<3

NVIDIA.

N-WAYS GPU

STANDARD LANGUAGES

STANDARD LANGUAGES

What to expect?

C++ , Fortran ISO standard brief
C++ std::par , Fortran DO-Concurrent API

Known limitations

2 SANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

BRIEF HISTORY

Historically, accelerating your code with GPUs has not been possible in Standard
C++/Fortran without using language extensions or additional libraries:

* CUDA C++ requires the use of __host__ and __device__ attributes on functions and the <<<>>>
syntax for GPU kernel launches.

« OpenACC uses #pragmas to control GPU acceleration

What if you could take your Standard C++ or Fortran code and accelerate on a GPU?

3 AnvIDIA
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

QUICK BACKGROUND

C++ STL Containers

One driving feature of C++ are its templates and the STL library. C++11 is further pushing these ideas
and shows no sign of slowing.

C++ templates are probably most widely used through the STL containers.
» std::vector, std::string, std::map, std::list, etc...
Besides the OO features and convenience, these containers are designed to rise-above basic C

pointers, providing more safety from memory violations, while maintaining the bare-metal
performance.

For example std::vector - The vector template is designed to replace C's arrays.

std::vector<int> my_ints(4, 100); // four ints with value 100

4 SANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STD::PAR

What is std::par?

Use standard C++ constructs to make code run parallel on heterogenous hardware

C++11 introduced a memory model, concurrent execution model, and concurrency library,
providing a standard way to take advantage of multicore processors

The C++17 Standard introduced higher-level parallelism features that allow users to request
parallelization of Standard Library algorithms.

Advantage:

No language extensions, pragmas, directives, or non-standard libraries
Write Standard C++, which is portable to other compilers and systems

Compiler automatically accelerates code with high-performance NVIDIA GPUs and hence less
time porting and more time on what really matters 5 SAnvioa

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STD::PAR

Parallelism in Standard C++

« Parallelism is expressed by adding an execution policy as the first parameter to any algorithm that
supports execution policies

* Most of the existing Standard C++ algorithms were enhanced to support execution policies

Execution policies can be applied to most standard algorithms
« std::execution::seq = sequential: Sequential execution. No parallelism is allowed.
« std::execution::par = parallel: Parallel execution on one or more threads.

« std::execution::par_unseq = parallel + vectorized: Parallel execution on one or more threads, with
each thread possibly vectorized.

6 SANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

C++17 PARALLEL ALGORITHMS

Example

C++98: std::sort(c.begin(), c.end());

C++17: std::sort(std::execution::par, c.begin(), c.end());

7 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

BUILD AND RUN THE CODE

NVIDIA HPC SDK

Comprehensive suite of compilers, libraries, and tools used to GPU accelerate HPC modeling and
simulation application

The NVIDIA HPC SDK includes the new NVIDIA HPC C++ compiler, NVC++. NVC++ supports C++17, C++
Standard Parallelism (stdpar) for CPU and GPU

NVC++ can compile Standard C++ algorithms with the parallel execution policies std::execution::par
execution on NVIDIA GPUs.

An NVC++ command-line option, -stdpar, is used to enable GPU-accelerated C++ Parallel Algorithms

nvc++ -stdpar program.cpp -0 program

9 EANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

Pseudo Code

for (int frame=0;frame<nconf;frame++){ " Across Frames
for(int id1=0;id1<numatm;id1++)
{
for(int id2=0;id2<numatm;id2++)
¢ = .
dx=d_x[]-d_x[J; Find Distance
dy=d_y[]-d_y[];
dz=d_z[]-d_z[];
r=sqrtf(dx*dx+dy*dy+dz*dz);
' » Reduction
if (r<cut) {
ig2=(int)(r/del);
d_g2[ig2] = d_g2[ig2] +1 ;
3
3
3
} 10 <AnNVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STEPS

Step 1: Replace for with std::for_each

std::for_each (Inputlterator first, Inputlterator last, Function fn)

start_iter : The beginning position from where function operations has to be executed.
last_iter : This ending position till where function has to be executed.

fnc/obj_fnc : The 3rd argument is a function or an object function which operation would be
applied to each element.

