ing

NVIDIA.
N-WAYS GPU comput

OPENACC

OPENACC

What to expect?

« Basic introduction to OpenACC directives
« HPC SDK Usage

» Portability across Multicore and GPU

2 SEANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OpenACC is...

a directives-based

parallel programming model
desighed for

performance and portability.

main()

{

<serial code>

{

<parallel code>

}
}

Using OpenACC allowsd s to continue
develapment of aur fundamental
algarithms and software capabilities
simultaneously with the GPU-related
wark. In the end, we could use the
sams code base far SMP, cluster!
network and GPLU parallelism. PGIS

ANSYS FLUENT

‘We've effectively used
OpenACC for heterogensous
computing in ANSYS Fluent
with impressive performance,
‘We're now applying this work
to more of our models and

VASP

8

For VASP, OpenACC s the way
Torward for GPU acceleration.
Pertormance is similar and in some
cases better than CUDA C, and
OpenACs dramatically decreases
GPU development and maintenance
efforts. We're excited to eollaborate

OpendCC made it practical to
develop for GPU-based hardware
while retaining a single source for
almost all the COSMD physics
code.

compilers were essential to the success

of aur aforts. , ,

new platforms.

with NVIDIA and PGl as ancarly
adaopter of CUDA Unified Memory.

NUMECA FINE/Open SYNOPSYS

-l

The CAAR project provided us with

Parling caur unstructured C++

Using OpenACC, we've GPU- Our team has been evaluating

early access o Summil hardbware and " DpenACE as a pathway to
ac0s5s ta PGI compller SXperts. Both Rl SR T e U performence portability for the Model
of these were critical ta our success. uging DpenACC would have Sentaurus Device EMW simulatar for Prediction [MPAS) atmospheric

been impossible two or three
years ago, but OpenACC has
developed enough that we're
now getting some really good
results.

to speed up optical simulations of model. Using this approach on the
image sansors. GPUs are key to MPAS dynamical core, we have

p B B A achleved performance on a sindle
improving simulation throughput P00 GPU exuivalent to 2.7 dual

in the design of advanced image socketed Intel Xeon nodes on our new

Cheyenne supercomputer. S

PGI's DpendGE support renains (e
best available and is campetitive with
iy nione LS progranning
madel approaches.

SEnsors.

GAMERA
gleiglels

With Ope:
node based on NVIDIAS Tesla

P100 GPU, we achieved more

than a 14X speed up overa K
Computer node running our
earthquake disaster simulation
code [

Due to Amdahls lzw, we need to port.
more parts af our code ta the GRU 1l were
going to speed it up. But the sheer
number of routines pases & challenge.
Dpenait. directives give us a low-cost
approach to getting at least same speed-
Up out of these second-tier routnes. In
mariy cases its completety sufflcient
because with the currant algorithms, GRJ
performanca is bandwidth-tound.

Using OpenACC our scientists
were able to achieve the

acceleration needed for
integratad fusion simulation with
a minimum investment of time
and effort in learning to program
GPUs,

PWscf (Quantum
ESPRESSO)

MAS

el M. Caplen

\ npulalion niles
‘\N
Adding OpenALC ints MAS has given us
the ability to migrate medium-sized
simulations from a multi node CPL
chinter toa single mulli-GPU server .
The: implementation yielded a portable
directives give 2 prodiciily and single-source: code for both CPU and
SOINTE ok mansanatilly 'S the best GPU runs. Future work will add
o baih woelds OpenACC to the remaining model

- - features, enabling GPU-sccelerated

realistic solar storm modeling.

In an aczdemic environment

malntenance and speedup of existing

codes is a tedious task. CpanAGc

prenides a great piatform for
scientiats 1o

DAL s prove b be 3 andy oo ar
computsticnal engineers and researchers 1
obtain fast sohtion of non-inear dynemcs
proiiiem in ImmersE boundary Inormpres s
CF, we v abtained orer of magniuds
feduction in computing lime by poring severa
components of ou lyacy cooes Lo GPU
Esparally E akgartihm
and marh sohers haws boon wel-acookrated 1
e Lt crverall seakstlity of M code.

CLIDA Fortran gives us the full
pertormance patontial of the CLUCS
pragramming model and MVIDIA GPUS.
Wil lesveeriaging She: podenbil of expict
data mavement, ISCUF KERNELS

both tasks wihout invalving s lot of
eftarts or manpower In speeding up the
enfire computational task.

