
N-WAYS GPU
OPENMP TARGET OFFLOAD

2

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

What to expect?

• OpenMP basic

• OpenMP target offload constructs for accelerated computing

• Portability between multicore and GPU

3

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

• 1996 - Architecture Review Board (ARB) formed by several vendors implementing their own directives for Shared
Memory Parallelism (SMP).

• 1997 - 1.0 was released for C/C++ and Fortran with support for parallelizing loops across threads.

• 2000, 2002 – Version 2.0 of Fortran, C/C++ specifications released.

• 2005 – Version 2.5 released, combining both specs into one.

• 2008 – Version 3.0 released, added support for tasking

• 2011 – Version 3.1 release, improved support for tasking

• 2013 – Version 4.0 released, added support for offloading (and more)

• 2015 – Version 4.5 released, improved support for offloading targets (and more)

A Brief History

4

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP ON CPU

5

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

#pragma omp directive !$ omp directive

• #pragma in C/C++ is what's known as a "compiler hint."

• omp is an addition to our pragma, it is known as the “sentinel”. It specifies that this is
an OpenMP pragma. Any non-OpenMP compiler will ignore this pragma.

• directives are commands in OpenMP that will tell the compiler to do some action. For
now, we will only use directives that allow the compiler to parallelize our code

Syntax

6

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

Fork Join Model

• OpenMP uses the fork-join model of parallel execution.
All OpenMP programs begin as a single process: the
master thread. The master thread executes
sequentially until the first parallel region construct is
encountered.

• FORK: the master thread then creates a team of
parallel threads.The statements in the program that
are enclosed by the parallel region construct are then
executed in parallel among the various team threads.

• JOIN: When the team threads complete the statements
in the parallel region construct, they synchronize and
terminate, leaving only the master thread.

Fork Join Model

7

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

PARALLEL Directive

• Spawns a team of threads

• Execution continues redundantly on all threads
of the team.

• All threads join at the end and the master thread
continues execution.

Parallel Region

8

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

//Include the header file
#include <omp.h>

main(int argc, char *argv[]) {

int nthreads;

/* Fork a team of threads*/
#pragma omp parallel

{

/* Obtain and print thread id */
printf("Hello World from thread = %d\n", omp_get_thread_num());

/* Only master thread does this */
if (omp_get_thread_num() == 0)
{
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);
}

} /* All threads join master thread and terminate */

}

OpenMP Parallel Region

Include Header File

• Spawns parallel region

• Get Thread Id

C - Syntax

9

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

program hello
integer :: omp_rank

!$omp parallel private(omp_rank)

omp_rank = omp_get_thread_num()
print *, 'Hello world! by thread ', omp_rank

!$omp end parallel

end program hello

OpenMP Parallel Region

• Spawns parallel region

• Get Thread Id

Fortran - Syntax

10

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

FOR/DO (Loop) Directive

• Divides (“workshares”) the iterations of the next loop
across the threads in the team

• How the iterations are divided is determined by a
schedule.

Worksharing

//Create a team of threads
#pragma omp parallel
{
//workshare this loop across those threads.

#pragma omp for
for (i=0; i < N; i++)

c[i] = a[i] + b[i];

} /* end of parallel region */

!Create a team of threads
!$omp parallel
!workshare this loop across those threads.

!$omp for
do i=1,N

< loop code >
end do

!$omp end parallel

FortranC/C++

11

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

TARGETING THE GPU

12

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

TARGET Directive

• Offloads execution and associated data from
the CPU to the GPU

• The target device owns the data, accesses by
the CPU during the execution of the target
region are forbidden.

• Data used within the region may be implicitly
or explicitly mapped to the device.

• All of OpenMP is allowed within target regions,
but only a subset will run well on GPUs.

Target Offloading

#pragma omp target

{

#pragma omp parallel for reduction(max:error)

for(int j = 1; j < n-1; j++) {

}

} }

!Moves this region of code to the GPU and implicitly maps data.

!$omp target

!$omp parallel for

do i=1,N

ANew(j) = A (j-1) + A(j+1)

end do

!$omp end target

C/C++

Fortran

13

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

Teams Directive

• To better utilize the GPU resources, use many thread
teams via the TEAMS directive.

• Spawns 1 or more thread teams with the same number
of threads

• Execution continues on the master threads of each
team (redundantly)

• No synchronization between teams

Teams

14

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

Distribute Directive

• Distributes the iterations of the next loop to the
master threads of the teams.

• Iterations are distributed statically.

• There’s no guarantees about the order teams will
execute.

• No guarantee that all teams will execute
simultaneously

• Does not generate parallelism/worksharing within the
thread teams.

Teams

15

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROCESSING FLOW – STEP 1

1. Copy input data from CPU memory to GPU

memory

PCI Bus

16

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROCESSING FLOW – STEP 2

1. Copy input data from CPU memory to GPU

memory

2. Load GPU program and execute,

caching data on chip for performance

PCI Bus

17

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROCESSING FLOW – STEP 3

1. Copy input data from CPU memory to GPU

memory

2. Load GPU program and execute,

caching data on chip for performance

3. Copy results from GPU memory to CPU

memory

4. Unified Memory changes the nature of flow

• Some of the basics remains same

PCI Bus

18

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

TARGET Data Directive

• Offloads data from the CPU to the GPU, but not execution

• The target device owns the data, accesses by the CPU during the execution of contained target regions
are forbidden.

