
N-WAYS GPU
STANDARD LANGUAGES

2

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STANDARD LANGUAGES

What to expect?

• C++ , Fortran ISO standard brief

• C++ std::par , Fortran DO-Concurrent API

• Known limitations

3

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

BRIEF HISTORY

• Historically, accelerating your code with GPUs has not been possible in Standard
C++/Fortran without using language extensions or additional libraries:

• CUDA C++ requires the use of __host__ and __device__ attributes on functions and the <<<>>>
syntax for GPU kernel launches.

• OpenACC uses #pragmas to control GPU acceleration

• What if you could take your Standard C++ or Fortran code and accelerate on a GPU?

4

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

QUICK BACKGROUND

• One driving feature of C++ are its templates and the STL library. C++11 is further pushing these ideas
and shows no sign of slowing.

• C++ templates are probably most widely used through the STL containers.

• std::vector, std::string, std::map, std::list, etc...

• Besides the OO features and convenience, these containers are designed to rise-above basic C
pointers, providing more safety from memory violations, while maintaining the bare-metal
performance.

• For example std::vector → The vector template is designed to replace C's arrays.

C++ STL Containers

std::vector<int> my_ints(4, 100); // four ints with value 100

5

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STD::PAR

What is std::par?

• Use standard C++ constructs to make code run parallel on heterogenous hardware

• C++11 introduced a memory model, concurrent execution model, and concurrency library,
providing a standard way to take advantage of multicore processors

• The C++17 Standard introduced higher-level parallelism features that allow users to request
parallelization of Standard Library algorithms.

Advantage:

• No language extensions, pragmas, directives, or non-standard libraries

• Write Standard C++, which is portable to other compilers and systems

• Compiler automatically accelerates code with high-performance NVIDIA GPUs and hence less
time porting and more time on what really matters

6

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STD::PAR

• Parallelism is expressed by adding an execution policy as the first parameter to any algorithm that
supports execution policies

• Most of the existing Standard C++ algorithms were enhanced to support execution policies

Execution policies can be applied to most standard algorithms

• std::execution::seq = sequential: Sequential execution. No parallelism is allowed.

• std::execution::par = parallel: Parallel execution on one or more threads.

• std::execution::par_unseq = parallel + vectorized: Parallel execution on one or more threads, with
each thread possibly vectorized.

Parallelism in Standard C++

7

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

C++17 PARALLEL ALGORITHMS

C++98: std::sort(c.begin(), c.end());

C++17: std::sort(std::execution::par, c.begin(), c.end());

Example

8

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

BUILD AND RUN THE CODE

9

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVIDIA HPC SDK

• Comprehensive suite of compilers, libraries, and tools used to GPU accelerate HPC modeling and
simulation application

• The NVIDIA HPC SDK includes the new NVIDIA HPC C++ compiler, NVC++. NVC++ supports C++17, C++
Standard Parallelism (stdpar) for CPU and GPU

• NVC++ can compile Standard C++ algorithms with the parallel execution policies std::execution::par
execution on NVIDIA GPUs.

• An NVC++ command-line option, -stdpar, is used to enable GPU-accelerated C++ Parallel Algorithms

nvc++ -stdpar program.cpp -o program

10

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

for (int frame=0;frame<nconf;frame++){

for(int id1=0;id1<numatm;id1++)

{

for(int id2=0;id2<numatm;id2++)

{

dx=d_x[]-d_x[];

dy=d_y[]-d_y[];

dz=d_z[]-d_z[];

r=sqrtf(dx*dx+dy*dy+dz*dz);

if (r<cut) {

ig2=(int)(r/del);

d_g2[ig2] = d_g2[ig2] +1 ;

}

}

}

}

Across Frames

Pseudo Code

Find Distance

Reduction

11

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STEPS

std::for_each (InputIterator first, InputIterator last, Function fn)

Step 1: Replace for with std::for_each

start_iter : The beginning position from where function operations has to be executed.

last_iter : This ending position till where function has to be executed.

fnc/obj_fnc : The 3rd argument is a function or an object function which operation would be

applied to each element.

12

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STEPS

for_each (std::execution::par , InputIterator first, InputIterator last, Function fn)

Step 2: Pass execution policy as std::execution::par

Execution policy as the first parameter will dictate to run the loop body in parallel across

threads

13

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STEPS

std::for_each(std::execution::par,

thrust::counting_iterator<unsigned int>(0u), thrust::counting_iterator<unsigned int>(numatm*numatm)

Step 3: Change indexing to use counting::iterator

• Counting Iterator helps in filling up a vector with the numbers zero through N

• In our case from 0 to number of atoms

• GPU We will be using Thrust library for counting iterator for GPU

• High-Level Parallel Algorithms Library

• Parallel Analog of the C++ Standard Template Library (STL)

std::vector<unsigned int> indices(numatm * numatm);

std::generate(indices.begin(), indices.end(), [n = 0]() mutable { return n++; });

std::for_each(std::execution::par,

indices.begin(), indices.end(),

14

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ATOMIC

void *do_stuff(void * arg)

{

for (int i = 0 ; i < 200000000 ; ++ i)

{ counter ++; }

return arg;

}

Since the variable counter is shared, we can get a data race

Step 4: Remove Datarace

std::atomic<int>* h_g2 = new std::atomic<int>[nbin];

15

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STEPS

std::for_each(std::execution::par,

thrust::counting_iterator<unsigned int>(0u), thrust::counting_iterator<unsigned int>(numatm*numatm)

[...](unsigned int index)

{

for(int id2=0;id2<numatm;id2++)

{

dx=d_x[]-d_x[];

dy=d_y[]-d_y[];

dz=d_z[]-d_z[];

r=sqrtf(dx*dx+dy*dy+dz*dz);

if (r<cut) {

ig2=(int)(r/del);

