
N-WAYS TO GPU
COMPUTING

2
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

INTRODUCTION TO GPU COMPUTING

What to expect?

• Broad view on GPU Stack

• Fundamentals of GPU Architecture

• Good starting point

3
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

HPC SYSTEM EVOLUTION

MEMORY

CPU

Sequential

4
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

HPC SYSTEM EVOLUTION

MEMORY

CPU

MEMORY

CPU CPU…

MEMORY

CPU CPU…

Sequential Multithreaded
P-Thread/OpenMP

5
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

HPC SYSTEM EVOLUTION

MEMORY

CPU

MEMORY

CPU CPU…

MEMORY

CPU

MEMORY

CPU…

NETWORK

MEMORY

CPU CPU…

Sequential Multithreaded
P-Thread/OpenMP

Distributed
MPI

6
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

1980 1990 2000 2010 2020

GPU-Computing perf

1.5X per year

1000X

by

2025

GPU ARCHITECTURE CONTINUES TO DELIVER PERFORMANCE

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

102

103

104

105

106

107

Single-threaded perf

1.5X per year

1.1X per year

APPLICATIONS

SYSTEMS

ALGORITHMS

CUDA

ARCHITECTURE

7
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

7
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ACCELERATED COMPUTING PILLARS

X-FACTOR SPEED UP FULL STACK DATA-CENTER SCALE

GPU

CPU

DPU

Developer Productivity

8
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

HIERARCHY OF SCALES

Multi-System Rack

Unlimited Scale

Multi-GPU System

8 GPUs

Multi-SM GPU

108 Multiprocessors

Multi-Core SM

2048 threads

9
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA PLATFORM: TARGETS EACH LEVEL OF THE HIERARCHY
The CUDA Platform Advances State Of The Art From Data Center To The GPU

System Scope
FABRIC MANAGEMENT

DATA CENTER OPERATIONS

DEPLOYMENT

MONITORING

COMPATIBILITY

SECURITY

Node Scope
GPU-DIRECT

NVLINK

LIBRARIES

UNIFIED MEMORY

ARM

MIG

Program Scope
CUDA C++

OPENACC

STANDARD LANGUAGES

SYNCHRONIZATION

PRECISION

S
C
O

P
E
 O

F
 T

H
IS

 S
E
S
S
IO

N

10
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ACCELERATED PLATFORM

NGC

HARDWARE

TECHNOLOGIES
GPU

NVIDIA CERTIFIED

VALIDATED

SOLUTIONS

MANAGEMENT

BlueField DPU

MONITORING

DCGM

NVSwitch Mellanox Switch

SERVERS &

CLOUD
CSP Instances

Purpose Built

DGX
HGX

BUSINESS

APPLICATIONS

APPLICATION

FRAMEWORKS

HEALTHCARE

Clara

SMART CITY

Metropolis

CONVERSATIONAL AI

Jarvis

AUTONOMOUS

VEHICLES

Drive

RECOMMENDATION

SYSTEMS

Merlin

++

...

Con

SOFTWARE HUB

Pre-trained Models

SDKs

Certified

Containers

UFM

SMART NIC

OPERATIONS

ACCELERATION

LIBRARIES

COMPUTE

CUDA-X

DEVELOPER

TOOLKITS

ML & DATA ANALYTICS AI TRAINING & INFERENCE HIGH PERFORMANCE

COMPUTING

NVIDIA HPC SDK

RENDERING &

VISUALIZATION

IndeX OptiX

Customer
Engagement

Patient
Diagnostics

Fraud
Detection

Quality
Assurance

Industrial
Automation

Precision
Marketing

Molecular
Simulations

++

TensorRT

NETWORKING, STORAGE & SECURITY

MAGNUM IODOCA

TRITON
INFERENCE

SERVER

FLEET
COMMAND

NVIDIA GPU

Operator

Mainstream & Edge

EGX

11
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

11
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

HOW GPU ACCELERATION WORKS

Application Code

+

GPU CPU
5% of Code

Compute-Intensive Functions

Rest of Sequential
CPU Code

12
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

GPU Accelerator
Optimized for
Parallel Tasks

ACCELERATED COMPUTING

13
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

SILICON BUDGET

The three components of any processor

ALU

Control

Cache

More

Less

Less

Less

More

More

14
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for
Parallel Tasks

CPU IS A LATENCY REDUCING ARCHITECTURE

CPU Strengths

• Very large main memory

• Very fast clock speeds

• Latency optimized via large caches

• Small number of threads can run

very quickly

CPU Weaknesses

• Relatively low memory bandwidth

• Cache misses very costly

• Low performance/watt

15
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for
Parallel Tasks

GPU IS ALL ABOUT HIDING LATENCY
GPU Strengths

• High bandwidth main memory

• Significantly more compute

resources

• Latency tolerant via parallelism

• High throughput

• High performance/watt

GPU Weaknesses

• Relatively low memory capacity

• Low per-thread performance

16
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

LOW LATENCY VS HIGH THROUGHPUT

CPU architecture must minimize latency within each thread

GPU architecture hides latency with computation (data-parallelism, to 30k threads!)

