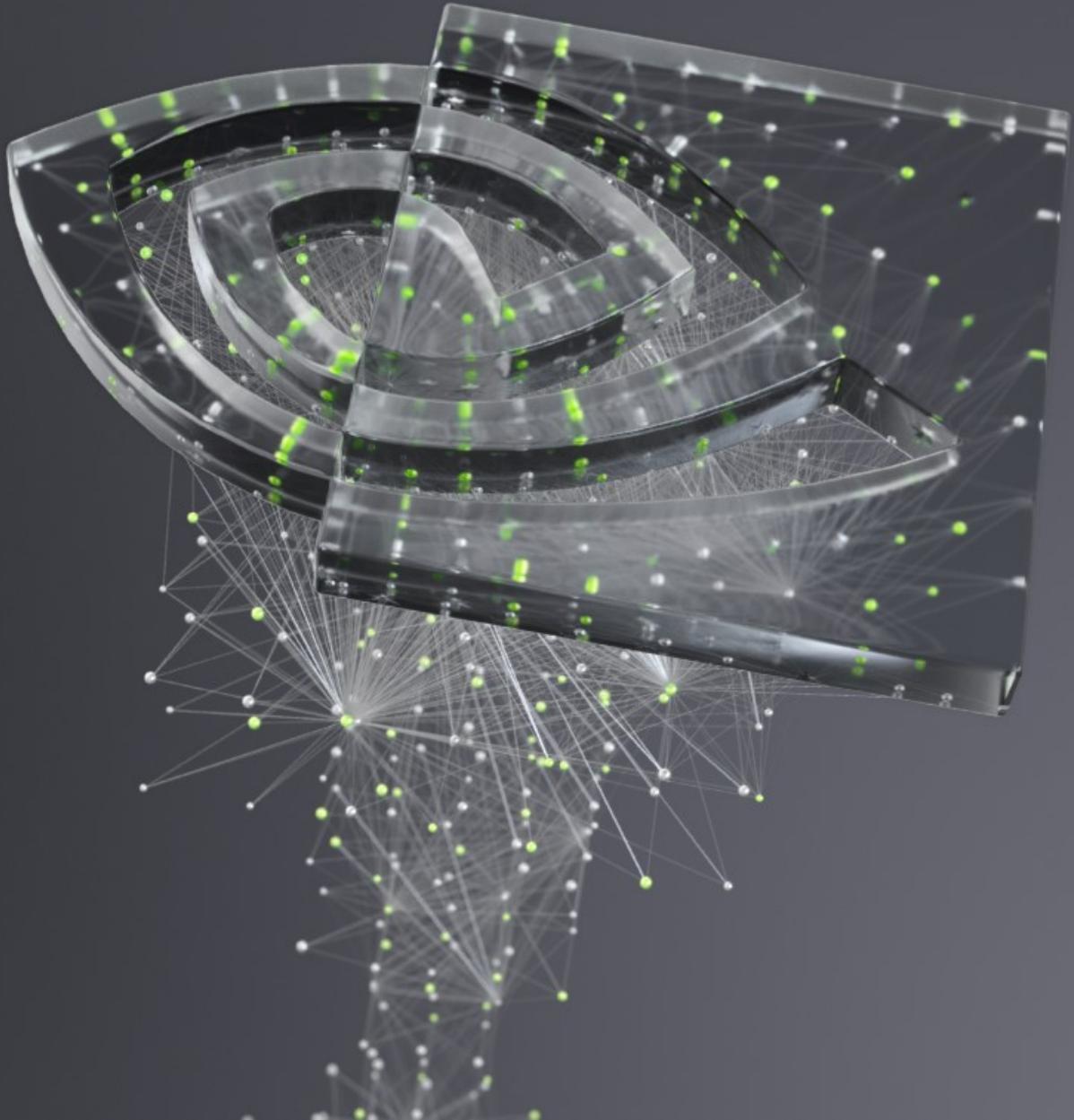


N-WAYS TO GPU COMPUTING

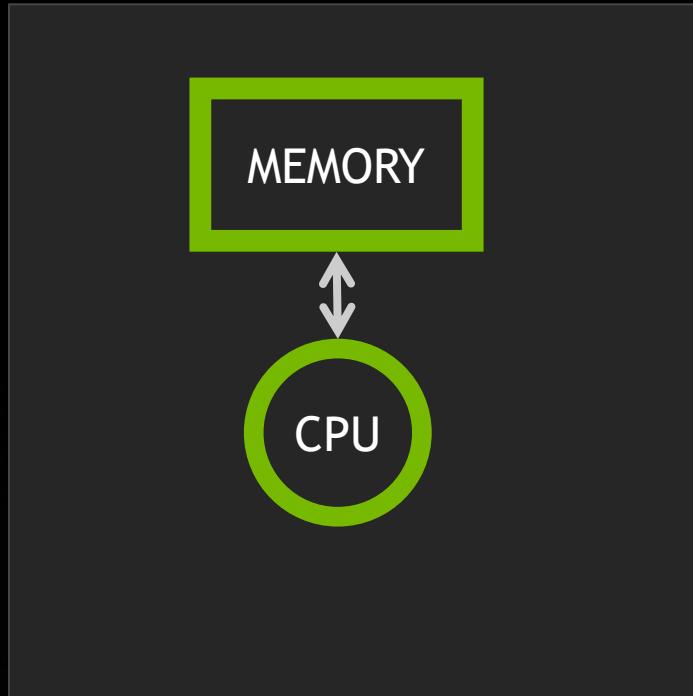


INTRODUCTION TO GPU COMPUTING

What to expect?

