CDAC HPC Profiler

Abhishek Patil

Outline

* Introduction

* What is Profiling

* Inclusive vs Exclusive profiling
e Sampling profiler

* Instrumenting profiler

* Key Features

* Application Run/Demo

* Screenshot

* Qutcome of the experiments

Introduction

What is Profiling

» Profiling is the measurement of which parts of your application are consuming a particular computational resource of
interest. This could be which methods are using the most CPU time, which lines allocate the most objects, where your
CPU cache misses are coming from, etc.

Reflection of summary information during execution — time consumed, function calls ,
Reflects performance behaviour of program entities
functions, loops, basic blocks
Very good for low cost performance assessment
Helps to understand performance bottlenecks and hotspots

Implemented through either
» Sampling
» Measurement

Inclusive Vs Exclusive Profiling

int main()

{

/* takes 100 seconds */
f1(); /* takes 20 seconds */

/* other work */
f2(); /* takes 50 seconds */
f1(); /* takes 20 seconds */
/* other work */

}

* Inclusive time for main - 100 seconds
e Exclusive time for main - 100-20-50-20-10 seconds

Brief info about Sampling

 The most common type of profiler is the sampling profiler.

They work by interrupting the application under test periodically in proportion to the
consumption of the resource we’re interested in.

While the program is interrupted the profiler grabs a snapshot of its current state, which
includes where in the code it is.

After the state is captured the program continues. For the method timing example earlier, a
sampling profiler would interrupt the program after a certain amount of time had elapsed and
capture its state.

It would then aggregate those samples over time to produce a statistical picture of the state of
the application. You could use the percent of samples that contained a method of interest to
calculate how much time was spent in that method (though not the duration of that method).

e}' Sampling based profiling

Void Alpha()

{
@ < 30 samples

Betal); mmm

} Alpha
Beta 50 50

Void Beta()

{
@ < 50 samples
}

Brief info about Instrumenting

* The first and earliest type are instrumenting profilers.

* They work by instrumenting the program under test in order to collect
information about the resource of interest.

* For example if you wanted to calculate how much time methods were taking to
execute an instrumenting profiler would add instructions to the beginning and
end of each method to capture the current time which could then be used to
reconstruct the duration spent inside each method.

Profiling and
instrument

Instrumentation based Profiling

T=E*F;

For (1=1;I<N;l++)
{

V[I]=C[I]*B[l];
A[l]=C(21+4);

}

T=E*F;
Instrumentation code
For (I=1;I<N;|++)

{

V[I]=C[1]*B[l];

A[l]=C(21+4);

}

Instrumentation code

Flow of Profiling and Analysis

Appllcafuon — Profiling
execution
|
V2

|
\2

Optimization

* Processes wise analysis — threads, user functions, loops
and blocks

 Memory usage
 Timing information
 Parallel calls (and other library calls)

 Other detailed information like slow sections in the source
code , vectorization analyses, etc.

HPC Profiler — Key features

Guided
Profiling

Hotspot
Identification

HPC

Profiler

Minimal
Overhead

Application
Performance
Summary

Potential
Performance
Suggestions

Multi-
dimension
Analysis

Job to Profile Last 10 Jobs
Job Name Show v entries Search:
Executable
19829 kmeansDM_senthilsir COMPLETED

View Profile Data

19828 kmeans8_28_09 COMPLETED -

Source @ 19827 kmeans16_28_09 CANCELLED by 1033 Job is Cancelled
19826 kdemo_28_09 COMPLETED View Profile Data
19820 k fil COMPLETED
means_testing_source_file View Profile Data
Input Parameters
19819 kmeansRErun COMPLETED View Profile Data
19818 k DM3_xhost COMPLETED
Type of Job meansIisxnes View Profile Data
MPI v 19810 kmeansDM?2 COMPLETED
View Profile Data
No. of Processes
19809 Ki DM1 COMPLETED
means View Profile Data
Advanced Options @ 19807 kmeans_AVX512_26-09 COMPLETED View Profile Data

