<3

NVIDIA.

N-WAYS GPU

OPENMP TARGET OFFLOAD

OPENMP

What to expect?

* OpenMP basic
« OpenMP target offload constructs for accelerated computing

* Portability between multicore and GPU

2 SEANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

A Brief History

1996 - Architecture Review Board (ARB) formed by several vendors implementing their own directives for Shared
Memory Parallelism (SMP).

1997 - 1.0 was released for C/C++ and Fortran with support for parallelizing loops across threads.
2000, 2002 - Version 2.0 of Fortran, C/C++ specifications released.

2005 - Version 2.5 released, combining both specs into one.

2008 - Version 3.0 released, added support for tasking

2011 - Version 3.1 release, improved support for tasking

2013 - Version 4.0 released, added support for offloading (and more)

2015 - Version 4.5 released, improved support for offloading targets (and more)

3 AnVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP ON CPU

#pragma omp directive

OPENMP

Syntax

IS omp directive

« #pragma in C/C++ is what's known as a "compiler hint."

« omp is an addition to our pragma, it is known as the “sentinel”. It specifies that this is
an OpenMP pragma. Any non-OpenMP compiler will ignore this pragma.

« directives are commands in OpenMP that will tell the compiler to do some action. For
now, we will only use directives that allow the compiler to parallelize our code

5 SANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

Fork Join Model

Fork Join Model

* OpenMP uses the fork-join model of parallel execution.
All OpenMP programs begin as a single process: the
master thread. The master thread executes
sequentially until the first parallel region construct is
encountered.

Master Thread

Team of Threads

« FORK: the master thread then creates a team of
parallel threads.The statements in the program that
are enclosed by the parallel region construct are then
executed in parallel among the various team threads. Master Thread

* JOIN: When the team threads complete the statements
in the parallel region construct, they synchronize and
terminate, leaving only the master thread.

6 SANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

Parallel Region

PARALLEL Directive
« Spawns a team of threads

» Execution continues redundantly on all threads
of the team.

_I
=
=
o)
o))
Q
o'
o }]
3

« All threads join at the end and the master thread

continues execution.
Master Thread

7 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OpenMP Parallel Region
C - Syntax

//Include the header file Include Header File

#include <omp.h> ?
main(int argc, char *argv[]) {
int nthreads;

/* Fork a team of threads*/
#pragma omp parallel €

{

/* Obtain and print thread id */
printf("Hello World from thread = %d\n", omp_get_thread_num());

« Spawns parallel region

/* Only master thread does this */

if (omp_get_thread_num() == 0) D o
{ « Get Thread Id
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}

} /* All threads join master thread and terminate */

8 SANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OpenMP Parallel Region

Fortran - Syntax

program hello
integer :: omp_rank

I$omp parallel private(omp_rank) <€ « Spawns parallel region

omp_rank = omp_get_thread_num() <=
print *, 'Hello world! by thread ', omp_rank

« Get Thread Id
I1$omp end parallel

end program hello

9 GANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

FOR/DO (Loop) Directive

OPENMP

Worksharing

« Divides (“workshares”) the iterations of the next loop

across the threads in the team

« How the iterations are divided is determined by a

schedule.

C/C++

Fortran

//Create a team of threads
#pragma omp parallel

{

//workshare this loop across those threads.

#pragma omp for
for (i=0; i < N; i++)
c[i] = a[i] + b[i];

} /* end of parallel region */

ICreate a team of threads
I$omp parallel
Iworkshare this loop across those threads.
I$omp for
do i=1,N
< loop code >
end do
I$omp end parallel

10

—
>
=
0
o)
o
o'
Q
3

“ANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

TARGETING THE GPU

OPENMP

Target Offloading

TARGET Directive

« Offloads execution and associated data from
the CPU to the GPU

« The target device owns the data, accesses by
the CPU during the execution of the target
region are forbidden.

« Data used within the region may be implicitly
or explicitly mapped to the device.

» All of OpenMP is allowed within target regions,
but only a subset will run well on GPUs.

C/C++
#pragma omp target
{
#pragma omp parallel for reduction(max:error)
for(intj=1;j<n-1;j++){
}
1}

Fortran

IMoves this region of code to the GPU and implicitly maps data.
ISomp target
I$omp parallel for
doi=1,N
ANew(j) = A (j-1) + A(j+1)
end do
ISomp end target

12 <ANVIDIA,
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

Teams

Teams Directive

» To better utilize the GPU resources, use many thread
teams via the TEAMS directive.

I I [|
« Spawns 1 or more thread teams with the same number
of threads
* Execution continues on the master threads of each v v v I

team

* No synchronization between teams

13 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

Teams

Distribute Directive

» Distributes the iterations of the next loop to the
master threads of the teams.

» lterations are distributed statically.

* There’s no guarantees about the order teams will
execute.

* No guarantee that all teams will execute
simultaneously

* Does not generate parallelism/worksharing within the
thread teams.

14 SANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROCESSING FLOW - STEP 1

GigaThread™

(=

CPU Memory

1. Copy input data from CPU memory to GPU
memory

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROCESSING FLOW - STEP 2

GigaThread™

CPU Memory

. Copy input data from CPU memory to GPU
memory

. Load GPU program and execute,

caching data on chip for performance

|I||‘

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PROCESSING FLOW - STEP 3

GigaThread™

. Copy input data from CPU memory to GPU
me mory erconnect
. Load GPU program and execute,

caching data on chip for performance

Copy results from GPU memory to CPU

memory

DRAM
. Unified Memory changes the nature of flow _

« Some of the basics remains same

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP

Data Offloading

TARGET Data Directive

« Offloads data from the CPU to the GPU, but not execution

» The target device owns the data, accesses by the CPU during the execution of contained target regions

are forbidden.