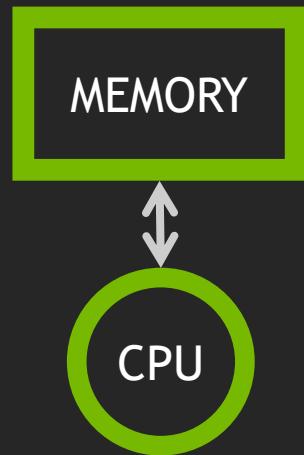
- Broad view on GPU Stack
- Fundamentals of GPU Architecture
- Good starting point

HPC SYSTEM EVOLUTION

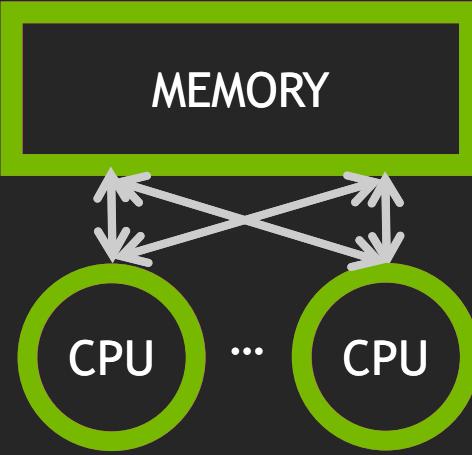


Sequential

HPC SYSTEM EVOLUTION

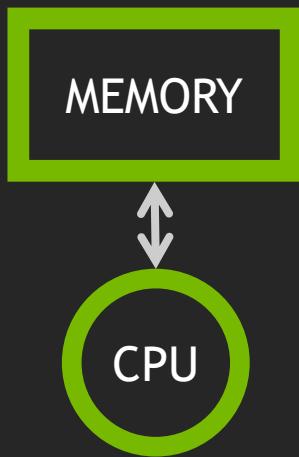


Sequential

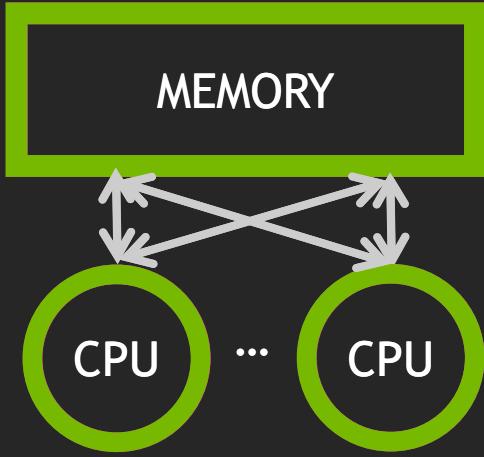


Multithreaded
P-Thread/OpenMP

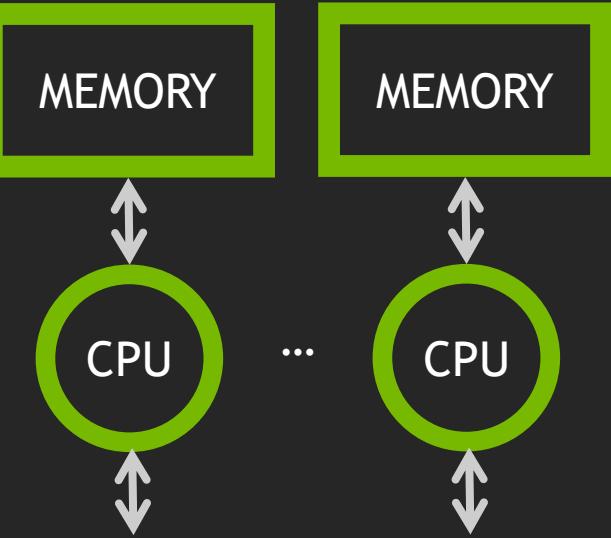
HPC SYSTEM EVOLUTION



Sequential

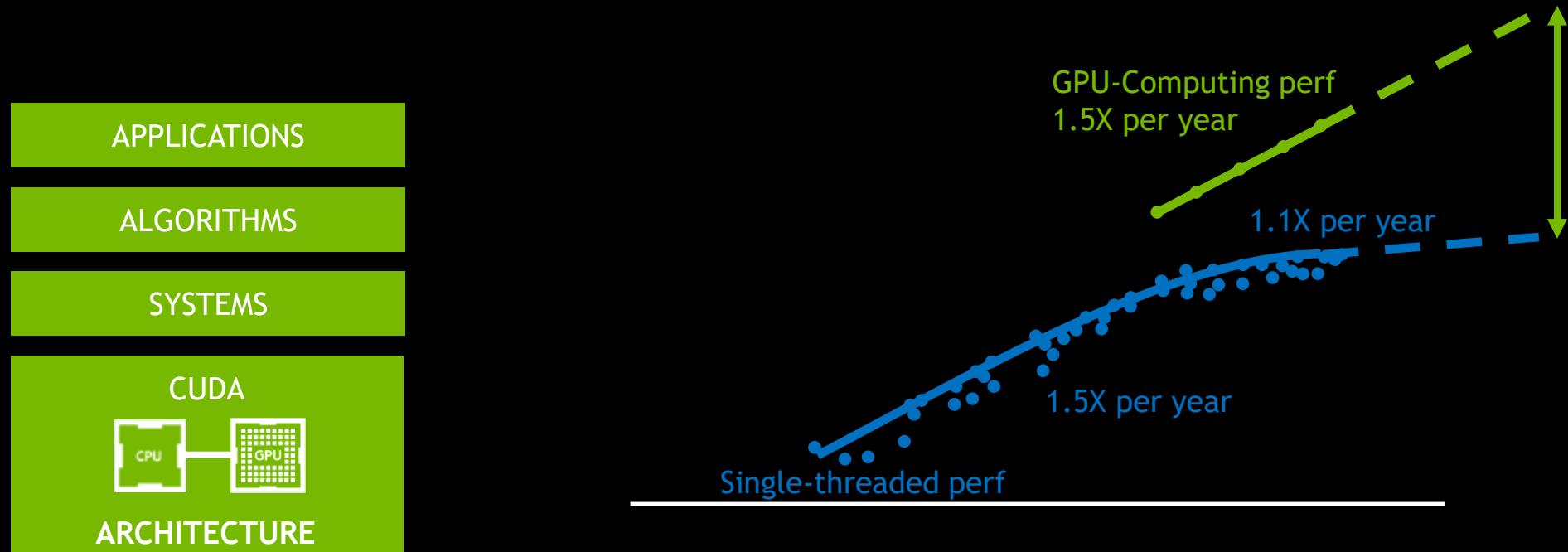


Multithreaded
P-Thread/OpenMP



Distributed
MPI

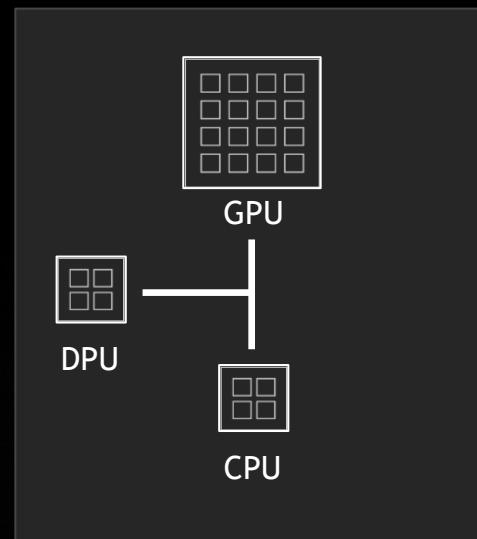
GPU ARCHITECTURE CONTINUES TO DELIVER PERFORMANCE



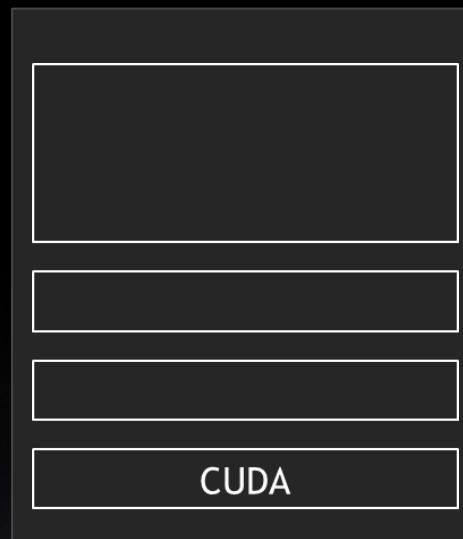
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten. New plot and data collected for 2010-2015 by K. Rupp

