
N-WAYS GPU computing
OPENACC

2

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC

What to expect?

• Basic introduction to OpenACC directives

• HPC SDK Usage

• Portability across Multicore and GPU

3

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OpenACC is…

a directives-based

parallel programming model
designed for

performance and portability.

main()

{

<serial code>

#pragma acc kernels

{

<parallel code>

}

}

Add Simple Compiler Directive

4

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

5

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OpenACC Directives

Manage

Data

Movement

Initiate

Parallel

Execution

Optimize

Loop

Mappings

#pragma acc data copyin(a,b) copyout(c)
{

...
#pragma acc parallel
{
#pragma acc loop gang vector

for (i = 0; i < n; ++i) {
c[i] = a[i] + b[i];
...

}
}
...

}

• CPU, GPU, Manycore

• Performance portable

• Interoperable

• Single source

• Incremental

6

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC SYNTAX

A pragma in C/C++ gives instructions to the compiler on how to compile the code. Compilers that do not understand a
particular pragma can freely ignore it.

A directive in Fortran is a specially formatted comment that likewise instructions the compiler in it compilation of the
code and can be freely ignored.

“acc” informs the compiler that what will come is an OpenACC directive

Directives are commands in OpenACC for altering our code.

Clauses are specifiers or additions to directives.

Syntax for using OpenACC directives in code

C/C++

#pragma acc directive clauses
<code>

Fortran

!$acc directive clauses
<code>

7

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

}

When encountering the
parallel directive, the
compiler will generate

1 or more parallel
gangs, which execute

redundantly.

gang

gang gang

gang

gang

gang

8

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

#pragma acc parallel
{

}

#pragma acc parallel
{

for(int i = 0; i < N;
i++)

{
// Do Something

}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

This loop will be
executed redundantly

on each gang

gang

gang gang

gang

gang

gang

loop

lo
o
p

lo
o
p

lo
o
p

lo
o
p

lo
o
p

lo
o
p

9

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

#pragma acc parallel
{

for(int i = 0; i < N;
i++)

{
// Do Something

}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

#pragma acc loop
for(int i = 0; i < N;

i++)
{

// Do Something
}

}

The loop directive
informs the compiler

which loops to
parallelize.

10

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC PARALLEL DIRECTIVE
Parallelizing a single loop

Use a parallel directive to mark a region of code where you want
parallel execution to occur

This parallel region is marked by curly braces in C/C++ or a start and
end directive in Fortran

The loop directive is used to instruct the compiler to parallelize the
iterations of the next loop to run across the parallel gangs

C/C++
#pragma acc parallel
{

#pragma acc loop
for(int i = 0; j < N;

i++)
a[i] = 0;

}

Fortran

!$acc parallel
!$acc loop
do i = 1, N

a(i) = 0
end do

!$acc end parallel

11

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC PARALLEL DIRECTIVE

Parallelizing a single loop

This pattern is so common that you can do all of this in a single line of
code

In this example, the parallel loop directive applies to the next loop

This directive both marks the region for parallel execution and
distributes the iterations of the loop.

When applied to a loop with a data dependency, parallel loop may
produce incorrect results

C/C++

#pragma acc parallel loop
for(int i = 0; j < N; i++)

a[i] = 0;

Fortran

!$acc parallel loop
do i = 1, N

a(i) = 0
end do

12

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

BUILD AND RUN THE CODE

13

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVIDIA HPC SDK

• Comprehensive suite of compilers, libraries, and tools used to GPU accelerate HPC
modeling and simulation application

• The NVIDIA HPC SDK includes the new NVIDIA HPC compiler supporting OpenACC C and
Fortran

• The command to compile C code is ‘nvc’

• The command to compile C++ code is ‘nvc++’

• The command to compile Fortran code is ‘nvfortran’

nvc –fast –Minfo=accel –ta=tesla:managed main.c nvfortran –fast –Minfo=accel –ta=tesla:managed main.f90

14

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

14

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

BUILDING THE CODE

14

$ nvc -fast -ta=multicore -Minfo=accel laplace2d_uvm.c

main:

63, Generating Multicore code

64, #pragma acc loop gang

64, Accelerator restriction: size of the GPU copy of Anew,A is unknown

Generating reduction(max:error)

66, Loop is parallelizable

$ nvc -fast -ta=tesla:managed -Minfo=accel rdf.c

main:

63, Accelerator kernel generated

Generating Tesla code

64, #pragma acc loop gang /* blockIdx.x */

Generating reduction(max:error)

66, #pragma acc loop vector(128) /* threadIdx.x */

63, Generating implicit copyin(A[:])

Generating implicit copy(error)

66, Loop is parallelizable

-Minfo shows more details

15

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

for (int frame=0;frame<nconf;frame++){

for(int id1=0;id1<numatm;id1++)

{

for(int

id2=0;id2<numatm;id2++)

{

dx=d_x[]-

d_x[];

dy=d_y[]-

d_y[];

dz=d_z[]-

d_z[];

r=sqrtf(dx*dx+dy*dy+dz*dz);

if (r<cut) {

ig2=(int)(r/del);

