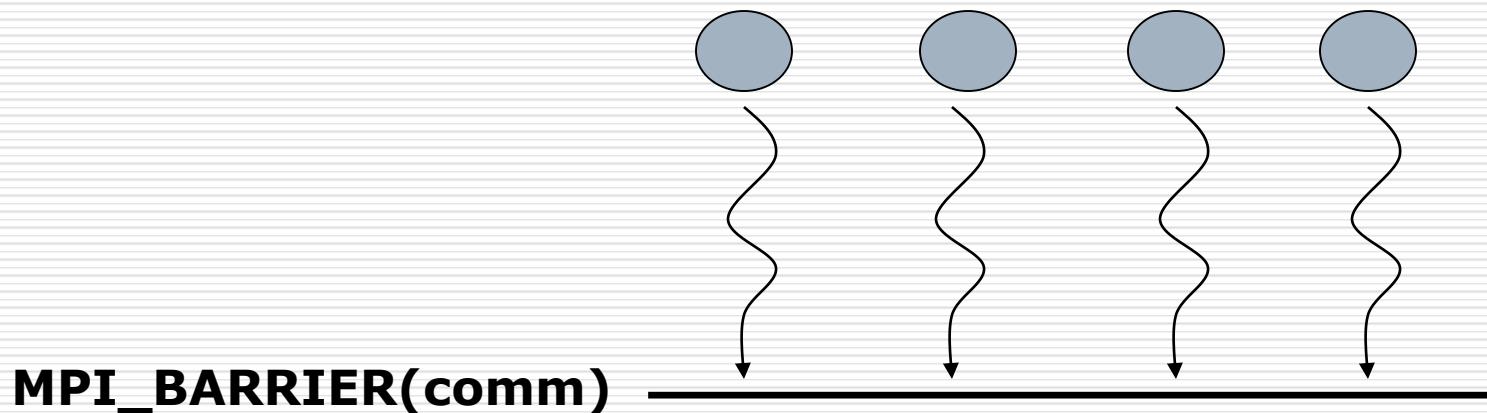


Parallel Algorithms

Sathish Vadhiyar

COLLECTIVE ALGORITHMS

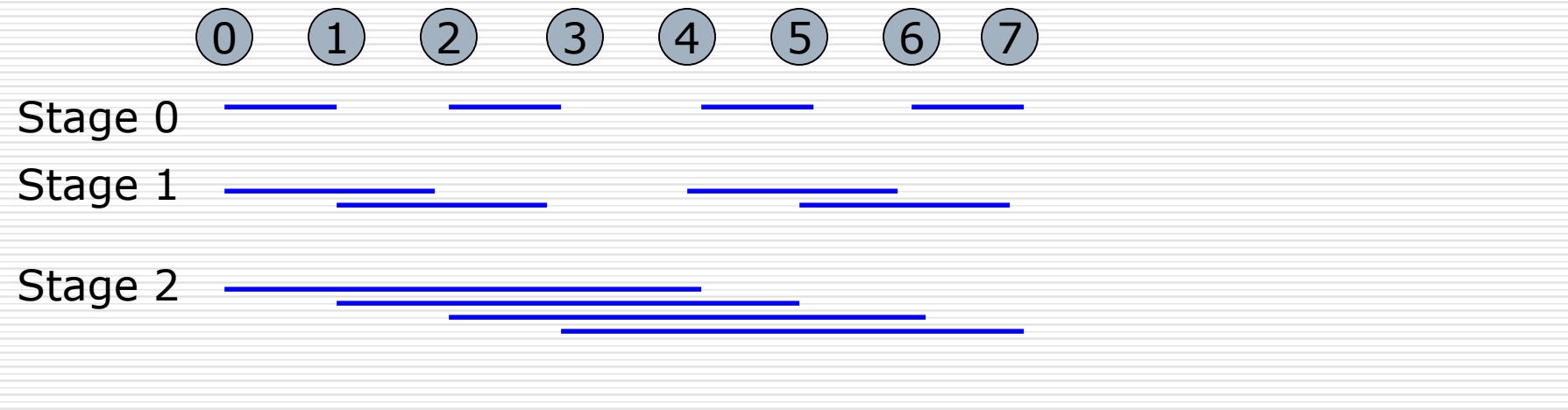
Collective Communications - Barrier



A return from barrier in one process tells the process that the other processes have **entered** the barrier.