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

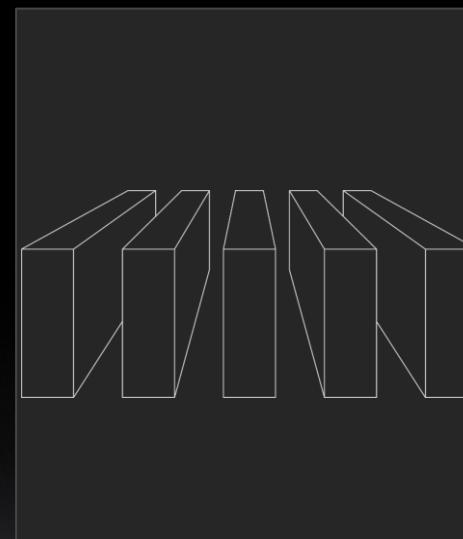
ACCELERATED COMPUTING PILLARS



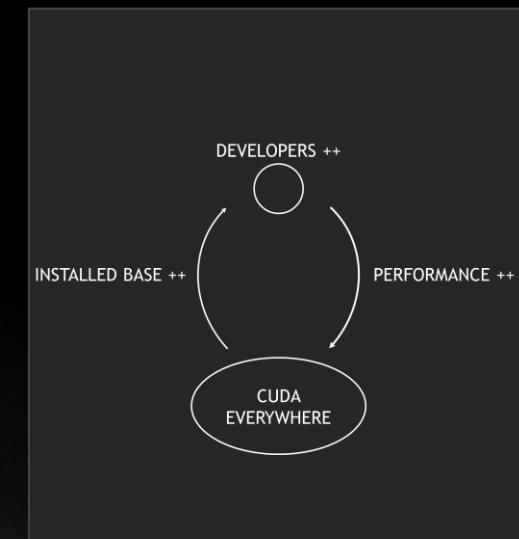
X-FACTOR SPEED UP



FULL STACK



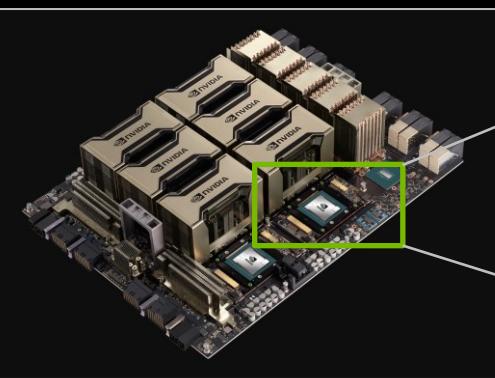
DATA-CENTER SCALE



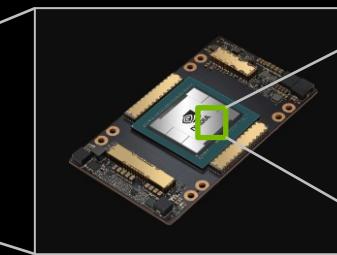
Developer Productivity

HIERARCHY OF SCALES

Multi-System Rack
Unlimited Scale



Multi-GPU System
8 GPUs

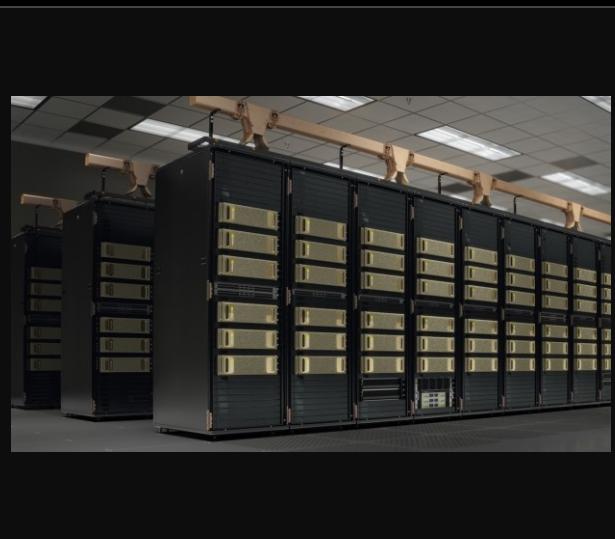


Multi-SM GPU
108 Multiprocessors

Multi-Core SM
2048 threads