• Across Frames

Pseudo Code

• Find Distance

• Reduction

16

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

#pragma acc parallel loop

for (int frame=0;frame<nconf;frame++){

for(int id1=0;id1<numatm;id1++)

{

for(int

id2=0;id2<numatm;id2++)

{

dx=d_x[]-

d_x[];

dy=d_y[]-

d_y[];

dz=d_z[]-

d_z[];

r=sqrtf(dx*dx+dy*dy+dz*dz);

if (r<cut) {

ig2=(int)(r/del);

Pseudo Code -C

• Parallel Loop construct

• Atomic Construct

17

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

do iconf=1,nframes

if (mod(iconf,1).eq.0) print*,iconf

!$acc parallel loop

do i=1,natoms

do j=1,natoms

dx=x(iconf,i)-x(iconf,j)

dy=y(iconf,i)-y(iconf,j)

dz=z(iconf,i)-z(iconf,j)

...

if(r<cut)then

!$acc atomic

g(ind)=g(ind)+1.0d0

endif

enddo

enddo

enddo

Pseudo Code - Fortran

• Parallel Loop construct

• Atomic Construct

18

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC SPEEDUP

1.00X
17.04X

393.78X

0.00X

50.00X

100.00X

150.00X

200.00X

250.00X

300.00X

350.00X

400.00X

450.00X

SERIAL MULTICORE NVIDIA TESLA V100

S
p

e
e

d
-U

p

Speed-up

HPC SDK 20.11, NVIDIA Tesla V100, DGX1

19

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

REFERENCES

https://www.openacc.org/get-started

https://developer.nvidia.com/hpc-sdk

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

THANK YOU

22

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ADDITIONAL EXERCISE
CONTENT

23

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROCESSING FLOW – STEP 1

1. Copy input data from CPU memory to GPU

memory

PCI Bus

24

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROCESSING FLOW – STEP 2

1. Copy input data from CPU memory to GPU

memory

2. Load GPU program and execute,

caching data on chip for performance

PCI Bus

25

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROCESSING FLOW – STEP 3

1. Copy input data from CPU memory to GPU

memory

2. Load GPU program and execute,

caching data on chip for performance

3. Copy results from GPU memory to CPU

memory

4. Unified Memory changes the nature of flow

• Some of the basics remains same

PCI Bus

26

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

Simplified Developer Effort

Without Managed Memory With Managed Memory

Managed MemorySystem
Memory

GPU Memory

Commonly referred to as

“managed memory.”

Commonly referred to as

“managed memory.”
CUDA UNIFIED MEMORY

CPU and GPU memories are
combined into a single, shared pool

27

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

MANAGED MEMORY

• The programmer will almost always be able to get better
performance by manually handling data transfers

• Memory allocation/deallocation takes longer with managed
memory

• Cannot transfer data asynchronously

• Currently only available from PGI on NVIDIA GPUs.

Limitations

With Managed Memory

Managed Memory

28

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

DATA CLAUSES

copy(list) Allocates memory on GPU and copies data from host to GPU when
entering region and copies data to the host when exiting region.

Principal use: For many important data structures in your code, this is a
logical default to input, modify and return the data.

copyin(list) Allocates memory on GPU and copies data from host to GPU when
entering region.

Principal use: Think of this like an array that you would use as just an
input to a subroutine.

copyout(list) Allocates memory on GPU and copies data to the host when exiting
region.

Principal use: A result that isn’t overwriting the input data structure.

create(list) Allocates memory on GPU but does not copy.

Principal use: Temporary arrays.

29

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ARRAY SHAPING

Sometimes the compiler needs help understanding the shape of an array

The first number is the start index of the array

In C/C++, the second number is how much data is to be transferred

In Fortran, the second number is the ending index

copy(array(starting_index:ending_index))

copy(array[starting_index:length]) C/C++

Fortran

30

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ARRAY SHAPING (CONT.)
Multi-dimensional Array shaping

copy(array(1:N, 1:M))

copy(array[0:N][0:M]) C/C++

Fortran

Both of these examples copy a 2D array to the device

31

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC DATA DIRECTIVE

The data directive defines a lifetime for data on the
device beyond individual loops

During the region data is essentially “owned by” the
accelerator

Data clauses express shape and data movement for
the region

Definition

#pragma acc data clauses
{

< Sequential and/or Parallel
code >

}

!$acc data clauses

< Sequential and/or Parallel
code >

!$acc end data

32

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STRUCTURED DATA DIRECTIVE
Example

#pragma acc data copyin(a[0:N],b[0:N]) copyout(c[0:N])
{

#pragma acc parallel loop
for(int i = 0; i < N; i++){

c[i] = a[i] + b[i];
}

}

Action

Host Memory Device memory

A B C

Allocate A
on

device

Copy A from
CPU to device

A

Allocate B on
device

Copy B from
CPU to device

B

Allocate C on
device

Execute loop on
device

C’

Copy C from
device to CPU

C’

Deallocate C from
device

Deallocate B from
device

Deallocate A from
device