m Showing 1 to 10 of 10 entries

CDAC
HPC PROFILER Profile Level Node Name Process Id

Application "mpiExp8" Summary Application "mpiExp8" Potential Speed Up
Experiment Name batch_test Potential Speedup If Fully Vectorised 1.43
Application fhome/neerajs/joblnfo/kmeans_mpiicc_03 Potential Speedup If Only FP Arithmetic 1.10
Timestamp 2022-09-05 14:16:50
'
Experiment Type MPI
Machine ssl-cn01 Configuration Summary
Architect 86_64
renectre e run_command 10000 100 100
Micro Architecture SKYLAKE . .
profile_start {unit=s;value=0;}
Model Name Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz . . .)
mpi_command srun --mpi=pmi2 —job-name=mpiExp8 --ntasks= --ntasks-
Cache Size 19712 KB per-node=
Number of Cores 12 omp_num_threads 1
0S Version Linux 3.10.0-862.el7.x86_64 #1 SMP Fri Apr 20 16:44:24
uTc2018)
Number of processes 0 Application "mpiExp8" Execution Summary Exec Ut lon
observed tl me
Number of threads 0 Total Time (s) 25.93 d t I
610 Time in Analyzed Loops (%) 443 etalls
Time in Analyzed Innermost Loops (%) 32.2

Compilation Option Used
Application "mpiExp8" Characterization
Application is bound to User Code Suggested Compilation Options Not Available

Computation - Time spent in running application code,High values are

< C

CDAC
HPC PROFILER

A\ Mot secure | hipsy//profiler.nsmindiain/profileSummary?jname=Dema_lIT_CDAC_Meet

Profile Level Node Name

Application Summary -

Application "Demo_IIT_CDAC_Meet"” Summary

Experiment Name batch_test

Application /home/neerajs/joblnfo/kmeans_-g
Timestamp 2022-12-09 15:57:43

Experiment Type MPI

Machine ssl-cn02

Architecture *86_64

Micro Architecture SKYLAKE

Model Name Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz

Cache Size 19712 KB

Number of Cores 12

QS Version Linux 3.10.0-862.el7.x86_64 #1 SMP Fri Apr 20 16:44:24 UTC 2018
Total no. of Process 8

Application "Demo_|IT_CDAC_Meet" Characterization
Application is bound to User Code

Computation B Time spent in running application code,High values are usually good This is

time e high, Check the CPU performance section, TMAM and vectorization for more
advise
MPI time (Time spent in MPI library call code,High values are usually bad This is very low,

712% This code may benefit from a higher processor count

OMP time Time spent in OMP region,High values are usually bad This is neglibile, focus on
Y improving other section first

10 time Time spent in Filesystem 10,High values are usually bad This is neglibile, focus
0.23%

on improving other section first

Process Id

Application "Demo_|IT_CDAC_Meet" Potential Speed Up

Potential Speedup If Fully Vectorised 4.82

Potential Speedup If Only FP Arithmetic 2.69

Configuration Summary

run_command 10000 100 100

profile_start {unit=5s;value=0;}
mpi_command srun --mpi=pmi2 --job-name=Demo_lIT_CDAC_Meet --ntasks= --ntasks-per-node=

omp_num_threads 1

Application "Demo_|IT_CDAC_Meet" Execution Summary

Total Time 143.75

(s)

Timein

Details about
computation time , MPI
time , OMP time, 10
time
/ohpc/pub/intel_2018Rompilers_and_libraries_2018.3.222/linux/mpi/intelo4/include -
d=c99 -g -0 ./g/kmeans_-g -
L/opt/ohpc/pub/intel_2018/compilers_and_libraries_2018.3.222/linux/mpi/intel64/lib/debug

-L/opt/ohpc/pub/intel_2018/compilers_and_libraries_2018.3.222/linux/mpi/intel64/lib -Klink:
enable-new-dtags -Xlinker -rpath -Xlinker

* 2 QF EF @ + 0

+

CDAC
HPC PROFILER

Profile Level

Node Name

Application "pmi2_16p_testing"” Program Sections

Show| 10 v entries

Coverage Time w.r.t Time Min
Function Name Source Info Walltime (s) - | (s) (TID)