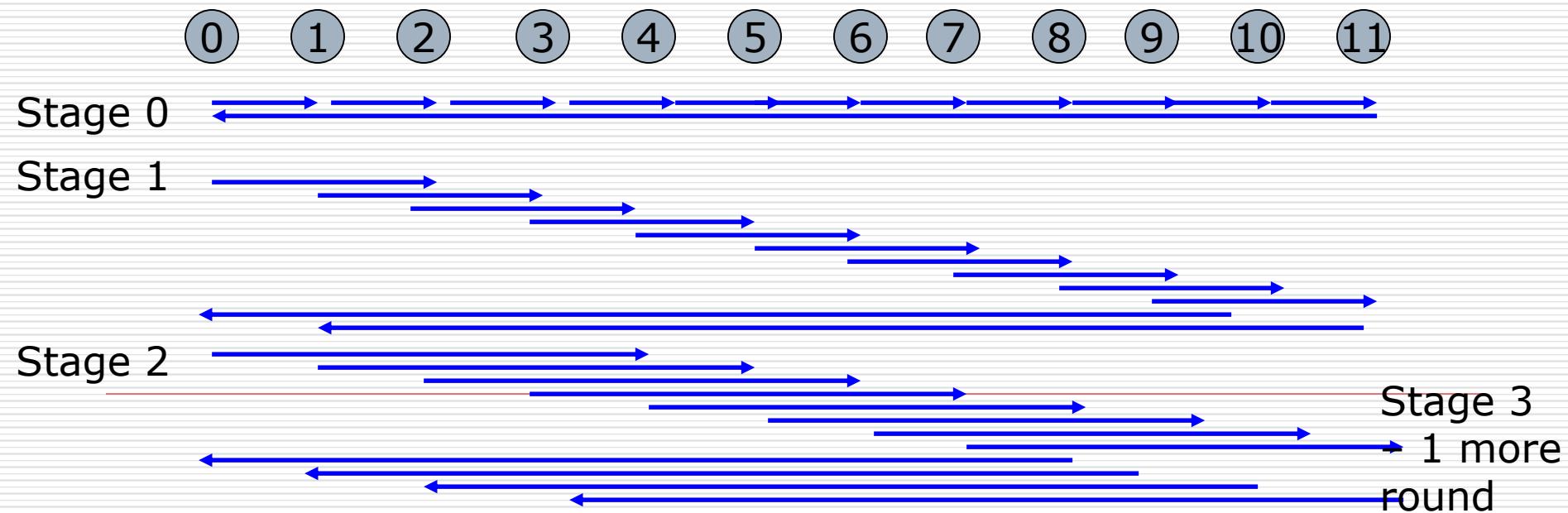
Barrier Implementation

- ❑ **Butterfly barrier** by Eugene Brooks II
- ❑ In round k , i synchronizes with $i + 2^k$ pairwise.
- ❑ Worstcase – $2\log P$ pairwise synchronizations by a processor