» Useful for sharing data between TARGET regions

#pragma omp target data map(to:A[:n]) map(from:ANewl[:n])
{
#pragma omp parallel for
for(intj=1;j<n-1;j++){
ANewl[j] = A [j-1] + A[j+1];
}

}

ISomp target data map(to:A(:)) map(from:ANew(:))
ISomp parallel for
doi=1,N
ANew(j) = A (j-1) + A(j+1)
end do
ISomp end target data

18 SANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVIDIA HPC SDK

Comprehensive suite of compilers, libraries, and tools used to GPU accelerate HPC
modeling and simulation application

The NVIDIA HPC SDK includes the new NVIDIA HPC compiler supporting OpenMP Target
Offload onto GPU

« The command to compile C code is ‘nvc’
« The command to compile C++ code is ‘nvc++’

« The command to compile fortran code is ‘nvfortran’

21 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

NVIDIA HPC SDK

The NVIDIA HPC SDK includes the new NVIDIA HPC compiler supporting OpenMP C and Fortran

* -mp: compiler switch to enable processing of OpenMP directives and pragmas

« gpu: OpenMP directives are compiled for GPU execution plus multicore CPU fallback; this Beta feature is
supported on Linux/x86 for NVIDIA V100 or later GPUs.

* multicore: OpenMP directives are compiled for multicore CPU execution only; this sub-option is the default.

nvCc —mMp=gpu main.c

nvfortran —Minfo=mp —mp=gpu main.f90

22 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

BUILDING THE CODE

Use of loop in Fortran:

!Somp target teams loop
do nlloc_blk = 1, nlloc_blksize
do igp = 1, ngpown

-Minfo shows more details

$ nvfortran test.f90 -mp=gpu -Minfo=mp
42, 'Somp target teams loop
42, Generating "nvkernel MAIN F1L42 1" GPU kernel
Generating Tesla code

do ig blk = 1, ig blksize ZZ’ EZZP
do ig = ig blk, ncouls, ig blksize ' P
do nl loc = nlloc_blk, ntband dist, nlloc blksize 45, Loop
lexpensive computation codes 46, Loop

enddo 47, Loop

enddo threadidx%$x

enddo
enddo

enddo

parallelized across teams ! blockidx%x
run sequentially

run sequentially

run sequentially

parallelized across threads(128) !

42, Generating Multicore code

43, Loop

parallelized across threads

23 <ANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

Pseudo Code - C

for (int frame=0;frame<nconf;frame++){

for(int id1=0;id1<numatm;id1++)

{
for(int
D;id2<numatm;id2++)
{
dx=d_x[]-
I;
dy=d_y[]-
I;
dz=d_z[]-

r=sqrtf(dx*dx+dy*dy+dz*dz);

if (r<cut) {

107=(int)(r/del):

e Across Frames

e Find Distance

e Reduction

24 <SANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

Pseudo Code -C

#pragma omp target data map(d_x[0:nconf*numatm],...)
for (int frame=0;frame<nconf;frame++){

#pragma omp target teams distribute par
for(int id1=0;id1<numatm;id1++)

{

for(int id2=0;id2<numatm;id2++

{
r=sqrtf(dx*dx+dy*dy+¢

if (r<cut) {
ig2=(int)(r/
#pragma on
atomic
d_g2[ig2] =
d_g2[ig2] +1 ;

o Target Offload construct
e Map data to GPU

Lllel for ® Distribute Inner Loop

1z*dz);

del);
p o Atomic Construct

25 <ANVIDIA.

)

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

RDF

Pseudo Code - Fortran

ISomp target data map(x(:,:), y (:,:), Z (5,:), 2 (2))
do iconf=1,nframes
if (mod(iconf,1).eq.0) print*,iconf
ISomp target teams distribute parallel do
private(dx,dy,dz,r,ind)
do i=1,natoms
do j=1,natoms
dx=x(iconf,i)-x(iconf,j)
dy=y(iconf,i)-y(iconf,j)
dz=z(iconf,i)-z(iconf,j)

if(r<cut)then
!Somp atomic
g(ind)=g(ind)+1.0d0
endif
enddo
enddo
enddo

e Map data to GPU

« Target Offload construct
e Distribute Inner Loop

e Atomic Construct

26 <ANVIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

PRIVATE CLAUSE

intx =5;
#pragma omp parallel
{
_)) o intx; x = 3;
In the C/C++ language it is possible to declare variables inside a printf("local: x is %d\n", x);
lexical scope ; roughly: inside curly braces. }
intx =5;

This concept extends to OpenMP parallel regions and directives:
any variable declared in a block following an OpenMP directive #pragma omp parallel private(x)

will be local to the executing thread
x = x+1; // dangerous
printf("private: x is %d\n",x);
}
printf("after: x is %d\n",x); // also
dangerous

27 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

OPENMP SPEEDUP

HPC SDK 20.11, NVIDIA Tesla V100, DGX1

29 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

HPC SDK LIMITATION

Not all functionality associated with loop is supported in the Beta release of OpenMP target
offload.

The compilers support loop regions containing procedure calls as long as the callee does not
contain OpenMP directives.

31 <SAnvIDIA.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

REFERENCES

https://on-demand.gputechconf.com/gtc/2016/presentation/s6510-jeff-larkin-targeting-gpus-openmp.pdf

https://developer.nvidia.com/hpc-sdk

32 <ANVIDIA.
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

THANK YOU

NVIDIA