GPU – High Throughput Processor

CPU core – Low Latency Processor

Computation Thread

Tn Processing

Waiting for data

Ready to be processed

T1

T2

T3

T4

T1 T2 T3 T4

17
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

SPEED V. THROUGHPUT

Speed Throughput

*Images from Wikimedia Commons via Creative Commons

Which is better depends on your needs…Which is better depends on your needs…

18
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

HUGE BREADTH OF PLATFORMS, SYSTEMS, LANGUAGES

19
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVIDIA HPC SDK
Download at developer.nvidia.com/hpc-sdk

Develop for the NVIDIA HPC Platform: GPU, CPU and Interconnect

HPC Libraries | GPU Accelerated C++ and Fortran | Directives | CUDA

20
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

N-WAYS TO GPU PROGRAMMING
Math Libraries | Standard Languages | Directives | CUDA

Incremental Performance

Optimization with Directives

Maximize GPU Performance with

CUDA C++/Fortran

GPU Accelerated

C++ and Fortran

std::transform(par, x, x+n, y, y,
[=](float x, float y) {

return y + a*x;
});

std::transform(par, x, x+n, y, y,
[=](float x, float y) {

return y + a*x;
});

#pragma acc data copy(x,y)
{

...

std::transform(par, x, x+n, y, y,
[=](float x, float y) {

return y + a*x;
});

...

}

#pragma acc data copy(x,y)
{

...

std::transform(par, x, x+n, y, y,
[=](float x, float y) {

return y + a*x;
});

...

}

__global__
void saxpy(int n, float a,

float *x, float *y) {
int i = blockIdx.x*blockDim.x +

threadIdx.x;
if (i < n) y[i] += a*x[i];

}

int main(void) {
cudaMallocManaged(&x, ...);
cudaMallocManaged(&y, ...);
...
saxpy<<<(N+255)/256,256>>>(...,x, y)
cudaDeviceSynchronize();
...

}

__global__
void saxpy(int n, float a,

float *x, float *y) {
int i = blockIdx.x*blockDim.x +

threadIdx.x;
if (i < n) y[i] += a*x[i];

}

int main(void) {
cudaMallocManaged(&x, ...);
cudaMallocManaged(&y, ...);
...
saxpy<<<(N+255)/256,256>>>(...,x, y)
cudaDeviceSynchronize();
...

}

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)

enddo

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)

enddo

GPU Accelerated Math Libraries

21
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

GPU ACCELERATED MATH LIBRARIES

cuSOLVER

BF16, TF32 and
FP64 Tensor Cores

CUTLASS

BF16 & TF32
Support

cuTENSOR

BF16, TF32 and FP64
Tensor Cores

CUDA Math API

Increased memory BW,
Shared Memory & L2

cuSPARSE

Increased memory BW,
Shared Memory & L2

cuFFT

BF16, TF32 and FP64
Tensor Cores

cuBLAS

BF16, TF32 and FP64
Tensor Cores

nvJPEGCUDA Math APIcuFFT

cuSPARSE cuSOLVERcuBLAS cuTENSOR

nvJPEGCUTLASS

Hardware Decoder

22
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

APPLICATION

The radial distribution function (RDF) denoted in
equations by g(r) defines the probability of finding a
particle at a distance r from another tagged particle.

Molecular Simulation

RDF

23
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

for (int frame=0;frame<nconf;frame++){

for(int id1=0;id1<numatm;id1++)

{

for(int id2=0;id2<numatm;id2++)

{

dx=d_x[]-d_x[];

dy=d_y[]-d_y[];

dz=d_z[]-d_z[];

r=sqrtf(dx*dx+dy*dy+dz*dz);

if (r<cut) {

ig2=(int)(r/del);

d_g2[ig2] = d_g2[ig2] +1 ;

}

}

}

}

Across Frames

Pseudo Code - C

Find Distance

Reduction

24
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

do iconf=1,nframes

if (mod(iconf,1).eq.0) print*,iconf

do i=1,natoms

do j=1,natoms

dx=x(iconf,i)-x(iconf,j)

dy=y(iconf,i)-y(iconf,j)

dz=z(iconf,i)-z(iconf,j)

r=dsqrt(dx**2+dy**2+dz**2)

if(r<cut)then

g(ind)=g(ind)+1.0d0

endif

enddo

enddo

enddo

Across Frames

Pseudo Code - Fortran

Find Distance

Reduction

THANK YOU

BACKUP

