
Cross-Layer Topology Discovery Tool

COMPUTATIONAL AND DATA SCIENCE DEPARTMENT
INDIAN INSTITUTE OF SCIENCE, BANGALORE

Dhanya R Mathews

supervised by
J. Lakshmi, Mudit Verma, & Pooja Aggarwal

1

Abstract

As microservice architecture becomes prominent, existing fault management techniques to deal with service
disruption become limiting mainly due to the amount of data needed to be analyzed. This report emphasizes the
need to consider the cross-layer topology of the cloud service, including components involving different layers of the
cloud stack to intelligently identify and correlate the observability data and assist in implementing efficient and more
accurate fault management techniques that can provide better explainability. Towards this goal, the report presents
a tool that derives cross-layer topology discovery for a cloud microservice application and discusses the benefits of
using cross-layer service topology to implement effective fault management.

Keywords

Cloud Application Services, Cross-Layer Topology Discovery, Monitoring, Fault Management

2

CONTENTS

I Introduction 3

II Related Work 3

III Topology Discovery Tool 4
III-A Topology Discovery Tool Architecture . 5

III-A1 Topology Discovery Master . 6
III-A2 Topology Discovery Agent . 6
III-A3 Pod Events Tracker . 6
III-A4 VM Events Tracker . 6

III-B Validation Tests . 6

IV Effective Fault Management Using Cross-Layer Service Topology 9

V Conclusion and Future Work 10

References 11

3

I. INTRODUCTION

In the recent past, cloud application services have seen an architecture shift from tightly coupled
monoliths to loosely coupled microservices. With microservice architectures gaining prominence, the
number of service components that constitute an application service has increased. A disruption in the service
components or its dependent provisioning components across the different cloud service layers [1] can affect
the application service quality. To effectively deal with service disruptions for cloud application services and
to guard against SLA violations, such scenarios demand smarter autonomous methods to identify, localize,
and mitigate faults or predict failures [2].

In order to deal with service disruptions autonomously, there needs to be an understanding of components
involved in the service delivery across the different service architecture layers. As a cloud service disruption
could be due to a failure or error in any of the components involved in its delivery, an awareness of those
components can improve the ability of the service to deal with unexpected events that could potentially
challenge its quality, thus improving its resilience. Further, end-to-end topology information can facilitate an
understanding of how faults, errors, and failures propagate across the components in and across the different
cloud service architecture layers [3].

Although individual components involved in the service delivery are well understood, the structure of
the end-to-end dependency graph defines how individual components affect the overall performance [4].
As a fault in any component involved in the delivery of a service can challenge the service quality, the
intelligence to deal with service disruptions need to be derived based on an understanding of the components
involved in the delivery of the service and their state [3]. Topology discovery identifies the components
and interconnections vital for service delivery and dynamically updates it to facilitate efficient monitoring.
Efficient dynamic topology discovery is an antecedent for effective monitoring, and an effective monitoring
framework is essential to facilitate autonomous SLA management. The service quality monitoring frame-
work can use the information about the current topology to monitor the components and trigger autonomous
failure management techniques. For example, in the case of an application service following a microservice
architecture, the topology discoverer should identify the cross-layer service components and the dependent
provisioning components dynamically. The monitoring framework can use this topology information to
collect the observability data based on the SLO of interest for the identified components, monitor their state,
and derive correlations among the observability data based on the interconnection. Further, such intelligent
monitoring can better explain the impact of a fault or error, or failure and facilitate efficient proactive or
reactive strategies to deal with service disruptions.

This report makes the following contributions:
1. Highlights the need for cross-layer topology discovery for cloud application services.
2. Present a tool that dynamically discovers the cross-layer topology of a microservice application.
3. Explains how a cross-layer topology discovery tool can facilitate efficient and explainable fault

management.

