
CDAC HPC Profiler
Abhishek Patil

Outline

• Introduction

• What is Profiling

• Inclusive vs Exclusive profiling

• Sampling profiler

• Instrumenting profiler

• Key Features

• Application Run/Demo

• Screenshot

• Outcome of the experiments

Introduction

• What is Profiling
• Profiling is the measurement of which parts of your application are consuming a particular computational resource of

interest. This could be which methods are using the most CPU time, which lines allocate the most objects, where your
CPU cache misses are coming from, etc.

• Reflection of summary information during execution – time consumed, function calls ,

• Reflects performance behaviour of program entities

functions , loops, basic blocks

• Very good for low cost performance assessment

• Helps to understand performance bottlenecks and hotspots

• Implemented through either
 Sampling

 Measurement

Inclusive Vs Exclusive Profiling

int main()
{

/* takes 100 seconds */

f1(); /* takes 20 seconds */

/* other work */
f2(); /* takes 50 seconds */
f1(); /* takes 20 seconds */
/* other work */
}

• Inclusive time for main - 100 seconds

• Exclusive time for main - 100-20-50-20-10 seconds

Brief info about Sampling

• The most common type of profiler is the sampling profiler.

They work by interrupting the application under test periodically in proportion to the
consumption of the resource we’re interested in.

While the program is interrupted the profiler grabs a snapshot of its current state, which
includes where in the code it is.

After the state is captured the program continues. For the method timing example earlier, a
sampling profiler would interrupt the program after a certain amount of time had elapsed and
capture its state.

It would then aggregate those samples over time to produce a statistical picture of the state of
the application. You could use the percent of samples that contained a method of interest to
calculate how much time was spent in that method (though not the duration of that method).

Void Alpha()
{

Beta();
}

Void Beta()
{

}

30 samples

50 samples

S a m p l i n g b a s e d p r o f i l i n g

Functions Inclusive Exclusive

Alpha 80 30

Beta 50 50

Brief info about Instrumenting

• The first and earliest type are instrumenting profilers.

• They work by instrumenting the program under test in order to collect
information about the resource of interest.

• For example if you wanted to calculate how much time methods were taking to
execute an instrumenting profiler would add instructions to the beginning and
end of each method to capture the current time which could then be used to
reconstruct the duration spent inside each method.

Profiling and
instrument

Actual
execution

I n s t r u m e n t a t i o n b a s e d P r o f i l i n g

T=E*F;
For (I=1;I<N;I++)
{
V[I]=C[I]*B[I];
A[I]=C(2I+4);
}

T=E*F;
I n s t r u m e n t a t i o n c o d e
For (I=1;I<N;I++)
{
V[I]=C[I]*B[I];
A[I]=C(2I+4);
}
I n s t r u m e n t a t i o n c o d e

Flow of Profiling and Analysis

Application
execution

Profiling

Analysis Suggestions

Optimization

What can a HPC Profiler tell us

• Processes wise analysis – threads, user functions, loops

and blocks

• Memory usage

• Timing information

• Parallel calls (and other library calls)

• Other detailed information like slow sections in the source

code , vectorization analyses, etc.

HPC Profiler – Key features

Index page :-

Application summary page :-

Execution
time

details

Details about
computation time , MPI

time , OMP time , IO
time

Process level info page :-

Hotspot
Detection

The result after implementing suggestions

THANK YOU !

Feedback form link : bit.ly/hpcprof