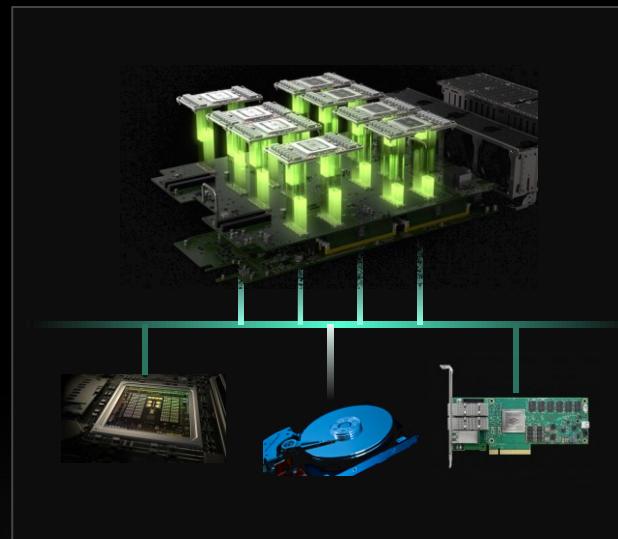
CUDA PLATFORM: TARGETS EACH LEVEL OF THE HIERARCHY

The CUDA Platform Advances State Of The Art From Data Center To The GPU



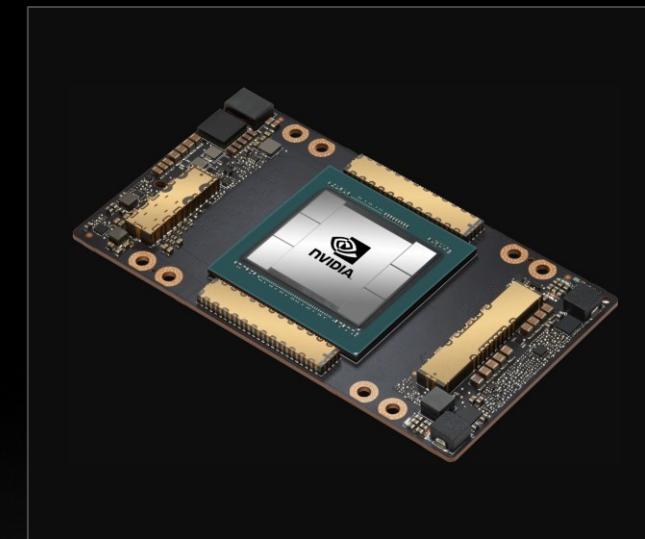
System Scope

FABRIC MANAGEMENT
DATA CENTER OPERATIONS
DEPLOYMENT
MONITORING
COMPATIBILITY
SECURITY



Node Scope

GPU-DIRECT
NVLINK
LIBRARIES
UNIFIED MEMORY
ARM
MIG

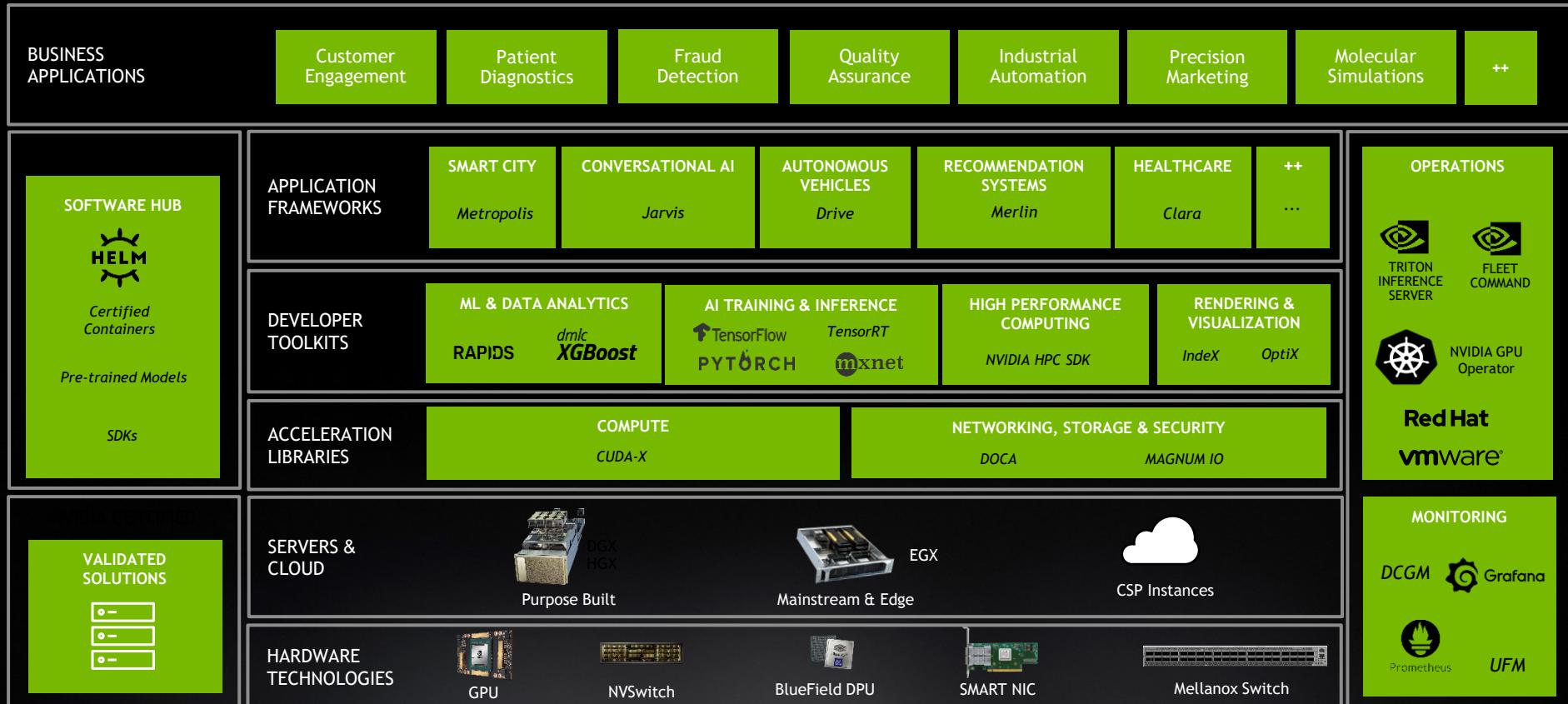


Program Scope

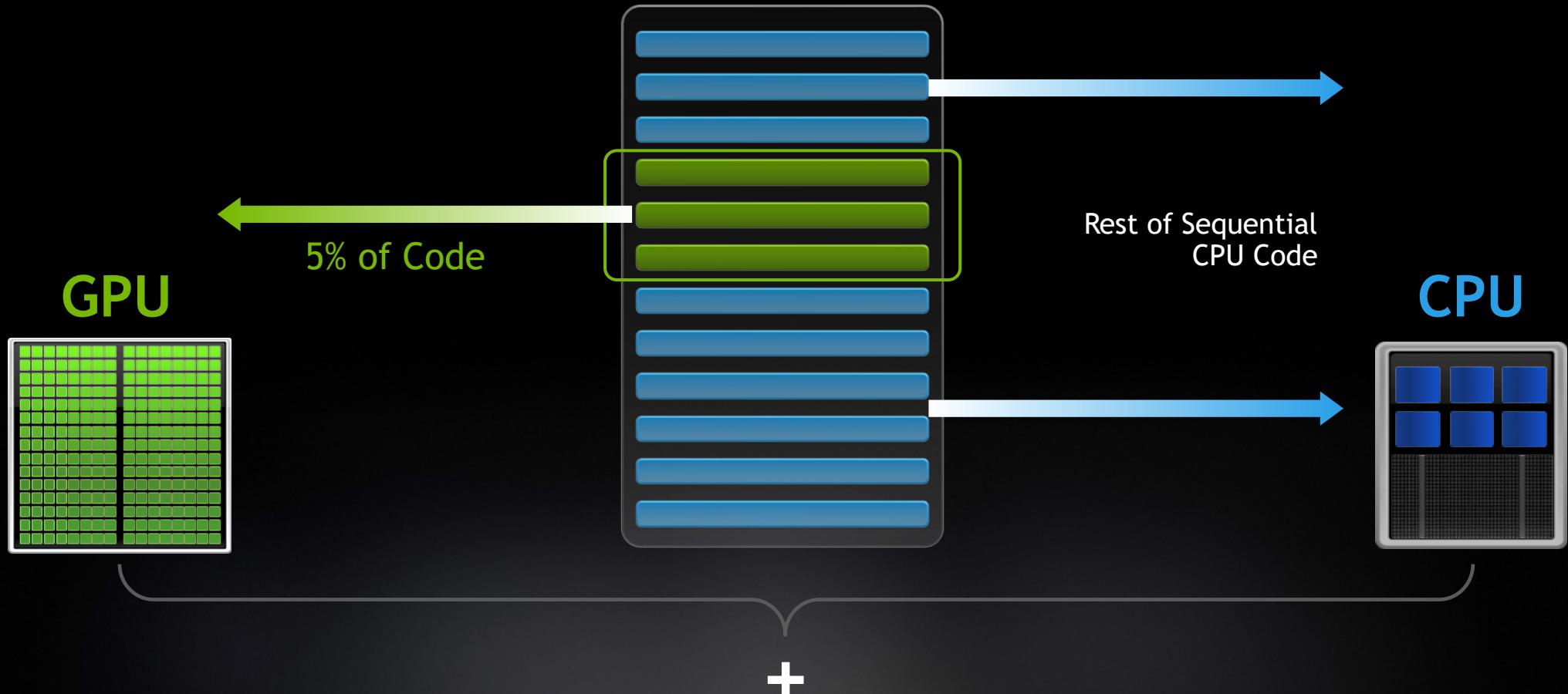
CUDA C++
OPENACC
STANDARD LANGUAGES
SYNCHRONIZATION
PRECISION

SCOPE OF THIS SESSION

