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INTRODUCTION TO GPU COMPUTING

What to expect?

• Broad view on GPU Stack

• Fundamentals of GPU Architecture

• Good starting point
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GPU ARCHITECTURE CONTINUES TO DELIVER PERFORMANCE

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp
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ACCELERATED COMPUTING PILLARS

X-FACTOR SPEED UP FULL STACK DATA-CENTER SCALE

GPU

CPU

DPU

Developer Productivity
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HIERARCHY OF SCALES

Multi-System Rack

Unlimited Scale

Multi-GPU System

8 GPUs

Multi-SM GPU

108 Multiprocessors

Multi-Core SM

2048 threads
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CUDA PLATFORM: TARGETS EACH LEVEL OF THE HIERARCHY
The CUDA Platform Advances State Of The Art From Data Center To The GPU
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HOW GPU ACCELERATION WORKS

Application Code

+

GPU CPU
5% of Code

Compute-Intensive Functions

Rest of Sequential
CPU Code
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GPU Accelerator
Optimized for 
Parallel Tasks

ACCELERATED COMPUTING
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SILICON BUDGET

The three components of any processor
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CPU
Optimized for 
Serial Tasks

GPU Accelerator
Optimized for 
Parallel Tasks

CPU IS A LATENCY REDUCING ARCHITECTURE

CPU Strengths

• Very large main memory

• Very fast clock speeds

• Latency optimized via large caches

• Small number of threads can run 

very quickly

CPU Weaknesses

• Relatively low memory bandwidth

• Cache misses very costly

• Low performance/watt
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CPU
Optimized for 
Serial Tasks

GPU Accelerator
Optimized for 
Parallel Tasks

GPU IS ALL ABOUT HIDING LATENCY
GPU Strengths

• High bandwidth main memory

• Significantly more compute 

resources

• Latency tolerant via parallelism

• High throughput

• High performance/watt

GPU Weaknesses

• Relatively low memory capacity

• Low per-thread performance
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LOW LATENCY VS HIGH THROUGHPUT

CPU architecture must minimize latency within each thread

GPU architecture hides latency with computation (data-parallelism, to 30k threads!)

GPU – High Throughput Processor

CPU core – Low Latency Processor

Computation Thread

Tn Processing

Waiting for data

Ready to be processed

T1

T2

T3

T4

T1 T2 T3 T4
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SPEED V. THROUGHPUT

Speed Throughput

*Images from Wikimedia Commons via Creative Commons

Which is better depends on your needs…Which is better depends on your needs…
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HUGE BREADTH OF PLATFORMS, SYSTEMS, LANGUAGES
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NVIDIA HPC SDK
Download at developer.nvidia.com/hpc-sdk

Develop for the NVIDIA HPC Platform: GPU, CPU and Interconnect

HPC Libraries | GPU Accelerated C++ and Fortran | Directives | CUDA
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N-WAYS TO GPU PROGRAMMING
Math Libraries | Standard Languages | Directives | CUDA

Incremental Performance 

Optimization with Directives

Maximize GPU Performance with 

CUDA C++/Fortran

GPU Accelerated

C++ and Fortran

std::transform(par, x, x+n, y, y,
[=](float x, float y) {

return y + a*x;
});

std::transform(par, x, x+n, y, y,
[=](float x, float y) {

return y + a*x;
});

#pragma acc data copy(x,y) 
{

...

std::transform(par, x, x+n, y, y,
[=](float x, float y) {

return y + a*x;
});

...

}

#pragma acc data copy(x,y) 
{

...

std::transform(par, x, x+n, y, y,
[=](float x, float y) {

return y + a*x;
});

...

}

__global__ 
void saxpy(int n, float a, 

float *x, float *y) { 
int i = blockIdx.x*blockDim.x + 

threadIdx.x; 
if (i < n) y[i] += a*x[i]; 

} 

int main(void) { 
cudaMallocManaged(&x, ...);
cudaMallocManaged(&y, ...);
...
saxpy<<<(N+255)/256,256>>>(...,x, y)
cudaDeviceSynchronize();
...

}

__global__ 
void saxpy(int n, float a, 

float *x, float *y) { 
int i = blockIdx.x*blockDim.x + 

threadIdx.x; 
if (i < n) y[i] += a*x[i]; 

} 

int main(void) { 
cudaMallocManaged(&x, ...);
cudaMallocManaged(&y, ...);
...
saxpy<<<(N+255)/256,256>>>(...,x, y)
cudaDeviceSynchronize();
...

}

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)

enddo

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)

enddo

GPU Accelerated Math Libraries
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GPU ACCELERATED MATH LIBRARIES

cuSOLVER

BF16, TF32 and 
FP64 Tensor Cores

CUTLASS

BF16 & TF32 
Support

cuTENSOR

BF16, TF32 and FP64 
Tensor Cores

CUDA Math API

Increased memory BW,
Shared Memory & L2

cuSPARSE

Increased memory BW,
Shared Memory & L2

cuFFT

BF16, TF32 and FP64 
Tensor Cores

cuBLAS

BF16, TF32 and FP64 
Tensor Cores

nvJPEGCUDA Math APIcuFFT

cuSPARSE cuSOLVERcuBLAS cuTENSOR

nvJPEGCUTLASS

Hardware Decoder
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APPLICATION

The radial distribution function (RDF) denoted in 
equations by g(r) defines the probability of finding a 
particle at a distance r from another tagged particle. 

Molecular Simulation

RDF
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RDF

for (int frame=0;frame<nconf;frame++){

for(int id1=0;id1<numatm;id1++)

{

for(int id2=0;id2<numatm;id2++)

{

dx=d_x[]-d_x[];

dy=d_y[]-d_y[];

dz=d_z[]-d_z[];

r=sqrtf(dx*dx+dy*dy+dz*dz);

if (r<cut) {

ig2=(int)(r/del);

d_g2[ig2] = d_g2[ig2] +1 ;

}

}

}

}

Across Frames

Pseudo Code - C

Find Distance

Reduction
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RDF

do iconf=1,nframes         

if (mod(iconf,1).eq.0) print*,iconf         

do i=1,natoms            

do j=1,natoms               

dx=x(iconf,i)-x(iconf,j)               

dy=y(iconf,i)-y(iconf,j)               

dz=z(iconf,i)-z(iconf,j)               

r=dsqrt(dx**2+dy**2+dz**2)

if(r<cut)then                  

g(ind)=g(ind)+1.0d0               

endif            

enddo

enddo

enddo

Across Frames

Pseudo Code - Fortran

Find Distance

Reduction
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