Parallel Algorithms

Sathish Vadhiyar

COLLECTIVE ALGORITHMS

Collective Communications -
Barrier

MPI_BARRIER(comm)

A return from barrier in one process tells the process
that the other processes have entered the barrier.

Barrier Implementation

| Butterﬂy Barrler By Eugene Brooks II

O In round k, i synchronizes &ith i 2k pairwise.

[0 Worstcase - 2logP pairwise synchronizations by a
processor

© ©® 2@ & ® O,

Stage 0 — ——— ——— ———
Stage 1

Stage 2

Barrier Algorithms

[0 Dissemination barrier by Hensgen, Finkel and Manser
O In round k, i signals (i+2X)modP
0 No pairwise synchronization
[0 Atmost log(next power of 2 > P) on critical path
irrespective of P
©@ © @ ®® 6 ©@ ®9© W O
Stage 0 = > = > > >— > > > > >
Stage 1
Stage 2
Stage 3
= 1 more

round

Barrier Algorithms

[0 MPICH Barrier (pairwise exchange with recursive doubling)
[0 Same as butterfly barrier.
O sz nodes not equal to power, find the nearest power of 2, i.e. m =
n
[0 The last surfeit nodes, i.e. surfeit = size — m, initially send
messages to the first surfeit number of nodes
[0 The first m nodes then perform butterfly barrier
O FmaIIy, the first surfeit nodes send messages to the last surfeit
nodes
Stage first < < -
Stage 0 — - - -
Stage 1
Stage 2

Stage last > >

AlltoAll

he naive implementation

for all procs. i in order{
if i # my proc., then send to i and recv from i

}
MPICH implementation - similar to
naive, but doesn’t do it in order

for all procs. i in order{
dest = (my_proc+i)modP
src = (myproc-i+P)modP
send to dest and recv from src

s

PARALLEL SORTING

Introduction

[he input sequence of size N is
distributed across P processors

[he output is such that elements in P,
is greater than elements in P,_; and
lesser than elements in P,

Parallel Sorting by Regular
Sampling (PSRS)

1. Each processor sorts its local data

2. Each processor selects a sample vector
of size p-1; kth element is (n/p *
(k+1)/p)

3. Samples are sent and merge-sorted on
processor O

4. Processor O defines a vector of p-1
splitters starting from p/2 element; i.e.,
kth element is p(k+1/2); broadcasts to

the other processors

Example

Phase 1

FProcessor | Frocessor 2 FProcessar 3
| 16| l| 17| 24| 33‘ 38| 30‘ l| U| 27| 9| 35| | 34‘ 23| 19‘ 18| '11‘ :"| 21| 13| 8| 35‘ 13| 29‘ | 5| 3| 4-| 14| 33| 15| 32 10‘ 36| 3l| 3€|| 5‘
Sorted
local hlocks | O| 11 2 9| 16‘ 17| 24| 25| 27| 28| 30| 33 | ?‘ 3| 11‘ 12| 13‘ 13| 19(21 23|29 34 35‘ | 3| 4| 5| 6| lﬂ| 14| 15| 20‘ 22| 25| 3-1| 32‘
Lacal

Regular Samples

Phase 2

Processor |

Cathered Regular Sample | i} ‘ 16| 27 | 7 | 13| 23] 3 | 10| 22
Sorted Regudar Sample | 0 ‘ 3 | 7 ‘ lO| 13 | 16| 22 | 23‘ 27 |

PSRS

5. Each processor sends local data to
correct destination processors based on
splitters; all-to-all exchange

6. Each processor merges the data chunk it
receives

Step 5

Each processor finds where each of the
p-1 pivots divides its list, using a binary
search

i.e., finds the index of the largest
element number larger than the jth pivot

At this point, each processor has p
sorted sublists with the property that
each element in sublist i is greater than
each element in sublist i-1 in any

processor

Step 6

Each processor i performs a p-way
merge-sort to merge the ith sublists of
p processors

Example Continued

FPivots 10(22 ‘

Phase 3
Processor {

Formed partitions

| o] 1 25| 27| 28] 30 | 7| 8] [11]12] 13 18] 10 21 29| 34 35| 4| s| 6] 10] |14]15]20[22| |26

Processor 2 Processor 3

-

2| o] |16[17] |24

33 23 3 31 32‘

Phase 4

Re-assigned partitions

pomsar | o] 1] 2[9] From Proc. 1 | 16] 17] From Proc. 1 | 24] 25] 27| 28] 30 33]
FromPrc 2 | 7| s Bromsar | 11] 12] 13] 18] 19] 21 From Proc. 2
FromProc.3 | 3| 4] 5| 6] 10| From Proc. 5 | 14] 15] 20] 22] Emmself | 26
Final merged partitions 11 keys 12keys 13 keys
| of 1] 2| 3| 4] 5| 6] 7] 5] o] 10 | 1] 12] 13] 14] 15] 16] 17] 18] 19{ 20| 21 | 23] 24| 25 26 27| 28] 29| 30| 31| 32| 33| 34] 35|

[10l [5]

22

Analysis

N

O

The first phase of local sorting takes
O((n/p)log(n/p))

2nd phase:

B Sorting p(p-1) elements in processor O - O(p?logp?)