GI__printf fp_|

_mpn_mul_1

__parse_one_specmb

_10_default_xsputn

_1O_file_xsputn

_lO_vfprintf

buffered_vfprintf

hack_digit.13661

main

libc.so.6

libc.so.6

libc.so.6

libc.so.6

libc.so.6

libc.so.6

libc.so.6

libc.so.6

kmeans_-
g-03

NA

NA

NA

NA

NA

NA

NA

kmeans.c:8-
206 |stdlib.h:280-280

kmeans_-g-03 kmeans.c:19-21 main

29 kmeans_-g-03 kmeans.c:18-150 main

30 kmeans_-g-03 kmeans.c:19-21 main

2L

T

11.05

1.24

2.00

6.71

25

3.02

59.68

InBetween 16.07

Innermost 13.16

0.01

0.02

0.07

0.03

0.03

0.61

Innermost 26.48

=LY

0.11
(214856)

0.0
(214856)

0.01
(214856)

0.01
(214856)

0.02
(214856)

0.07
(214856)

0.03
(214858)

0.03
(214858)

0.61
(214856)

Process Id

Suggestions

FMA

Presence of both ADD/SUB and MUL operations.

worka
- Pass
T use
-Trut
For ins

round(s):

to your compiler a micro-architecture specialization option:

axHost or xHost

o change order in which elements are evaluated (using parentheses) in arithmetic expres
tance a + b"c is a valid FMA (MUL then ADD).

However (a+b)" ¢ cannot be translated into an FMA (ADD then MUL).

Source Code

17 -

19 -

33 -

/f Creates an array of random floats. Each number has a value from @ - 1
float* create_rand_nums({const int num_elements) {
float *rand_nums = (float *)malloc(sizeof(float) * num_elements);
assert(rand_nums != NULL);
for {int 1 = 8; 1 < num_elements; i++)} {
rand_nums[i] = (rand() / (float)RAND_MAX);
¥

) return rand_nums; Detection

Hotspot

// Distance**2 between d-vectors pointed to by vl
float dlstancez(const fleat *vl, const float *v2, cnnst int d) {
float dist = 0.9;
[for (int i=e,- icd; i++)
float diff = wi[i] - v2[i];
dist += diff * diff;
} .
return dist;

¥

i -‘sfigr a site to the correct cluster by computing its distances to
/ ach cluster cent
int assign_site(const float* site, float* centroids,
const int k, const int d) {

int best_cluster = @;

float best_dist = distance2(site, centroids, d);

Ffloat* centroid = centroids + d;

for {(int ¢ = 1; ¢ < k; c++, centroid += d) { - e

CDAC
HPC PROFILER

https:/fprofiler.nsmindia.in/index.php .
e

Show

Profile Level

v entries

__printf_fp_| libc.so.6
_ Gl_strlen libc.so.6
__mpn_mul_1 libc.so.6

__parse_one_specmb libc.so.6

_1O_default_ xsputn libc.so.6

_lO_file_xsputn libc.so.6

_lO_vfprintf libc.so.6

buffered_vfprintf libc.so.6

hack_digit.13661 libc.so.6

main kmeans_-g-
o3

29

kmeans_-g-03 kmeans.c:18-150

NA

NA

NA

NA

NA

NA

NA

NA

kmeans.c:8-

206 stdlib.h:280-280

kmeans_-g-03 kmeans.c:18-21

main

main

Node Name

Application “pmi2_16p_testing” Program Sections

12.36

1.14

2.27

1.14

3.18

60.12

Innermost 27.52

InBetween 15.28

Search:

Coverage Time w.r.t Time Min
n Name Source Info Walltime (s) (s) (TID)

0.01

0.02

0.01

0.03

0.61

0.13
(214854)

0.01
(214854)

0.02
(214854)

0.01
(214854)

0.01
(214854)

0.01
(214854)

0.06
(214854)

0.02
(214854)

0.03
(214854)

0.61
(214854)

Process Id

Suggestions

Vectorization_Suggestion

Your function is probably not vectorized.

Only 9% of vector register length is used (average across all SSE/AVX instructions).

By vectorizing your function, you can lower the cost of an iteration from 98.00 to 8.31 cycles (11.
Store and arithmetical SSE/AVX instructions are used in scalar version (process only one data e
Since your execution units are vector units, only a vectorized function can use their full power.