11 <ANVIDIA,
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STEPS

Step 2: Pass execution policy as std::execution::par

for_each (std::execution::par , Inputlterator first, Inputlterator last, Function fn)

Execution policy as the first parameter will dictate to run the loop body in parallel across
threads

12 <ANVIDIA,
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STEPS

Step 3: Change indexing to use counting::iterator

std::for_each(std::execution::par,
thrust::counting_iterator<unsigned int>(0u), thrust::counting_iterator<unsigned int>(numatm*numatm)

std::vector<unsigned int> indices(numatm * numatm);
std::generate(indices.begin(), indices.end(), [n = 0]() mutable { return n++; });

std::for_each(std::execution::par,
indices.begin(), indices.end(),

» Counting Iterator helps in filling up a vector with the numbers zero through N
* In our case from 0 to number of atoms
* GPU We will be using Thrust library for counting iterator for GPU

» High-Level Parallel Algorithms Library

» Parallel Analog of the C++ Standard Template Library (STL)

13 <ANVIDIA,
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ATOMIC

Step 4. Remove Datarace

std::atomic<int>* h_g2 = new std::atomic<int>[nbin];

void *do_stuff(void * arg)

{
for (inti =0 ;i <200000000 ; ++ i)
{ }
return arg;
counter
}

Memory

Since the variable counter is shared, we can get a data race

14 SANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STEPS

Step 4: Put function body inside Lambda

std::for_each(std::execution::par,
thrust::counting_iterator<unsigned int>(0u), thrust::counting_iterator<unsigned int>(numatm*numatm)
[...](unsigned int index)
{
for(int id2=0;id2<numatm;id2++)
{
dx=d_x[]-d_x[];
dy=d_y[]-d_y[];
dz=d_z[]-d_z[];
r=sqrtf(dx*dx+dy*dy+dz*dz);

if (r<cut) {
ig2=(int)(r/del);
++d_g2[ig2];

3
- Lambda : Convenient way of defining an anonymous function

15 <ANVIDIA,
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STEPS
Step 5: Compile for Multicore and GPU

std::atomic<int>* h_g2 = new std::atomic<int>[nbin]; ~ Atomic Declaration

std::for_each(std::execution::par, thrust::counting_iterator<unsigned int>(0u),
thrust::counting_iterator<unsigned int>(numatm*numatm),
[...](unsigned int index)
{ » Counting lterator
for(int id2=0;id2<numatm;id2++)
{
dx=d_x[]-d_x[];
dy=d_y[]-d_y[l; : :
dz=d_z[]-d_z[]; » Find Distance
r=sqrtf(dx*dx+dy*dy+dz*dz);

if (r<cut) {
ig2=(int)(r/del); :
++d_g2[ig2]; » Atomic Increment

} } nvc++ -stdpar=gpu,multicore program.cpp -0 program
16 SANVIDIA.

trisTateriat s Teteased by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STD::PAR SPEEDUP

450.00X

412.09X

400.00X

350.00X

300.00X

(=1
> 250.00X
O

o
& 200.00X
(7]

150.00X

100.00X

50.00X

1.00X 12.22X

0.00X
SERIAL MULTICORE NVIDIA TESLA V100

HPC SDK 20.11, NVIDIA Tesla V100, DGX1
17 <ANVIDIA,
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

KNOWN LIMITATIONS

LIMITATIONS

Heap Only

« Limitation: All pointers used in parallel algorithms must point to the heap

std::array<int, 1024> a=...;

std::sort(std::execution::par, a.begin(), a.end());

» Solution: Use function objects or lambdas instead

std::vector v = ...; std::sort(std::execution::par, v.begin(), v.end()); // OK, vector allocates on heap