++d_g2[ig2];

}

}

}

}

Step 4: Put function body inside Lambda

• Lambda : Convenient way of defining an anonymous function

16

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STEPS

std::atomic<int>* h_g2 = new std::atomic<int>[nbin];

std::for_each(std::execution::par, thrust::counting_iterator<unsigned int>(0u),

thrust::counting_iterator<unsigned int>(numatm*numatm),

[...](unsigned int index)

{

for(int id2=0;id2<numatm;id2++)

{

dx=d_x[]-d_x[];

dy=d_y[]-d_y[];

dz=d_z[]-d_z[];

r=sqrtf(dx*dx+dy*dy+dz*dz);

if (r<cut) {

ig2=(int)(r/del);

++d_g2[ig2];

}

}

}

}

Step 5: Compile for Multicore and GPU

Counting Iterator

Atomic Declaration

Atomic Increment

Find Distance

nvc++ -stdpar=gpu,multicore program.cpp -o program

17

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STD::PAR SPEEDUP

1.00X
12.22X

412.09X

0.00X

50.00X

100.00X

150.00X

200.00X

250.00X

300.00X

350.00X

400.00X

450.00X

SERIAL MULTICORE NVIDIA TESLA V100

S
p
e
e
d
-U

p

Speed-up

HPC SDK 20.11, NVIDIA Tesla V100, DGX1

18

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

KNOWN LIMITATIONS

19

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

LIMITATIONS

• Limitation: All pointers used in parallel algorithms must point to the heap

std::array<int, 1024> a = ...;

std::sort(std::execution::par, a.begin(), a.end()); // Fails, array stored on the stack

• Solution: Use function objects or lambdas instead

std::vector v = ...; std::sort(std::execution::par, v.begin(), v.end()); // OK, vector allocates on heap

Heap Only

20

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OTHER LIMITATIONS

• GPU code does not have access to the operating system or pre-compiled standard library

• Usually works:

• template classes and functions

• inlined functions

• math functions

• Usually doesn’t work:

• non-template library functions

• OS functions

21

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

LIMITATIONS

• Limitation: Don’t pass function pointers to algorithms that will run on the GPU

void square(int& x) { x = x * x; }

std::for_each(std::execution::par, v.begin(), v.end(), &square); // Fails: uses raw function pointer

• Solution: Use function objects or lambdas instead

struct square {

void operator()(int& x) const { x = x * x; }

};

std::for_each(std::execution::par, v.begin(), v.end(), square()); // OK, function object

std::for_each(std::execution::par, v.begin(), v.end(), [](int& x) { x = x * x; }); // OK, lambda

FUNCTION POINTERS

22

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

FORTRAN

• ISO Standard Fortran 2008 introduced the DO CONCURRENT construct to allow you to express loop-level parallelism,
one of the various mechanisms for expressing parallelism directly in the Fortran language

• HPC SDK 20.11 release of the NVIDIA HPC SDK, the included NVFORTRAN compiler automatically accelerates DO
CONCURRENT

DO CONCURRENT :: ISO Standard Fortran

nvfortran –stdpar=gpu,multicore program.f90 -o program

1 subroutine saxpy(x,y,n,a)

2 real :: a, x(:), y(:)

3 integer :: n, i

4 do i = 1, n

5 y(i) = a*x(i)+y(i)

6 enddo

7 end subroutine saxpy

1 subroutine saxpy(x,y,n,a)

2 real :: a, x(:), y(:)

3 integer :: n, i

4 do concurrent (i = 1: n)

5 y(i) = a*x(i)+y(i)

6 enddo

7 end subroutine saxp

23

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

FORTRAN

• Nested loops are a common code pattern encountered in HPC applications

• It is straightforward to write such patterns with a single DO CONCURRENT statement, as in the following example

Nested Loop Parallelism

do concurrent(i=2 : n-1, j=2 : m-1)

a(i,j) = w0 * b(i,j)

enddo

do i=2, n-1

do j=2, m-1

a(i,j) = w0 * b(i,j)

enddo

enddo

24

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ATOMIC

void *do_stuff(void * arg)

{

for (int i = 0 ; i < 200000000 ; ++ i)

{ counter ++; }

return arg;

}

• Do-Concurrent implementation of GPC SDK currently does not
support Atomic constructs

• Hence we use the OpenACC Construct to solve data race

Limitation

!$acc atomic
g(ind)=g(ind)+1.0d0

25

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STEPS

do iconf=1,nframes

do concurrent(i=1 : natoms, j=1:natoms)

dx=x(iconf,i)-x(iconf,j)

dy=y(iconf,i)-y(iconf,j)

dz=z(iconf,i)-z(iconf,j)

…

r=dsqrt(dx**2+dy**2+dz**2)

if(r<cut)then

!$acc atomic

g(ind)=g(ind)+1.0d0

endif

enddo

enddo

Compile for Multicore and GPU

Do Concurrent

Atomic Increment

Find Distance

nvfortran -stdpar=gpu,multicore program.f90 -o program

26

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

REFERENCES

https://developer.nvidia.com/blog/accelerating-fortran-do-concurrent-with-gpus-and-the-nvidia-hpc-sdk/

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9770-c++17-parallel-algorithms-for-
nvidia-gpus-with-pgi-c++.pdf

https://developer.nvidia.com/blog/accelerating-fortran-do-concurrent-with-gpus-and-the-nvidia-hpc-sdk/
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9770-c++17-parallel-algorithms-for-nvidia-gpus-with-pgi-c++.pdf

THANK YOU

28

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

WE WILL BE BACK AT 11: 30

PLEASE RENAME YOURSELF IN WEBEX AS YOUR INSTITUTE NAME_YOUR NAME