Workaround(s):
- Try another compiler or update/tune your current one
- Make array accesses unit-stride:

* If your function streams arrays of structures (AoS), try to use structures of arrays instead (Sc
for(i) alilx = b[i]x; (slow, non stride 1) => for(i) a.x[i] = b.x[i]; (fast, stride 1)

Source Code

]

[N T I

16
17 -
13
19 -
28
21
22
23
24
25
26
27
28~

#include <stdic.hs
#include <stdlib.h>
#include <mpi.h>

#include <assert.h>

/{ Creates an array of random floats. Each number has a value from @ - 1
float* create_rand_nums({const int num_slements) {
D float “rand_nums = (float *)malloc(sizeocf(float) * num_elements);
assert{rand_nums != WULL};
for (int i = @; 1 < num_elements; 1++) {
rand_nums[i] = {rand() / (float)RAND MAX);

return rand_nums;

¥

/4 Distance**2? between d-vectors pointed to by v1, w2.
float distanceZ{const float #wl, const float *v2, const int d) {
float dist = @.8;
for (int i=8; i<d; i++) {
float diff = vi[i] - v2[i];
dist += diff * diff;

return dist;
i
[/ Assign a si correct cluster by computing its distances to
/i each clus
int assign_: slte(cunst float* site, float* centroids,

The result after implementing suggestions

<« C A MNotsecure | hkitps//profiler.nsmindia.in/profileSummary?jname=retestMPI2 i 6 ® 3 3 = ;
APRILALUUIT TEIESUMEILS SutnanTy APPILUUUNT TELIESUMFILS Fuleniuur opecu vy -
= CDAC
i HPC PROFILER
Experiment Name batch_test Potential Speedup If Fully Vectorised 1.03
Application /home/neerajs/joblnfo/kmeans_-g-03-xHost Potential Speedup If Only FP Arithmetic 1.13

> Application Profile Info

Timestamp
Experiment Type
Machine
Architecture
Micro Architecture
Model Name
Cache Size
Number of Cores

OS5 Version

Number of processes
ohserved

Number of threads
observed

Application "retestMPI2" Characterization
Application is bound to User Code

Computation

time 2B
MPI1 time au
59.7%
OMP time
0
10 time
1.93%

2022-09-05 14:44:06

MPI

ssl-cn01

x86_64

SKYLAKE

Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz
19712 KB

12

Linux 3.10.0-862.el7.x86_64 #1 SMP Fri Apr 20
16:44:24 UTC 2018

0

Time spent in running application code,High values are
usually good This is very low, focus on improving other
section first

Time spent in MPI library call code,High values are
usually bad This is high, Check the MPI breakdown for
improvements

Time spent in OMP region,High values are usually bad
This is neglibile, focus on improving other section first

Time spent in Filesystem 10,High values are usually bad
This is neglibile, focus on improving other section first

Configuration Summary

run_command 10000 100 100

profile_start {unit=s;value=0;}

mpi_command srun --mpi=pmi2 --job-name=retestMPI2 --ntasks= --ntasks-

per-node=

omp_num_threads 1

Application "retestMPI2" Execution Summary

16.13

Total Time
(s)
Time in
Analyzed
Loops (%6)
Time in
Analyzed

Innermost

Compilation kmeans_-g-03-xHost: Intel 18.0.3.222 -

Option Ifopt/ohpc/pub/intel_2018/compilers_and_libraries_2018.3.222/linu>

Used std=c99 -g -03 -xHost -0 ./g/kmeans_-g-0O3-xHost -
L/opt/ohpc/pub/intel_2018/compilers_and_libraries_2018.3.222/linu
-L/opt/ochpc/pub/intel_2018/compilers_and_libraries_2018.3.222/lint
enable-new-dtags -Xlinker -rpath -Xlinker
/opt/ohpc/pub/intel_2018/compilers_and_libraries_2018.3.222/linux
-Klinker -rpath -Xlinker
fopt/ohpc/pub/intel_2018/compilers_and_libraries_2018.3.222/linux
rpath -Xlinker /fopt/intel/mpi-rt/2017.0.0/intel64/lib/debug_mt -Xlink:

THANK YOU |

Feedback form link : bit.ly/hpcprof

