate -p myenv

myenv] [username@es1 ~]$ spack install xxxxx

You can deactivate the environment by spack env deactivate. To switch to another

environment, type spack env activate to activate it.

[myenv] [username@es1 ~]$ spack env deactivate

[username@es1 ~]$

Use spack env list to display the list of created Spack environments.

[username@es1 ~]$ spack env list

==> 2 environments

 myenv

 another_env

spack env

Refer below screenshot to activate an environment, add a package and install it in that

environment:

Spack – User Guide

For PARAM Pravega Page | 12

The spack env activate will load the view associated with the Environment into the user

environment.

Spack – User Guide

For PARAM Pravega Page | 13

Packaging (For Application developers)

Spack packages are installation scripts, which are essentially recipes for building the

software.

They define properties and behaviour of the build, such as:

• where to find and how to retrieve the software.

• its dependencies.

• options for building the software from source; and

• build commands.

Once we’ve specified a package’s recipe, users of our recipe can ask Spack to build the

software with different features on any of the supported systems. Please refer Packaging

Guide — Spack 0.17.0 documentation for detailed understanding of the Spack packaging.

Example Creating Own Package:

In below spec file we have used Linewidth an IISc developed code. Please see the bold lines

for comments related to preceding lines in the spec file of spack package named

IiscLinewidth:

Copyright 2013-2021 Lawrence Livermore National Security, LLC and other

Spack Project Developers. See the top-level COPYRIGHT file for details.

SPDX-License-Identifier: (Apache-2.0 OR MIT)

import os

import platform

import sys

import llnl.util.tty as tty

from spack import *

class IiscLinewidth(MakefilePackage):

 """

 Linewidth developed by IISC Banglore.

 """

 homepage = ""

 #Url for homepage

 url = "file://{0}/linewidth.tar.gz".format(os.getcwd())

 #Url for source code

 manual_download = True

 #If source code is not available in public domain

 version('1',

sha256='7215f6765e5f5eddfde5f0c67a5bbdef5960607f3e199a609ef5619278ec8a66',

 preferred=True)

 #You can add different versions for you package.

 variant('mpi', default=True, description='Install with MPI support')

 variant('openmp', default=True, description='Install with OpenMP

support')

 #Variant gives flexibility to users for changing parameter before

compilation.

 depends_on('gmake', type='build')

 depends_on('mpi', when='+mpi')

 depends_on('hdf5+fortran+hl+mpi')

 depends_on('intel-mkl')

https://spack.readthedocs.io/en/latest/packaging_guide.html
https://spack.readthedocs.io/en/latest/packaging_guide.html

Spack – User Guide

For PARAM Pravega Page | 14

 depends_on('py-h5py')

 depends_on('py-matplotlib', type=('build', 'run'))

 #Depend clause used to specify dependancies for your code.

 @property

 def build_targets(self):

 targets = [

 #'--directory=SRC',

 '--file=Makefile',

 'LIBS={0} {1} '.format(self.spec['intel-mkl'].libs.ld_flags,

 self.spec['hdf5'].libs.ld_flags),

 'HDFINCFLAGS={0}'.format(self.spec['hdf5'].prefix.include),

 'HDF5_HOME={0}'.format(self.spec['hdf5'].prefix),

 'FC={0}'.format(self.spec['mpi'].mpifc)

]

 return targets

 def install(self, spec, prefix):

 mkdirp(prefix.bin)

 install('linewidth', prefix.bin)

#This code uses Makefile for building application. We can define some

properties

to make changes in Makefile, changing parameter in Makefile at compile

time.

Sample Steps taken for Creating Linewidth application recipe for Spack

1. Source code
Source code of Linewidth was not available through public repo like github, so needed to
import OS package.
 os.getcwd() - expects the source tar present in current working directory.

cha256- to check for sha256 checksum we added same in version clause and for
place holder we have give version as 1.
manual download = True referes to spack will not try to download source code for
the package.

 name- make sure that name of tar file is same as used inside package recipe

2. Variant- User can control behavior of application being built through this clause.
 Ex- To enable MPI support we have define it to be true by default.

3. depends_on() - This clause defines all dependencies required to build the given
application.
 Ex- In linewidth example we have used Intel-mkl and HDF5.

4. @property - With this decorator we can define some properties for build system like edit,
build, install.

5. property build_targets - Defines logic of building source for native platform.

6. property install - Defines install procedure to be used after building source code.
 Ex- In our example we define prefix path

Spack – User Guide

For PARAM Pravega Page | 15

Sample SLURM script for OpenMP applications/programs. to

use spack

#!/bin/bash

#SBATCH --nodes=1

#SBATCH -p cpu ## gpu/standard

#SBATCH --exclusive

#SBATCH -t 1:00:00

echo "SLURM_JOBID="$SLURM_JOBID

echo "SLURM_JOB_NODELIST"=$SLURM_JOB_NODELIST

echo "SLURM_NNODES"=$SLURM_NNODES

echo "SLURM_NTASKS"=$SLURM_NTASKS

ulimit -s unlimited

ulimit -c unlimited

export OMP_NUM_THREADS=4 ### Maximum number of threads= Number of physical

core

#To load necessary application/compiler through spack

module load spack

export SPACK_ROOT=/home/apps/spack

. $SPACK_ROOT/share/spack/setup-env.sh

spack load intel-mpi@2019.10.317 /6icwzn3

spack load intel-mkl@2020.4.304

spack load intel-oneapi-compilers@2021.4.0

spack load gcc@11.2.0

(time <executable_path>)

Sample SLURM script for MPI applications/programs. to use

spack

#!/bin/bash

#SBATCH --nodes=2

#SBATCH -p cpu ## gpu/standard

#SBATCH --exclusive

#SBATCH -t 1:00:00

echo "SLURM_JOBID="$SLURM_JOBID

echo "SLURM_JOB_NODELIST"=$SLURM_JOB_NODELIST

echo "SLURM_NNODES"=$SLURM_NNODES

echo "SLURM_NTASKS"=$SLURM_NTASKS

ulimit -s unlimited

ulimit -c unlimited

#To load necessary application/compiler through spack

module load spack

export SPACK_ROOT=/home/apps/spack

. $SPACK_ROOT/share/spack/setup-env.sh

spack load intel-mpi@2019.10.317 /6icwzn3

spack load intel-mkl@2020.4.304

spack load intel-oneapi-compilers@2021.4.0

spack load gcc@11.2.0

(time mpirun -np $SLURM_NTASKS <executable_path>

For more information, related to SLURM, please refer the USER MANUAL.

Spack – User Guide

For PARAM Pravega Page | 16

References

1. https://spack.readthedocs.io/en/latest/

2. https://github.com/spack/spack

3. Getting started

https://spack.readthedocs.io/en/latest/getting_started.html

4. Basic usage

 https://spack.readthedocs.io/en/latest/basic_usage.html

5. Packaging guide

https://spack.readthedocs.io/en/latest/packaging_guide.html

6. Build system

https://spack.readthedocs.io/en/latest/build_systems.html

https://spack.readthedocs.io/en/latest/
https://github.com/spack/spack
https://spack.readthedocs.io/en/latest/getting_started.html
https://spack.readthedocs.io/en/latest/basic_usage.html
https://spack.readthedocs.io/en/latest/packaging_guide.html
https://spack.readthedocs.io/en/latest/build_systems.html