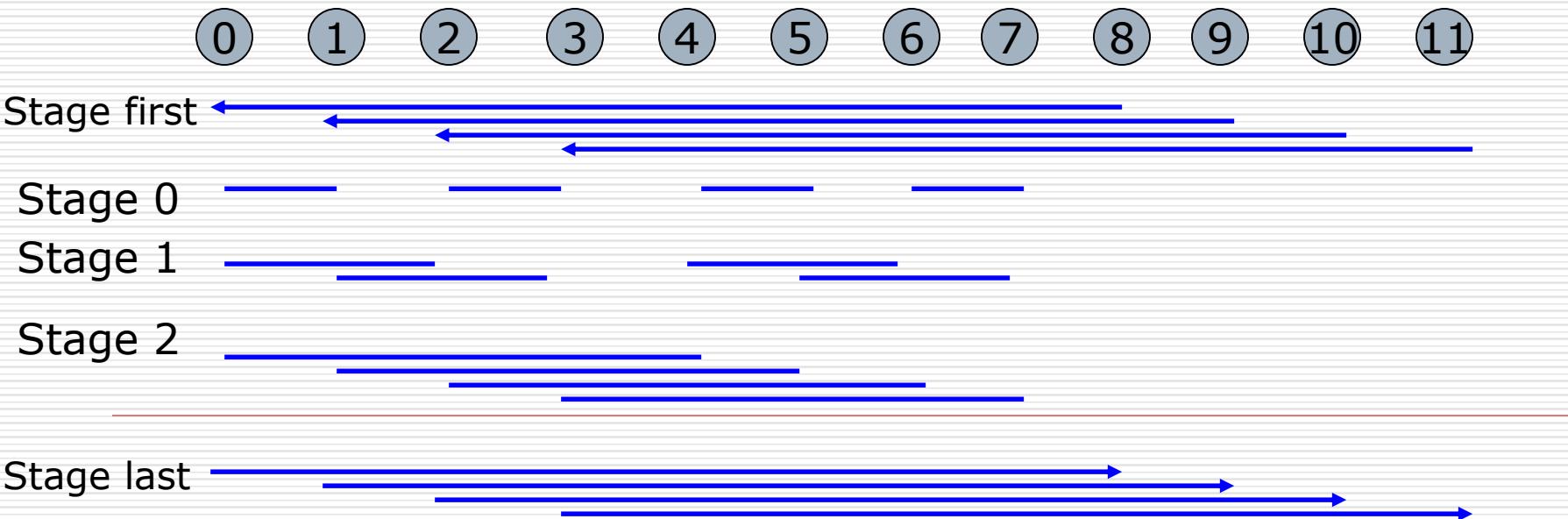
Barrier Algorithms

- ☐ **Dissemination barrier** by Hensgen, Finkel and Manser
- ☐ In round k , i signals $(i+2^k) \bmod P$
- ☐ No pairwise synchronization
- ☐ Atmost $\log(\text{next power of 2} > P)$ on critical path irrespective of P



Barrier Algorithms

- **MPICH Barrier (pairwise exchange with recursive doubling)**
- Same as butterfly barrier.
- If nodes not equal to power, find the nearest power of 2, i.e. $m = 2^n$
- The last surfeit nodes, i.e. surfeit = size - m, initially send messages to the first surfeit number of nodes
- The first m nodes then perform butterfly barrier
- Finally, the first surfeit nodes send messages to the last surfeit nodes



AlltoAll

□ The naive implementation

```
for all procs. i in order{  
    if i # my proc., then send to i and recv from i  
}
```

□ MPICH implementation – similar to naïve, but doesn't do it in order

```
for all procs. i in order{  
    dest = (my_proc+i)modP  
    src = (myproc-i+P)modP  
    send to dest and recv from src  
}
```

PARALLEL SORTING

Introduction

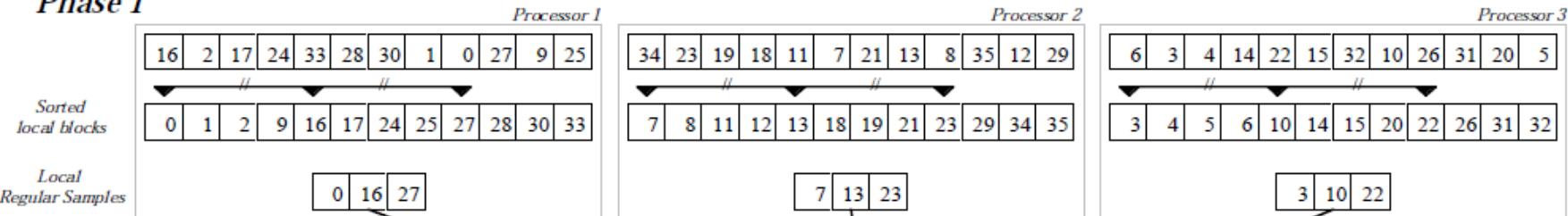
- The input sequence of size N is distributed across P processors
- The output is such that elements in P_i is greater than elements in P_{i-1} and lesser than elements in P_{i+1}

Parallel Sorting by Regular Sampling (PSRS)

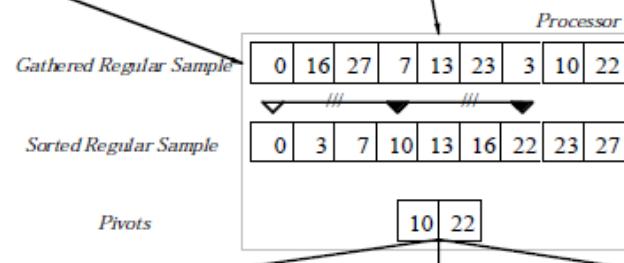
1. Each processor sorts its local data
2. Each processor selects a sample vector of size $p-1$; k th element is $(n/p * (k+1)/p)$
3. Samples are sent and merge-sorted on processor 0
4. Processor 0 defines a vector of $p-1$ splitters starting from $p/2$ element; i.e., k th element is $p(k+1/2)$; broadcasts to the other processors

Example

Phase 1



Phase 2



PSRS

5. Each processor sends local data to correct destination processors based on splitters; all-to-all exchange
6. Each processor merges the data chunk it receives