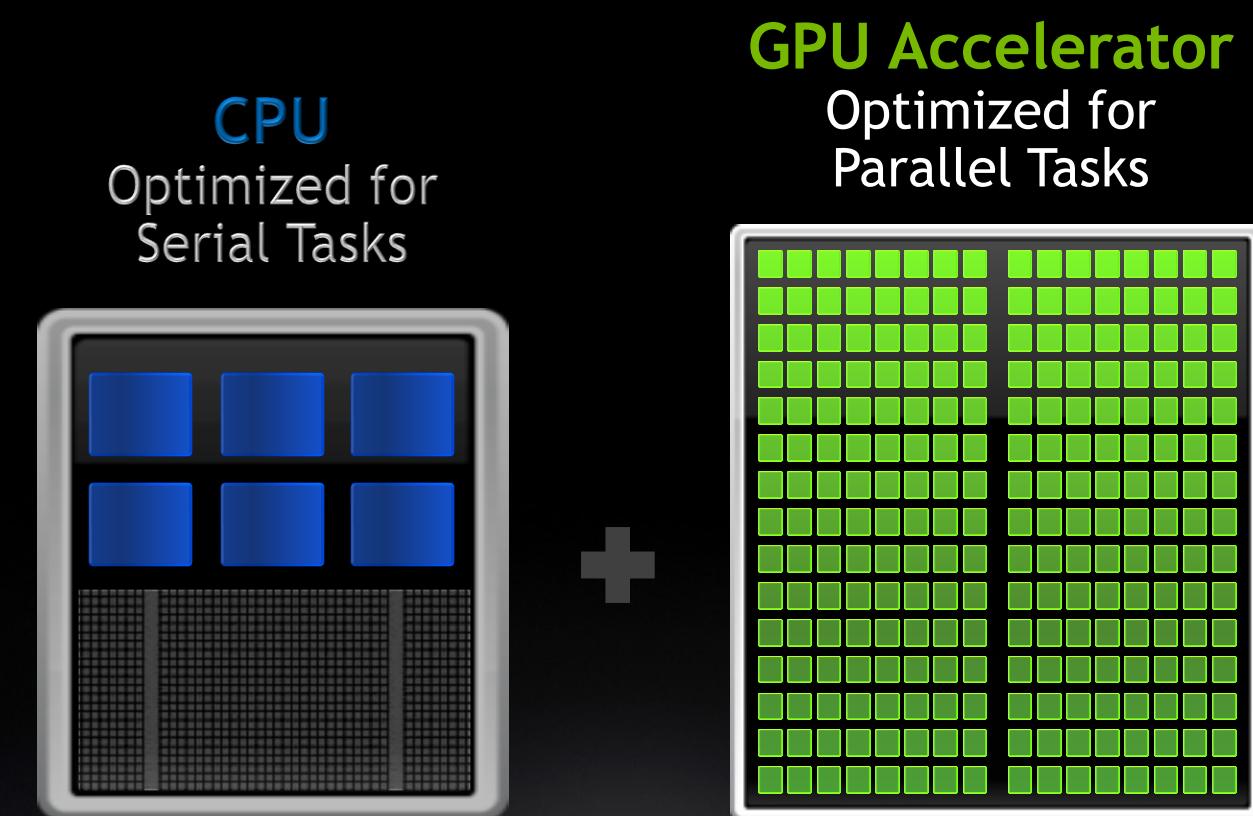
ACCELERATED PLATFORM



HOW GPU ACCELERATION WORKS

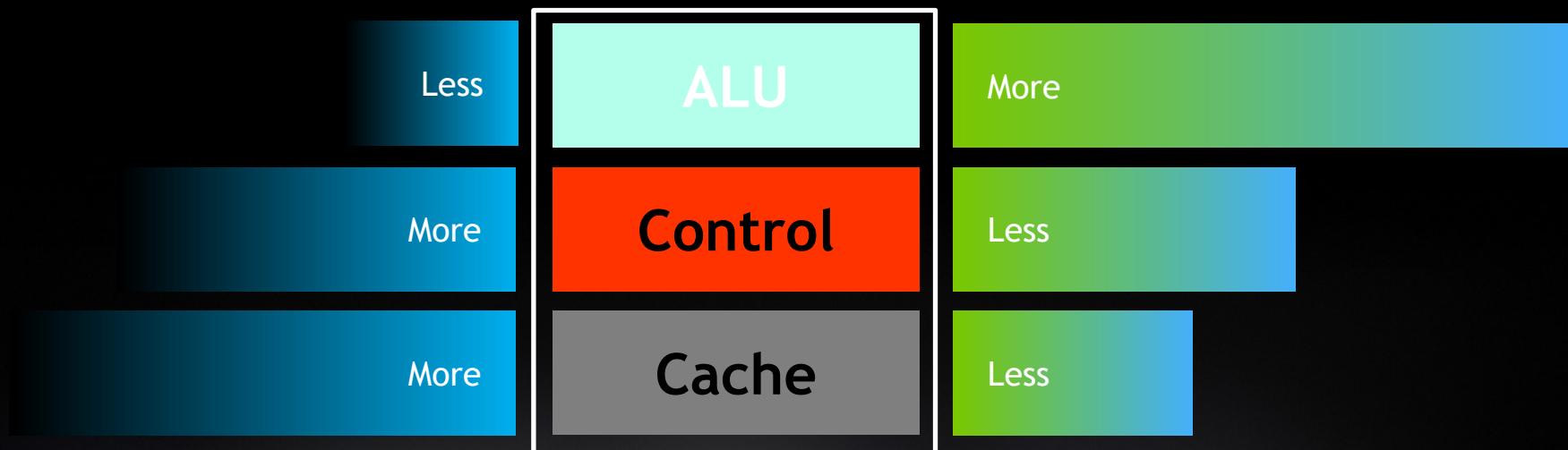


ACCELERATED COMPUTING



SILICON BUDGET

- The three components of any processor



CPU IS A LATENCY REDUCING ARCHITECTURE



CPU Strengths

- Very large main memory
- Very fast clock speeds
- Latency optimized via large caches
- Small number of threads can run very quickly

CPU Weaknesses

- Relatively low memory bandwidth
- Cache misses very costly
- Low performance/watt