OpenACC Directives

Manage #pragma acc data copyin(a,b) copyout(c)
Data — {
Movement

#pragma acc parallel

” {
Initiate ,;f””}'#pragma acc loop gang vector

Parallel for (i = 0; i < n; ++1) {
Execution c[i] = a[i] + b[i];
Optimize })

Loop

Mappings } 0 p e n

Directives fFor Accelerators

e Incremental
 Single source

e Interoperable

e Performance portable
« CPU, GPU, Manycore

5

“ANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC SYNTAX

Syntax for using OpenACC directives in code

C/C++

#pragma acc directive clauses I$acc directive clauses
<code> <code>

A pragma in C/C++ gives instructions to the compiler on how to compile the code. Compilers that do not understand a
particular pragma can freely ignore it.

A directive in Fortran is a specially formatted comment that likewise instructions the compiler in it compilation of the
code and can be freely ignored.

“acc” informs the compiler that what will come is an OpenACC directive
Directives are commands in OpenACC for altering our code.

Clauses are specifiers or additions to directives.

6 SANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

#pragma acc parallel

{

When encountering the
parallel directive, the
compiler will generate

1 or more parallel
gangs, which execute
redundantly.

7 <ANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

#pragma acc parallel

{

for(int i = 9; 1 < N;
{
}

i+4)

// Do Something

8 SANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

#pragma acc parallel
{
#pragma acc loop
for(int 1 = 0; 1 < N;
it++)
{
// Do Something
}
The loop directive
informs the compiler
} which loops to

parallelize.

9 GANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC PARALLEL DIRECTIVE

Parallelizing a single loop

Use a parallel directive to mark a region of code where you want
parallel execution to occur

#pragma acc loop

for‘(1 =05 J <N; This parallel region is marked by curly braces in C/C++ or a start and
end directive in Fortran
a[i]

The loop directive is used to instruct the compiler to parallelize the
iterations of the next loop to run across the parallel gangs

I$acc parallel
I$acc loop
doi=1, N

a(i)

end do
I$acc end parallel

10 <ANVIDIA,
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC PARALLEL DIRECTIVE

Parallelizing a single loop

C/C++ '(I:'Igélsepattern is so common that you can do all of this in a single line of

#pragma acc parallel loop

For‘(i =0; § < N; i++) In this example, the parallel loop directive applies to the next loop

a[i] = ©;

This directive both marks the region for parallel execution and
distributes the iterations of the loop.

When applied to a loop with a data dependency, parallel loop may
produce incorrect results

I$acc parallel loop

doi=1, N
a(i) =

end do

11 <ANVIDIA,
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVIDIA HPC SDK

- Comprehensive suite of compilers, libraries, and tools used to GPU accelerate HPC
modeling and simulation application

« The NVIDIA HPC SDK includes the new NVIDIA HPC compiler supporting OpenACC C and
Fortran

« The command to compile C code is ‘nvc’
« The command to compile C++ code is ‘nvc++’

« The command to compile Fortran code is ‘nvfortran’

nvc —fast —Minfo=accel —ta=tesla:managed main.c nvfortran —fast —-Minfo=accel —ta=tesla:managed main.f90

13 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

BUILDING THE CODE

-Minfo shows more details

$ nvc -fast -ta=multicore -Minfo=accel laplace2d uvm.c
main:
63, Generating Multicore code
64, #pragma acc loop gang
64, Accelerator restriction: size of the GPU copy of Anew,A is unknown
Generating reduction (max:error)
66, Loop is parallelizable

$ nve -fast rdf.c
main:
63, Accelerator kernel generated
Generating Tesla code
64, #pragma acc loop gang /* blockIdx.x */
Generating reduction (max:error)
66, #pragma acc loop vector(128) /* threadIdx.x */
63, Generating implicit copyin(A[:])
Generating implicit copy (error)
66, Loop is parallelizable

1 4 14 SANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

Pseudo Code

for (int frame=0;frame<nconf;frame++){

for(int id1=0;id1<numatm;id1++)

{
for(int
D;id2<numatm;id2++)
{
dx=d_x[]-
I;
dy=d_y[]-
I;
dz=d_z[]-

r=sqrtf(dx*dx+dy*dy+dz*dz);

if (r<cut) {

107=(int)(r/del):

e Across Frames

e Find Distance

e Reduction

15 GANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF
Pseudo Code -C

#pragma acc parallel loop Parallel Loop construct
for (int frame=0;frame<nconf;frame++){

for(int id1=0;id1<numatm;id1++)