B Each processor performs p-1 binary searches of n/p
elements - plog(n/p)

3rd phase: Each processor merges (p-1) sublists

B Size of data merged by any processor is ho more than
2n/p (proof)

B Complexity of this merge sort 2(n/p)logp
Summing up: O((n/p)logn)

Analysis

1s* phase - no communication

2"d phase - p(p-1) data collected; p-1
data broadcast

3rd phase: Each processor sends (p-1)
sublists to other p-1 processors;
processors work on the sublists
independently

Graph Algorithms

Graph Traversal

Graph search plays an important role in
analyzing large data sets

Relationship between data objects
represented in the form of graphs

Breadth first search used in finding
shortest path or sets of paths

Parallel BFS
Level-synchronized algorithm

B

Proceeds level-by-level starting with the source
vertex

Level of a vertex - its graph distance from the
source

Also, called frontier-based algorithm

The parallel processes process a level, synchronize
at the end of the level, before moving to the next
level - Bulk Synchronous Parallelism (BSP) model

How to decompose the graph (vertices, edges and
adjacency matrix) among processors?

Distributed BFS with 1D
Partitioning

Each vertex and edges emanating from it
are owned by one processor
1-D partitioning of the adjacency matrix

A
A

Edges emanating from vertex v is its
edge list = list of vertex indices in row v
of adjacency matrix A

1-D Partitioning

At each level, each processor owns a set F -
set of frontier vertices owned by the
processor

Edge lists of vertices in F are merged to
form a set of neighboring vertices, N

Some vertices of N owned by the same
processor, while others owned by other
processors

Messages are sent to those processors to
d 4 ices to their fronti £
the next level

Algorithm 1 Distributed Breadth-First Expansion with 1D Partitioning

1: Initialize L, _(v) = {
2: for [=0 to oo do

o]

ke
o=

14:
15:
16:

QRS ew

p—
e

0, v = v, where v, 18 a source
~c. otherwise

F «— {v| L, (v) =1}, the set of local vertices with level [
if ' = () for all processors then

Terminate main loop
end if
N «— {neighbors of vertices in I’ (not necessarily local) }
for all processors g do

N, « {vertices in N owned by processor ¢}

Send N, to processor g

Receive ﬁq from processor g L,..(v) - level of v, i.e,
end for graph distance from
N U, N, (The N, may overlap) SOUIceVs
for v € N and L,_(v) = oo do

Ly, (v) —1+1
end for

17: end for

Parallel Depth First Search

Easy to parallelize

Left subtree can be searched in parallel
with the right subtree

Statically assign a node to a processor -
the whole subtree rooted at that node
can be searched independently.

Maintaining Search Space

Each processor searches the space
depth-first

Unexplored states saved as stack; each
processor maintains its own local stack

Initially, the entire search space
assigned to one processor

The stack is then divided and
distributed to processors

Termination Detection

As processors search independently, how
will they know when to terminate the
program?

Dijikstra's Token Termination Detection
Algorithm

B Based on passing of a token in a logical ring; PO
initiates a foken when idle; A processor holds a
token until it has completed its work, and then
passes to the next processor; when PO receives
again, then all processors have completed

Tree Based Termination
Detection

B
Ll
L

I

Uses weights
Initially processor O has weight 1

When a processor transfers work to another
processor, the weights are halved in both the
processors

When a processor finishes, weights are returned
Termination is when processor O gets back 1

Goes with the DFS algorithm; No separate
communication steps

Combinatorial algorithms - APSP

All-Pairs Shortest Paths
Floyd’s Algorithm

Consider a subset S = {vl v2,.. vk} of
vertices for some k <= n

Consider finding shortest path between
vi and v

Consider all paths from vi to vj whose
infermediate vertices belong to the set
S. Let p; ;%) be the minimum-weight path

among them with weight di,J-(k)

All-Pairs Shortest Paths
Floyd’s Algorithm

If vk is not in the shortest path, then
Pij(k) = pij(k-l)
If vk is in the shortest path, then the

path is broken into two parts - from vi o
vk, and from vk to vj

Sod (k) mm{d (k-1) d (k1)+d (kl)}

The IengTh of The shor"resf pa’rh from Vi
to vj is given by d; (.

InganecalfsaluimanML

Parallel Formulation
2-D Block Mapping

Processors laid in a 2D mesh

During kth iteration, each process Pij
needs certain segments of the kth row
and kth column of the D(k-1) matrix

For d, . (: following are needed

B d,, &V (from a process along the same
process row)

B d, D (from a process along the same
process column)

Parallel Formulation
2D Block Mapping

During kth iteration, each of the root(p)
processes containing part of the kth row
sends it to root(p)-1 in same column;

Similarly for the same row