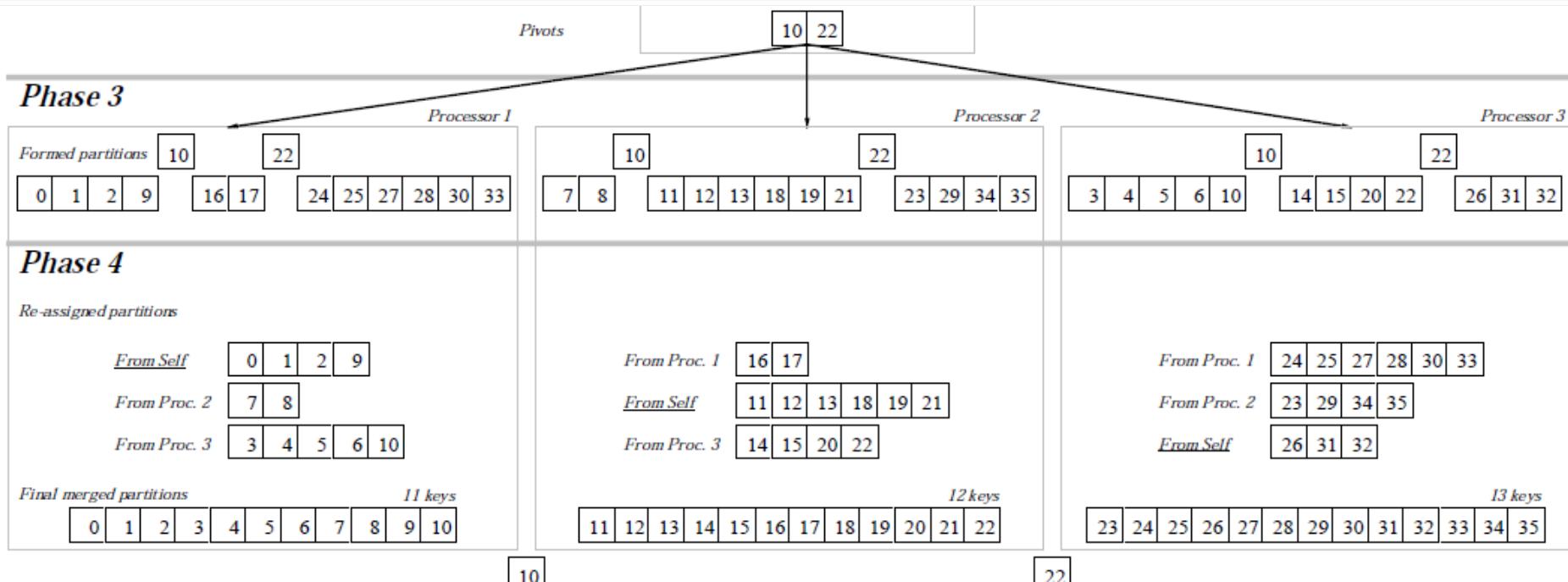
Step 5

- Each processor finds where each of the $p-1$ pivots divides its list, using a binary search
- i.e., finds the index of the largest element number larger than the j th pivot
- At this point, each processor has p sorted sublists with the property that each element in sublist i is greater than each element in sublist $i-1$ in any processor

Step 6

- Each processor i performs a p -way merge-sort to merge the i th sublists of p processors

Example Continued



Analysis

- The first phase of local sorting takes $O((n/p)\log(n/p))$
- 2nd phase:
 - Sorting $p(p-1)$ elements in processor 0 - $O(p^2\log p^2)$
 - Each processor performs $p-1$ binary searches of n/p elements - $p\log(n/p)$
- 3rd phase: Each processor merges $(p-1)$ sublists
 - Size of data merged by any processor is no more than $2n/p$ (proof)
 - Complexity of this merge sort $2(n/p)\log p$
- Summing up: $O((n/p)\log n)$

Analysis

- 1st phase - no communication
- 2nd phase - $p(p-1)$ data collected; $p-1$ data broadcast
- 3rd phase: Each processor sends $(p-1)$ sublists to other $p-1$ processors; processors work on the sublists independently

□ Graph Algorithms

Graph Traversal

- Graph search plays an important role in analyzing large data sets
- Relationship between data objects represented in the form of graphs
- Breadth first search used in finding shortest path or sets of paths

Parallel BFS

Level-synchronized algorithm

- Proceeds level-by-level starting with the source vertex
- Level of a vertex - its graph distance from the source
- Also, called **frontier-based** algorithm
- The parallel processes process a level, synchronize at the end of the level, before moving to the next level - Bulk Synchronous Parallelism (**BSP**) model
- How to decompose the graph (vertices, edges and adjacency matrix) among processors?