GPU IS ALL ABOUT HIDING LATENCY

GPU Strengths

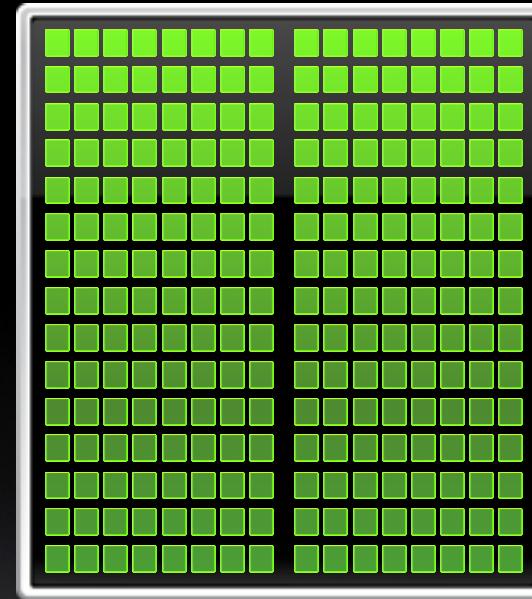
- High bandwidth main memory
- Significantly more compute resources
- Latency tolerant via parallelism
- High throughput
- High performance/watt

GPU Weaknesses

- Relatively low memory capacity
- Low per-thread performance

GPU Accelerator

Optimized for
Parallel Tasks



LOW LATENCY VS HIGH THROUGHPUT

- CPU architecture must **minimize latency** within each thread
- GPU architecture **hides latency** with computation (data-parallelism, to 30k threads!)