19 <ANVIDIA,
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OTHER LIMITATIONS

» GPU code does not have access to the operating system or pre-compiled standard library
» Usually works:

+ template classes and functions

* inlined functions

« math functions

* non-template library functions

e OS functions

20 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

LIMITATIONS

FUNCTION POINTERS

Limitation: Don’t pass function pointers to algorithms that will run on the GPU

void square(int& x) { x = x * x; }

std::for_each(std::execution::par, v.begin(), v.end(), &square);

Solution: Use function objects or lambdas instead

struct square {
void operator()(int& x) const { x = x * x; }
5

std::for_each(std::execution::par, v.begin(), v.end(), square()); // OK, function object

std::for_each(std::execution::par, v.begin(), v.end(), [](int& x) { x = x * x; }); // OK, lambda e o
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

FORTRAN

DO CONCURRENT :: ISO Standard Fortran

ISO Standard Fortran 2008 introduced the DO CONCURRENT construct to allow you to express loop-level parallelism,
one of the various mechanisms for expressing parallelism directly in the Fortran language

HPC SDK 20.11 release of the NVIDIA HPC SDK, the included NVFORTRAN compiler automatically accelerates DO
CONCURRENT

1 subroutine saxpy(x,y,n,a) ; SL;Z;TL{F‘ZG;:".);PY((%;YM,EI)

- _real e X(:)-’ A, 3 integ:ér :’: n. i, o

i Lln(;:?g:e: ..nn, ; 4 do concurrent (i =1: n)
))* : ! 5 i) = a*x(i q

5 y(i) = a*(i)+y(i) 6 exf;éo X(i)+y(i)

6 enddo 7

7

end subroutine saxp

end subroutine saxpy

nvfortran -stdpar=gpu,multicore program.f90 -o program

22 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

FORTRAN

Nested Loop Parallelism

* Nested loops are a common code pattern encountered in HPC applications

« It is straightforward to write such patterns with a single DO CONCURRENT statement, as in the following example

do i=2, n-1
e J.=.2’ Uk Sl do concurrent(i=2 : n-1, j=2 : m-1)
20,)) =0 Ll a(i,j) = w0 * b(i,j)
enddo Aeains
enddo

23 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ATOMIC

Limitation

ISacc atomic
g(ind)=g(ind)+1.0d0

void *do_stuff(void * arg)

{
for (inti =0 ;i <200000000 ; ++ i)
{ }
return arg;
counter
}

Memory

* Do-Concurrent implementation of GPC SDK currently does not
support Atomic constructs

* Hence we use the OpenACC Construct to solve data race

24 SANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STEPS

Compile for Multicore and GPU

do iconf=1,nframes

do concurrent(i=1 : natoms, j=1:natoms)
dx=x(iconf,i)-x(iconf,j)
dy=y(iconf,i)-y(iconf,j)
dz=z(iconf,i)-z(iconf,j)

r=dsqrt(dx**2+dy**2+dz**2)
if(r<cut)then
ISacc atomic
g(ind)=g(ind)+1.0d0
endif
enddo
enddo

» Do Concurrent

» Find Distance

» Atomic Increment

nvfortran -stdpar=gpu,multicore program.f90 -o program

25 <ANVIDIA.

trisTateriat s Teteased by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

REFERENCES

https://developer.nvidia.com/blog/accelerating-fortran-do-concurrent-with-gpus-and-the-nvidia-hpc-sdk/

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9770-c++17-parallel-algorithms-for-
nvidia-gpus-with-pgi-c++.pdf

26 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

https://developer.nvidia.com/blog/accelerating-fortran-do-concurrent-with-gpus-and-the-nvidia-hpc-sdk/
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9770-c++17-parallel-algorithms-for-nvidia-gpus-with-pgi-c++.pdf

THANK YOU

NVIDIA