Distributed BFS with 1D Partitioning

- Each vertex and edges emanating from it are owned by one processor
- 1-D partitioning of the adjacency matrix

$$\left[\begin{array}{c} A_1 \\ \hline A_2 \\ \hline \vdots \\ \hline A_P \end{array} \right]$$

- Edges emanating from vertex v is its edge list = list of vertex indices in row v of adjacency matrix A

1-D Partitioning

- At each level, each processor owns a set F - set of frontier vertices owned by the processor
- Edge lists of vertices in F are merged to form a set of neighboring vertices, N
- Some vertices of N owned by the same processor, while others owned by other processors
- Messages are sent to those processors to add these vertices to their frontier set for the next level

Algorithm 1 Distributed Breadth-First Expansion with 1D Partitioning

```
1: Initialize  $L_{v_s}(v) = \begin{cases} 0, & v = v_s, \text{ where } v_s \text{ is a source} \\ \infty, & \text{otherwise} \end{cases}$ 
2: for  $l = 0$  to  $\infty$  do
3:    $F \leftarrow \{v \mid L_{v_s}(v) = l\}$ , the set of local vertices with level  $l$ 
4:   if  $F = \emptyset$  for all processors then
5:     Terminate main loop
6:   end if
7:    $N \leftarrow \{\text{neighbors of vertices in } F \text{ (not necessarily local)}\}$ 
8:   for all processors  $q$  do
9:      $N_q \leftarrow \{\text{vertices in } N \text{ owned by processor } q\}$ 
10:    Send  $N_q$  to processor  $q$ 
11:    Receive  $\bar{N}_q$  from processor  $q$             $L_{v_s}(v)$  – level of  $v$ , i.e.,
12:   end for                                graph distance from
13:    $\bar{N} \leftarrow \bigcup_q \bar{N}_q$    (The  $\bar{N}_q$  may overlap)   source  $v_s$ 
14:   for  $v \in \bar{N}$  and  $L_{v_s}(v) = \infty$  do
15:      $L_{v_s}(v) \leftarrow l + 1$ 
16:   end for
17: end for
```

Parallel Depth First Search

- Easy to parallelize
- Left subtree can be searched in parallel with the right subtree
- Statically assign a node to a processor - the whole subtree rooted at that node can be searched independently.

Maintaining Search Space

- Each processor searches the space depth-first
- Unexplored states saved as stack; each processor maintains its own local stack
- Initially, the entire search space assigned to one processor
- The stack is then divided and distributed to processors

Termination Detection

- As processors search independently, how will they know when to terminate the program?
- Dijkstra's Token Termination Detection Algorithm
 - Based on passing of a token in a logical ring; P0 initiates a token when idle; A processor holds a token until it has completed its work, and then passes to the next processor; when P0 receives again, then all processors have completed

Tree Based Termination Detection

- Uses weights
- Initially processor 0 has weight 1
- When a processor transfers work to another processor, the weights are halved in both the processors
- When a processor finishes, weights are returned
- Termination is when processor 0 gets back 1
- Goes with the DFS algorithm; No separate communication steps

□ Combinatorial algorithms - APSP

All-Pairs Shortest Paths

Floyd's Algorithm

- Consider a subset $S = \{v_1, v_2, \dots, v_k\}$ of vertices for some $k \leq n$
- Consider finding shortest path between v_i and v_j
- Consider all paths from v_i to v_j whose intermediate vertices belong to the set S ; Let $p_{i,j}^{(k)}$ be the minimum-weight path among them with weight $d_{i,j}^{(k)}$

All-Pairs Shortest Paths

Floyd's Algorithm

- If v_k is not in the shortest path, then
$$p_{i,j}^{(k)} = p_{i,j}^{(k-1)}$$
- If v_k is in the shortest path, then the path is broken into two parts - from v_i to v_k , and from v_k to v_j
- So $d_{i,j}^{(k)} = \min\{d_{i,j}^{(k-1)}, d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)}\}$
- The length of the shortest path from v_i to v_j is given by $d_{i,j}^{(n)}$.
- In general, solution is a matrix $D^{(n)}$

Parallel Formulation

2-D Block Mapping

- Processors laid in a 2D mesh
- During k th iteration, each process $P_{i,j}$ needs certain segments of the k th row and k th column of the $D(k-1)$ matrix
- For $d_{l,r}^{(k)}$: following are needed
 - $d_{l,k}^{(k-1)}$ (from a process along the same process row)
 - $d_{k,r}^{(k-1)}$ (from a process along the same process column)

Parallel Formulation

2D Block Mapping

- During k th iteration, each of the $\text{root}(p)$ processes containing part of the k th row sends it to $\text{root}(p)-1$ in same column;
- Similarly for the same row