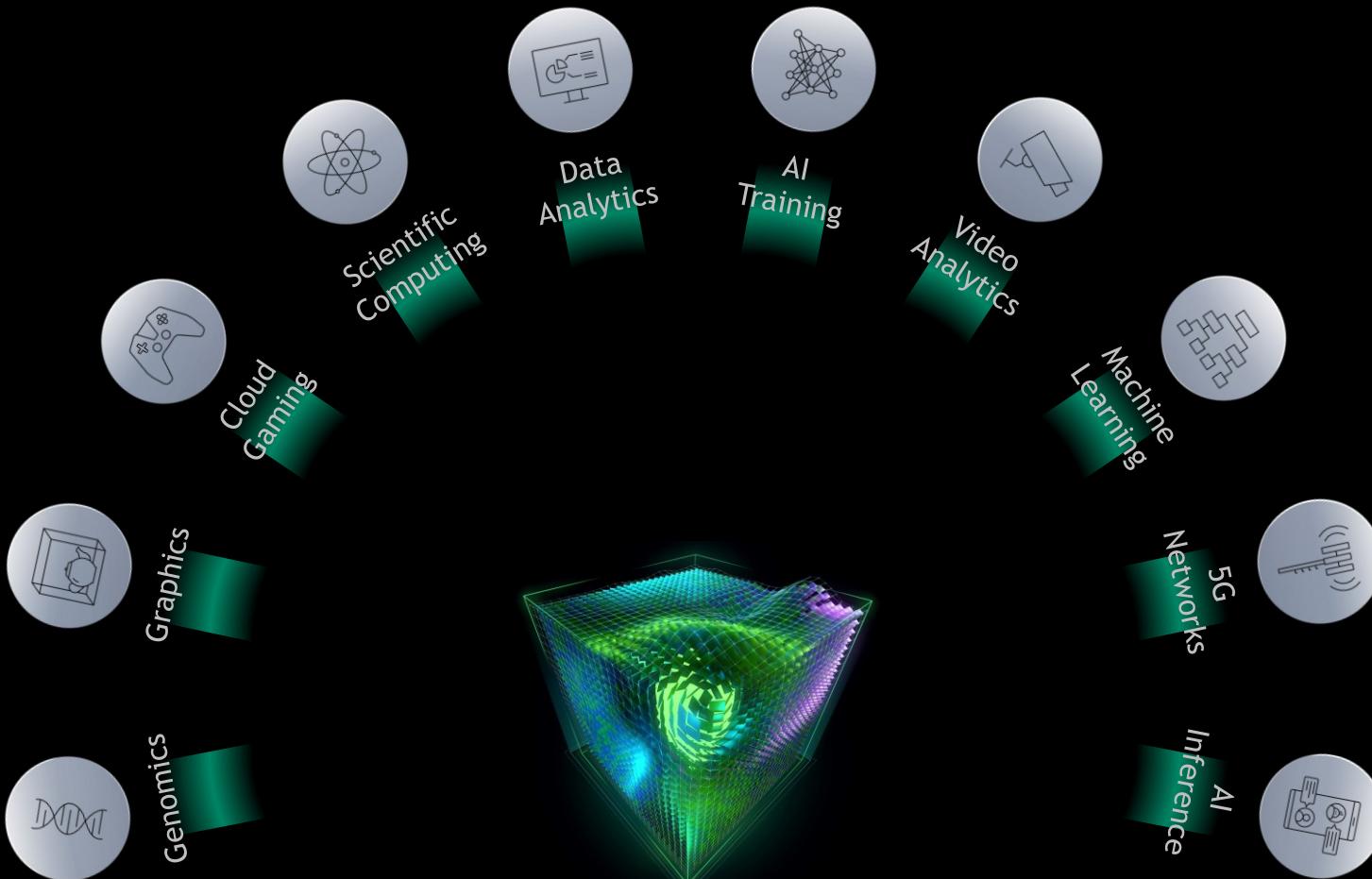
SPEED V. THROUGHPUT

Speed

Throughput

Which is better depends on your needs...

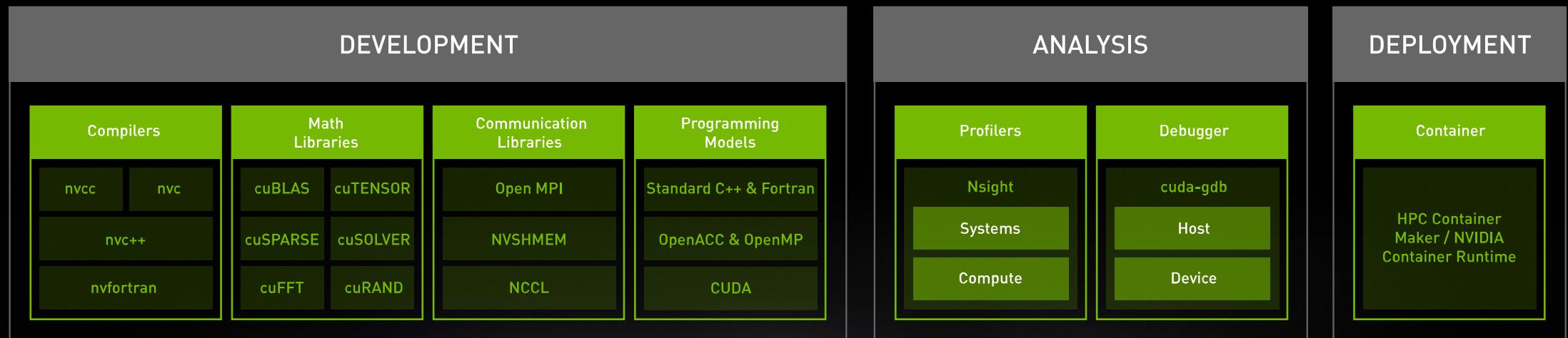
HUGE BREADTH OF PLATFORMS, SYSTEMS, LANGUAGES



NVIDIA HPC SDK

Download at developer.nvidia.com/hpc-sdk

NVIDIA HPC SDK



Develop for the NVIDIA HPC Platform: GPU, CPU and Interconnect
HPC Libraries | GPU Accelerated C++ and Fortran | Directives | CUDA