II. RELATED WORK

Monitoring and Topology discovery is an intriguing area of research in cloud computing. This section
briefly discusses the state-of-the-art to understand the various approaches for mining the service compo-
nents’ topology in and across the service architecture layers. Most approaches that discover the service
topology work at a given cloud service architecture layer. [5] deploys the Kubernetes manifest files for the
microservice and mines the architecture of the microservice application. To identify the service interactions,
this work deploys a monitoring container in all pods to sniff network packets sent to/from the container
in the pod. Even though this tool was tried during the initial phase of this work to discover the service
interactions, it was later replaced by Istio Kiali due to the time taken to discover the interactions. The authors
of [6] present a hypervisor-based network monitoring system to track the connections between different
VMs in a Data Center. Our work, instead of monitoring the network flows at the hypervisor, derives the
VM interconnections based on the interactions among the services hosted on the pods inside the VMs.

4

[7] explores topology discovery with a different objective, i.e., to visualize and verify the deployment in a
multi-cloud infrastructure. A VM dependency discovery system has been proposed in [8] to estimate the
response time based on component interactions. IaasMon [9] presents an auto-discovery process for virtual
and physical infrastructure by attaching a module to the communication middleware of OpenStack and then
using the topology information to correlate monitored metrics.

In addition to the above research contributions, few commercial tools are available for discovering
the service topology. Smartscape by Dynatrace [10] deploys an agent called OneAgent to discover the
components involved in the service delivery in and across the cloud service architecture layers. Network
Topology from Google [11] collects real-time telemetry and configuration data from Google’s infrastructure
to visualize your resources. Instana [12] uses end-to-end tracing based on Google dapper to model the
dependencies between physical and logical components [13]. However, it isn’t easy to use these tools for
this work due to the unavailability of source code and APIs to integrate.

In the listed tools above, each of the referred tools was built for a specific use, and none of them have
a comprehensive capability that provides API-based usage for integration into any monitoring or fault
diagnosis frameworks. Further, the survey identified no open-source cross-layer topology discovery tool that
works across the cloud stack and dynamically updates the topology information. An awareness of end-to-
end service topology is essential for a monitoring framework to make informed decisions to ensure service
resilience. The following sections briefly discuss a tool developed to dynamically discover the end-to-end
topology for a cloud service and its benefits.

III. TOPOLOGY DISCOVERY TOOL

This section presents the Topology Discovery tool, developed to discover the cross-layer topology of
cloud application services dynamically. The motivation was to use some of the identified generic methods
to develop a topology discovery tool that could generate necessary information about service components
at runtime, including the effects of scaling or failure events. This topology information then becomes the
input for any monitoring frameworks that can build the desired cross-layer insights. The tool also needs to
find metadata information of interest to the monitoring module about the components identified. Though the
current version of the tool has been implemented for a microservice application deployed on a Kubernetes
cluster, the tool is planned to be extended to be used by any distributed systems and applications.

Fig. 1 demonstrates the different components and interconnections of interest for the topology discovery
tool in and across the different cloud service architecture layers. As shown in the figure, at the service
instances layer, the components of interest are the microservices, and the interconnection is the service
interactions. At the virtual resources layer, the components of interest are the container on which the service
is deployed, the Kubernetes pods and the virtual machines, and the metadata regarding the virtual CPUs,
memory, and disk assignments. At the physical resources layer, the components of interest are the host and
the physical resources. The current version of the tool works for virtual machines deployed on KVM. Also,
the tool is developed using Python 3.8.

The topology discovery tool uses different command-line tools to derive the end-to-end topology for a
cloud application service. The tool needs to identify the service interactions at the service instances layer
and the interconnections across the different cloud service architecture layers. In order to find the service
interactions, the tool allows the user to either provide a JSON file with the service interactions similar to
a graph generated by Istio Kiali or has the capability to trigger the Locust test to generate traffic and use
Istio Kiali to learn about the interactions, given the file locations are given as input to the tool. However,
if the Locust test file is not provided by the developer or is not available and the user cannot derive a
semantic meaning of the application, this can be a challenge. For example, for the Sock-Shop microservice
application, the developer has provided the load test [14], and this can be used by the tool to derive service
interactions. In other cases, the user either has to draft the service interactions file to be given as an input to
the tool or has to depend on other open-source load tests, if available. The interconnections of interest among
the different layers are : (i) the mapping of the service instance to the container, pod, and virtual node, and