• Useful for sharing data between TARGET regions

Data Offloading

#pragma omp target data map(to:A[:n]) map(from:ANew[:n])

{

#pragma omp parallel for

for(int j = 1; j < n-1; j++) {

ANew[j] = A [j-1] + A[j+1];

}

}

!$omp target data map(to:A(:)) map(from:ANew(:))

!$omp parallel for

do i=1,N

ANew(j) = A (j-1) + A(j+1)

end do

!$omp end target data

20

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

BUILD AND RUN THE CODE

21

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVIDIA HPC SDK

• Comprehensive suite of compilers, libraries, and tools used to GPU accelerate HPC
modeling and simulation application

• The NVIDIA HPC SDK includes the new NVIDIA HPC compiler supporting OpenMP Target
Offload onto GPU

• The command to compile C code is ‘nvc’

• The command to compile C++ code is ‘nvc++’

• The command to compile fortran code is ‘nvfortran’

22

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVIDIA HPC SDK

• The NVIDIA HPC SDK includes the new NVIDIA HPC compiler supporting OpenMP C and Fortran

• -mp: compiler switch to enable processing of OpenMP directives and pragmas

• gpu: OpenMP directives are compiled for GPU execution plus multicore CPU fallback; this Beta feature is
supported on Linux/x86 for NVIDIA V100 or later GPUs.

• multicore: OpenMP directives are compiled for multicore CPU execution only; this sub-option is the default.

nvc –mp=gpu main.c

nvfortran –Minfo=mp –mp=gpu main.f90

23

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

23

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

BUILDING THE CODE

Use of loop in Fortran:

!$omp target teams loop

do n1loc_blk = 1, n1loc_blksize

do igp = 1, ngpown

do ig_blk = 1, ig_blksize

do ig = ig_blk, ncouls, ig_blksize

do n1_loc = n1loc_blk, ntband_dist, n1loc_blksize

!expensive computation codes

enddo

enddo

enddo

enddo

enddo

-Minfo shows more details

$ nvfortran test.f90 -mp=gpu -Minfo=mp

42, !$omp target teams loop

42, Generating "nvkernel_MAIN__F1L42_1" GPU kernel

Generating Tesla code

43, Loop parallelized across teams ! blockidx%x

44, Loop run sequentially

45, Loop run sequentially

46, Loop run sequentially

47, Loop parallelized across threads(128) !

threadidx%x

42, Generating Multicore code

43, Loop parallelized across threads

24

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

for (int frame=0;frame<nconf;frame++){

for(int id1=0;id1<numatm;id1++)

{

for(int

id2=0;id2<numatm;id2++)

{

dx=d_x[]-

d_x[];

dy=d_y[]-

d_y[];

dz=d_z[]-

d_z[];

r=sqrtf(dx*dx+dy*dy+dz*dz);

if (r<cut) {

ig2=(int)(r/del);

• Across Frames

Pseudo Code - C

• Find Distance

• Reduction

25

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

#pragma omp target data map(d_x[0:nconf*numatm],...)

for (int frame=0;frame<nconf;frame++){

#pragma omp target teams distribute parallel for

for(int id1=0;id1<numatm;id1++)

{

for(int id2=0;id2<numatm;id2++)

{

…

r=sqrtf(dx*dx+dy*dy+dz*dz);

if (r<cut) {

ig2=(int)(r/del);

#pragma omp

atomic

d_g2[ig2] =

d_g2[ig2] +1 ;

}

}

}

Pseudo Code –C

• Target Offload construct

• Atomic Construct

• Map data to GPU

• Distribute Inner Loop

26

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

!$omp target data map(x(:,:), y (:,:), z (:,:), g (:))

do iconf=1,nframes

if (mod(iconf,1).eq.0) print*,iconf

!$omp target teams distribute parallel do

private(dx,dy,dz,r,ind)

do i=1,natoms

do j=1,natoms

dx=x(iconf,i)-x(iconf,j)

dy=y(iconf,i)-y(iconf,j)

dz=z(iconf,i)-z(iconf,j)

....

if(r<cut)then

!$omp atomic

g(ind)=g(ind)+1.0d0

endif

enddo

enddo

enddo

Pseudo Code – Fortran

• Target Offload construct

• Atomic Construct

• Map data to GPU

• Distribute Inner Loop

27

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PRIVATE CLAUSE

int x = 5;
#pragma omp parallel

{
int x; x = 3;
printf("local: x is %d\n", x);

}

int x = 5;

#pragma omp parallel private(x)
{

x = x+1; // dangerous
printf("private: x is %d\n",x);

}
printf("after: x is %d\n",x); // also

dangerous

In the C/C++ language it is possible to declare variables inside a
lexical scope ; roughly: inside curly braces.

This concept extends to OpenMP parallel regions and directives:
any variable declared in a block following an OpenMP directive

will be local to the executing thread

29

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP SPEEDUP

1.00X
11.43X

290.49X

0.00X

50.00X

100.00X

150.00X

200.00X

250.00X

300.00X

350.00X

SERIAL MULTICORE NVIDIA TESLA V100

S
p
e
e
d
-U
p

Speed-up

HPC SDK 20.11, NVIDIA Tesla V100, DGX1

30

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

KNOWN LIMITATIONS

31

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

HPC SDK LIMITATION

• Not all functionality associated with loop is supported in the Beta release of OpenMP target
offload.

• The compilers support loop regions containing procedure calls as long as the callee does not
contain OpenMP directives.

32

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

REFERENCES

https://on-demand.gputechconf.com/gtc/2016/presentation/s6510-jeff-larkin-targeting-gpus-openmp.pdf

https://developer.nvidia.com/hpc-sdk

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

THANK YOU