N-WAYS TO GPU PROGRAMMING

Math Libraries | Standard Languages | Directives | CUDA

```
std::transform(par, x, x+n, y, y,
              [=] (float x, float y) {
                  return y + a*x;
});
```

```
do concurrent (i = 1:n)
    y(i) = y(i) + a*x(i)
enddo
```

GPU Accelerated
C++ and Fortran

```
#pragma acc data copy(x,y)
{
    ...
    std::transform(par, x, x+n, y, y,
                  [=] (float x, float y) {
                      return y + a*x;
}); ...
}
```

Incremental Performance
Optimization with Directives

```
__global__
void saxpy(int n, float a,
           float *x, float *y) {
    int i = blockIdx.x*blockDim.x +
            threadIdx.x;
    if (i < n) y[i] += a*x[i];
}

int main(void) {
    cudaMallocManaged(&x, ...);
    cudaMallocManaged(&y, ...);
    ...
    saxpy<<<(N+255)/256,256>>>(...,x, y)
    cudaDeviceSynchronize();
    ...
}
```

Maximize GPU Performance with
CUDA C++/Fortran

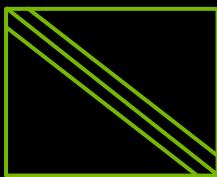
GPU Accelerated Math Libraries

GPU ACCELERATED MATH LIBRARIES



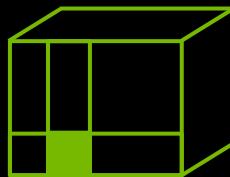
cuBLAS

BF16, TF32 and FP64
Tensor Cores



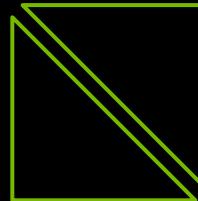
cuSPARSE

Increased memory BW,
Shared Memory & L2



cuTENSOR

BF16, TF32 and FP64
Tensor Cores



cuSOLVER

BF16, TF32 and
FP64 Tensor Cores

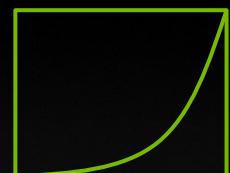
nvJPEG

Hardware Decoder



cuFFT

BF16, TF32 and FP64
Tensor Cores



CUDA Math API

Increased memory BW,
Shared Memory & L2

CUTLASS

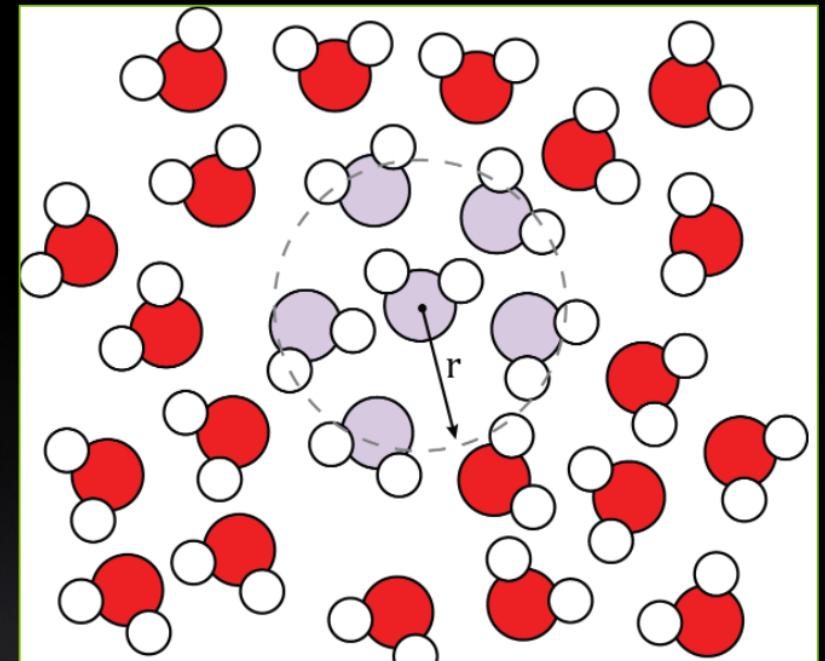
BF16 & TF32
Support

APPLICATION

Molecular Simulation

RDF

The radial distribution function (RDF) denoted in equations by $g(r)$ defines the probability of finding a particle at a distance r from another tagged particle.



RDF

Pseudo Code - C

```
for (int frame=0;frame<nconf;frame++){  
  
    for(int id1=0;id1<numatm;id1++)  
    {  
        for(int id2=0;id2<numatm;id2++)  
        {  
            dx=d_x[]-d_x[];  
            dy=d_y[]-d_y[];  
            dz=d_z[]-d_z[];  
            r=sqrtf(dx*dx+dy*dy+dz*dz);  
  
            if (r<cut) {  
                ig2=(int)(r/del);  
                d_g2[ig2] = d_g2[ig2] +1 ;  
            }  
        }  
    }  
}
```

► Across Frames

► Find Distance

► Reduction

RDF

Pseudo Code - Fortran

```
do iconf=1,nframes
  if (mod(iconf,1).eq.0) print*,iconf

  do i=1,natoms
    do j=1,natoms
      dx=x(iconf,i)-x(iconf,j)
      dy=y(iconf,i)-y(iconf,j)
      dz=z(iconf,i)-z(iconf,j)

      r=dsqrt(dx**2+dy**2+dz**2)
      if(r<cut)then
        g(ind)=g(ind)+1.0d0
      endif
    enddo
  enddo
enddo
```

► Across Frames

► Find Distance

► Reduction

THANK YOU



BACKUP