5

Fig. 1. Components of interest across cloud service architecture layers

(ii) the mapping of the virtual node to the physical node and physical resources. The tool uses the service
name in order to identify the pod on which it is provisioned. To find the mapping between the virtual node
and the physical node, the tool uses the name of the KVM VM. Once this information on the components
and their interactions/interconnections are derived, the tool generates the initial topology information. After
discovering the initial topology, the tool will then have to monitor the state of these components to identify
events of interest that could potentially change the topology information. For this, the tool will deploy agents
to track the Kubernetes events and libvirt events to discover the topology changes dynamically.

The topology information is generated by the tool in two different formats: JSON format and .gexf format.
In the JSON file format, each object corresponds to a service, and the value identifies the services with
which it interacts and the deployment components. The .gexf graph format aids visualization. The following
sections will describe the architecture and working of the topology discovery tool in detail.

A. Topology Discovery Tool Architecture

This section describes the different components of the topology discovery tool and their working. To
discover the end-to-end topology of a cloud application service, the topology discovery tool uses the
following four components:

1. Topology Discovery Master
2. Topology Discovery Agent
3. Pod Events Tracker
4. VM Events Tracker

6

1) Topology Discovery Master: Topology Discovery Master is the controller or master process that
aggregates the information from various sources, generates the initial topology information, and updates the
topology information concerning the various events in the cluster. The master process takes the following as
input:

1. Kubernetes configuration file of the remote cluster
2. Host informaiton file
3. Service interaction file or the Locust parameters
4. Kubernetes namespace of interest

The Kubernetes configuration file is used to connect to a remote cluster and get the details of pods, contain-
ers, and Virtual Machines. The Host information file contains the IP addresses of the physical machines in
the cluster. This information is required in order to get the mapping between virtual machines and physical
machines. The service interactions file or Locust parameters aid in understanding the interconnections at
the Service Instances layer. Once this information is retrieved, the master process will aggregate these and
generate the topology information in a JSON format and .gexf format. Following is the command to trigger
the master process:

py thon3 t d m a s t e r . py − i <h o s t i n f o r m a t i o n f i l e > −n <namespace> [− t <
s e r v i c e i n t e r a c t i o n f i l e > | − l e < l o c u s t e n d p o i n t > − l f <
l o c u s t f i l e >] −c <k u b e r n e t e s c o n f i g u r a t i o n f i l e >

2) Topology Discovery Agent: The Topology Discovery Agent runs on physical machines in the cluster
and communicates the information about the virtual machines and the virtual resources to the master
process when queried. The agent process uses the virsh commands to generate the required information.
The Topology Discovery Agent is triggered using the following command:

py thon3 t d c l i e n t . py

3) Pod Events Tracker: Pod Events Tracker keeps track of the pods in the given namespace to identify
events that result in state changes that could affect the topology information. The master process triggers
this process after generating the initial topology information. The Pod Event tracker uses the Kubernetes
python library to identify the events in the namespace. Once the tracker sees that the event is regarding a pod
creation, modification or deletion, it marks those events. This process uses a push notification mechanism
to inform the master process about the updates. It can be configured to send updates per event or aggregate
the event for a given time period.

4) VM Events Tracker: The master process deploys the VM Events Tracker on the hosts in the host input
file. It identifies the Virtual Machines’ lifecycle events of interest using the libvirt APIs and pushes these
updates to the master process.

Fig. 2 describes the interactions among the four components described above. The figure shows that the
master process uses the information generated from different sources to generate and dynamically update
the end-to-end cloud service topology.

B. Validation Tests
The topology discovery tool has been validated for three microservice applications with a diverse number

of microservices: (i) Sock Shop [15], (ii) Train Ticket [16], and (iii) Hotel Reservation from the DeathStar
[4] benchmark suite. The other microservice application from the DeathStar benchmark suit were not used
because they lacked Kubernetes manifest files. The capability of the tool to identify dynamic topology
changes has been validated by configuring Kubernetes pod autoscalers and simulating host lifecycle events.
This section briefly describes the output that the tool generates.

