

User Guide

Version 2.5

CAPC2.5 User Guide | C-DAC Bangalore

2

About CAPC

CAPC is innovative software which provides a fast and effective solution for code parallelizing problems

faced by the programmers. It liberates the programmer from the complexity of learning new languages for

programming multi-many-cores and GPUs by automatically converting a sequential C code to a

corresponding parallel code suitable for the target parallel hardware.

CAPC 2.5 has the following sub products:

1. C to OpenMP3.0 – Automatic Parallelizer for multicore CPUs

2. C to OpenCL – Automatic Parallelizer for OpenCL compatible compute device

3. C to OpenMP 4.5 - Automatic Parallelizer for GPUs

4. C to OpenACC – Automatic Parallelizer for OpenACC compatible devices

Features in CAPC 2.5

• Automatically parallelizes the sequential code to the target parallel language without any

inputs/hints from the user

• Support for multiple target Parallel Languages – OpenMP 3.0/OpenCL/OpenMP 4.5/OpenACC

• Single interface for conversion to any parallel language

• Output parallel code is in human readable format that can be further analyzed and optimized

Setting the environment

• Copy the folder CAPC2.5 (from /home/apps/CAPC) to your home directory

$cd /home/ext/apps/capc

$cp -r CAPC 2.5 $HOME ($HOME is the location of your home directory)

• Change the CAPC_HOME location in env.sh to point to the location of CAPC2.5 ($CAPC_HOME is

the location where you have copied CAPC2.5)

$CAPC_HOME=$HOME/CAPC2.5

• Then source the $CAPC_HOME/env.sh file to make it available in the terminal

$source env.sh

• For automatic parallelization of sequential codes to OpenACC/OpenMP 4.5, source the

env_gpu.sh file

$source env_gpu.sh

CAPC2.5 User Guide | C-DAC Bangalore

3

Usage

The command capc can be used along with the appropriate flag for parallelizing the sequential C code to

the desired parallel language as below:

$capc -c2cl <input_C_program> For parallelizing C code to OpenCL code for execution
on OpenCL compatible devices

$capc -c2omp <input_C_program> For parallelizing C/C++ code to OpenMP 3.0 code for
execution on multicore CPUs

$capc -gpu-omp <input_C_program> For parallelizing C/C++ code to OpenMP 4.5 code for
execution on GPUs

$capc -gpu-omp <input_C_program> For parallelizing C/C++ code to OpenACC code for
execution on OpenACC compatible devices

The output files will be generated inside the $CAPC_HOME/outputs folder.

Testing CAPC

• Find sample C/C++ source codes inside the examples directory

• For parallelization to OpenMP 3.0

o Invoke the capc command for converting the C source code to required parallel source

code

$cd $CAPC_HOME/examples/c2omp

$capc –c2omp 3mm.c

o The output files (OpenMP file) will be generated inside the $CAPC/outputs folder.

o You can compile the generated OpenMP code (3mm_c2omp.c) with the following

command

$gcc -fopenmp 3mm_c2omp.c

o To execute the compiled OpenMP3.0 code, you can submit it as a SLURM job script with

the following command. Sample SLURM job script run_cpu.sh is kept inside the outputs

folder for reference.

$sbatch run_cpu.sh

• For parallelization to OpenMP 4.5

o Invoke the capc command for converting the C/C++ source code to required parallel

CAPC2.5 User Guide | C-DAC Bangalore

4

source code

$cd $CAPC_HOME/examples/c2omp4.5

$capc -gpu-omp 3mm.c

o The output files (OpenMP 4.5 file) will be generated inside the $CAPC/outputs folder.

o To compile the generated OpenMP4.5 code (eg. 3mm_gpu-omp.c), you can use the clang

compiler or the gcc compiler.

$clang -fopenmp -fopenmp-targets=nvptx64 3mm_gpu-omp.c

o To execute the compiled OpenMP 4.5 code, you can submit it as a SLURM job script

requiring GPU nodes. Sample SLURM job script slurm_gpu.sh is kept inside the outputs

folder for reference.

$sbatch slurm_gpu.sh

• For parallelization to OpenACC

o Invoke the capc command for converting the C/C++ source code to required parallel

source code

$cd $CAPC_HOME/examples/c2acc

$capc -gpu-acc 3mm.c

o The output files (OpenACC file) will be generated inside the $CAPC/outputs folder.

o To compile the OpenACC code (e.g. 3mm_acc.c), you can use the pgcc compiler

$pgcc -ta=tesla:cc70 -Minfo=all 3mm_gpu-acc.c

o To execute the compiled OpenACC code, you can submit it as a SLURM job script requiring

GPU nodes. Sample SLURM job script slurm_gpu.sh is kept inside the outputs folder for

reference.

$sbatch slurm_gpu.sh

Limitations

• Dynamic array declarations are not accepted

• Arrays should always be mentioned with their subscript values

• Passing array as a function argument is not supported

• Functions used inside the “for loops” other than Math functions are not supported.