{

for(int
id2=0;id2<numatm;id2++)
{
dx=d_x[]-
d_x[I;
dy=d_y[]-
d_y[l;
dz=d_z[]-
d_z[];
e Atomic Construct
r=sqrtf(dx*dx+dy*dy+dz*dz);
]f (r<CUt){ 16 SANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

Pseudo Code - Fortran

do iconf=1,nframes

if (mod(iconf,1).eq.0) print*,iconf

ISacc parallel loop

do i=1,natoms

do j=1,natoms

dx=x(iconf,i)-x(iconf,j)
dy=y(iconf,i)-y(iconf,j)
dz=z(iconf,i)-z(iconf,j)

if(r<cut)then
ISacc atomic
g(ind)=g(ind)+1.0d0
endif
enddo
enddo
enddo

 Parallel Loop construct

o Atomic Construct

17 <SANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENACC SPEEDUP

HPC SDK 20.11, NVIDIA Tesla V100, DGX1

18 SANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

REFERENCES

https://www.openacc.org/get-started

https://developer.nvidia.com/hpc-sdk

19 <ANVIDIA,
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

THANK YOU

NVIDIA

ADDITIONAL EXERCISE

CONTENT

PROCESSING FLOW - STEP 1

GigaThread™

(=

CPU Memory

1. Copy input data from CPU memory to GPU
memory

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROCESSING FLOW - STEP 2

GigaThread™

CPU Memory

. Copy input data from CPU memory to GPU
memory

. Load GPU program and execute,

caching data on chip for performance

|I||‘

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROCESSING FLOW - STEP 3

GigaThread™

. Copy input data from CPU memory to GPU
me mory erconnect
. Load GPU program and execute,

caching data on chip for performance

Copy results from GPU memory to CPU

memory

DRAM
. Unified Memory changes the nature of flow _

« Some of the basics remains same

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

CUDA UNIFIED MEMORY

Simplified Developer Effort

A
Memory

!

GPU Memory

!

!

Managed Memory

This material is released by NVIDIA Corporation un

26 <ANVIDIA.

der the Creative Commons Attribution 4.0 International (CC BY 4.0)

MANAGED MEMORY

Limitations

With Managed Memory

The programmer will almost always be able to get better
performance by manually handling data transfers

SEuEesss sesTesy
Memory allocation/deallocation takes longer with managed T

EEEEEEEE EEEEEEER
memory SEmmmmas smmsmmms
NENEEEES EEEEEEEE
EEEDEEEE EREEREER
Cannot transfer data asynchronously NERESEES SEEEEEEE
ODEEEREN SEEEEREE

Currently only available from PGl on NVIDIA GPUs. 1 1

Managed Memory

27 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

copy(list)

copyin(list)

copyout (list)

create(list)

DATA CLAUSES

Allocates memory on GPU and copies data from host to GPU when
entering region and copies data to the host when exiting region.

For many important data structures in your code, this is a
logical default to input, modify and return the data.

Allocates memory on GPU and copies data from host to GPU when
entering region.

: Think of this like an array that you would use as just an
input to a subroutine.

Allocates memory on GPU and copies data to the host when exiting
region.

A result that isn’t overwriting the input data structure.
Allocates memory on GPU but does not copy.

Tem pOFary arrayS. 28 <ANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ARRAY SHAPING

Sometimes the compiler needs help understanding the shape of an array
The first number is the start index of the array
In C/C++, the second number is how much data is to be transferred

In Fortran, the second number is the ending index

copy(array[starting index:length])

copy(array(starting index:ending index))

29 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

ARRAY SHAPING (CONT.)

Multi-dimensional Array shaping

copy(array[0:N][0:M]) CIC++

copy(array(1:N, 1:M)) Fortran

OPENACC DATA DIRECTIVE

Definition

The data directive defines a lifetime for data on the
device beyond individual loops

During the region data is essentially “owned by” the

accelerator < Sequential and/or Parallel

code >
Data clauses express shape and data movement for
the region

< Sequential and/or Parallel

code >

31 <ANVIDIA
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

STRUCTURED DATA DIRECTIVE

Example

#pragma acc data copyin(a[G:N]lb[G:N]) copyout(c[O:N])

#pragma acc parallel 1lqop
for(' ; 1 < N; i
a[i] + b[f];

32 <AnVIDIA
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