Fig. 3 shows a sample execution of the Topology Discovery Master process. The figure shows that the
tool generates output in both JSON format and a .gexf form. The figure also shows that the master process
deploys the pod events tracker and VM events tracker and waits for update notifications from these processes.

7

Fig. 2. Topology Discovery Tool Working

Fig. 3. Topology Discovery Tool Sample Output

8

Fig. 4. Sample object in the JSON output file

As described earlier, the JSON file output by the tool has services, their dependencies, and a few other
metadata of interest. Fig. 4 shows the metadata associated with a service in the JSON file. The figure shows
that the tool outputs the container, pod, host, and resource information for the c̈artss̈ervice in the SockShop
microservice application. In addition to this information, the tool outputs the details of virtual compute, disk
and network, and the associated physical resources. These details can facilitate the monitoring module to
enhance the resilience of the cloud application service.

Fig. 5 shows the Gephi visualization of the .gexf file output by the tool for the Sock Shop application
deployed on a 3-node Kubernetes cluster on virtual machines for experimentation. The different layers are
denoted using a dashed rectangle in the figure. The nodes in the figure represent the components involved in
the service delivery. The node labels indicate the name of the service components from the real deployment,
and the solid lines recognize the interconnections (corresponds to bidirectional communications). The figure
shows that the tool captures both the horizontal and vertical topology for a given application service. Due
to space limitations, the results of capturing the dynamism in the setup and outcome for other microservices
described above are not included.

Inorder to validate whether the tool captures the dynamism in the cluster, pod addition or deletion, pod
autoscaling and VM lifecycle events were triggered. It was noted that the tool was able to capture the

9

Fig. 5. Gephi visualization for topology discovery tool output for Sock Shop microservice application, deployed on 3-node Kubernetes cluster

Fig. 6. Pod addition to validate the tool

changes. As an example, Fig. 6 shows how a new service pod was added. Once the pod was added, the
Pod Events tracker, identified the event and communicated it with Topology Discovery Master. Fig. 7 shows
the message on the master regarding the pod addition. Further, it was indeed verified from both the output
files that this information is available.

IV. EFFECTIVE FAULT MANAGEMENT USING CROSS-LAYER SERVICE TOPOLOGY

A cross-layer service topology discoverer can help to make an end-to-end monitoring framework
intelligent. Identifying service components across the stack can aid the monitoring module in selecting
the observability data for the components which best describe an SLO of interest instead of looking at a
whole spectrum of data across the components. As the tool also captures the dynamic changes in cross-
layer topology, it allows the monitoring framework to work with the current state of the service deployment
rather than stale data. The interconnections across the components in and across the different cloud service
layers available in the cross-layer service topology information can facilitate determining the potential effect
of a failure. For example, from Fig. 5, if a virtual machine fails, the topology awareness will facilitate
identifying the components that will get affected and help decide on the remediation efforts before it leads to
a user-perceived service disruption. As faults, errors or failures can propagate across the service components
as given in [3], the causality for identifying the dependencies among the various observable data can be
trusted only if they are justified through the derived cross-layer topology, thus providing more explainability.
Further, the monitoring framework can use the interconnections to understand the correlation of failure
across the components and analyze the scope for cascade failures or identify the blast radius. In the case

10

Fig. 7. Event update reflected in the topology discovery JSON output

of fault localization, the connectedness through topology helps reduce search space further to identify the
effect of the fault, derive better remediation methods, and reestablish disrupted services with a potentially
limiting effect on SLO. Also, the topology information helps in choosing remediation methods that are
better explainable and specific to a particular fault, rather than choosing a generic attitude for recovery from
a failure. In case of recovery actions, the cross-layer topology awareness will help limit the downtime for
the connected components. It will also provide accurate information on which components need to be re-
initiated or which ones need to be notified. As the cross-layer topology information makes the monitoring
module smarter, it helps mitigate fault by effectively taking proactive and reactive remediation methods. We
believe that this will facilitate autonomously dealing with service disruptions more efficiently.

V. CONCLUSION AND FUTURE WORK

This report identified the need to discover the cross-layer cloud service topology to deal with service
disruptions effectively. The report also presented a tool to discover the cross-layer service topology. The
tool is developed to generate the topology based on the initial deployment configuration and subsequently
update it dynamically. The tool has been used to discover a few well-known microservice-based applications
for validation. This tool is realized to enable the identification of service components across cloud service
layers to develop an end-to-end monitoring framework. Future work will study the correlations between
observability data generated by different service components across the cloud service layers and use those
to infer the cause-and-effect relationships among the failures for developing effective models for end-to-end
fault management.

11

REFERENCES

[1] D. R. Mathews, M. Verma, P. Aggarwal, and J. Lakshmi, “Insights into multi-layered fault propagation and analysis in a cloud stack,” in
2021 IEEE 14th International Conference on Cloud Computing (CLOUD), 2021, pp. 714–716.

[2] D. R. Mathews and J. Lakshmi, “Service resilience framework for enhanced end-to-end service quality,” in Proceedings of the 18th
Workshop on Adaptive and Reflexive Middleware, ser. ARM ’19. Association for Computing Machinery, 2019, p. 7–12.

[3] D. R. Mathews, M. Verma, P. Aggarwal, and J. Lakshmi, “Towards failure correlation for improved cloud application service resilience,”
in Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion, ser. UCC ’21. Association
for Computing Machinery, 2021.

[4] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He,
B. Clancy, C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa, R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An open-source
benchmark suite for microservices and their hardware-software implications for cloud edge systems,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS ’19. Association
for Computing Machinery, 2019, p. 3–18.

[5] G. Muntoni, J. Soldani, and A. Brogi, “Mining the architecture of microservice-based applications from their kubernetes deployment,” in
Advances in Service-Oriented and Cloud Computing, C. Zirpins, I. Paraskakis, V. Andrikopoulos, N. Kratzke, C. Pahl, N. El Ioini, A. S.
Andreou, G. Feuerlicht, W. Lamersdorf, G. Ortiz, W.-J. Van den Heuvel, J. Soldani, M. Villari, G. Casale, and P. Plebani, Eds. Springer
International Publishing, 2021, pp. 103–115.

[6] J. Hwang, G. Liu, S. Zeng, F. Y. Wu, and T. Wood, “Topology discovery and service classification for distributed-aware clouds,” in 2014
IEEE International Conference on Cloud Engineering, 2014, pp. 385–390.

[7] H. Wei, J. S. Rodriguez, and O. N.-T. Garcia, “Deployment management and topology discovery of microservice applications in the
multicloud environment,” in Journal of Grid Computing, 2021.

[8] A. Sangpetch and H. S. Kim, “Vdep: Vm dependency discovery in multi-tier cloud applications,” in 2015 IEEE 8th International
Conference on Cloud Computing, 2015, pp. 694–701.

[9] J. Gutierrez-Aguado, J. M. Alcaraz Calero, and W. Diaz Villanueva, “Iaasmon: Monitoring architecture for public cloud computing data
centers,” in Journal of Grid Computing, 2016.

[10] “Smartscape,” https://www.dynatrace.com/support/help/how-to-use-dynatrace/smartscape, (Accessed on 31/03/2022).
[11] “Network topology,” https://cloud.google.com/network-intelligence-center/docs/network-topology/concepts/overview, (Accessed on

31/03/2022).
[12] “Instana,” https://www.instana.com/, (Accessed on 31/03/2022).
[13] M. Novakovic, “Introducing the logical view,” https://www.instana.com/blog/introducing-logical-view/, (Accessed on 31/03/2022).
[14] “Sock shop load test,” https://github.com/microservices-demo/load-test, (Accessed on 31/03/2022).
[15] “Sock shop microservice,” https://github.com/microservices-demo/microservices-demo, (Accessed on 31/03/2022).
[16] “Train ticket microservice,” https://github.com/FudanSELab/train-ticket, (Accessed on 31/03/2022).

