
Parallel Algorithms

Sathish Vadhiyar

COLLECTIVE ALGORITHMS

Collective Communications -
Barrier

MPI_BARRIER(comm)

A return from barrier in one process tells the process
that the other processes have entered the barrier.

Barrier Implementation
 Butterfly barrier by Eugene Brooks II

 In round k, i synchronizes with i 2k pairwise.

 Worstcase – 2logP pairwise synchronizations by a
processor

+

0 1 2 3 4 5 6 7

Stage 0

Stage 1

Stage 2

Barrier Algorithms

 Dissemination barrier by Hensgen, Finkel and Manser

 In round k, i signals (i+2k)modP

 No pairwise synchronization

 Atmost log(next power of 2 > P) on critical path
irrespective of P

0 1 2 3 4 5 6 7 8 9 10 11

Stage 0

Stage 1

Stage 2
Stage 3
– 1 more
round

Barrier Algorithms

 MPICH Barrier (pairwise exchange with recursive doubling)
 Same as butterfly barrier.
 If nodes not equal to power, find the nearest power of 2, i.e. m =

2n

 The last surfeit nodes, i.e. surfeit = size – m, initially send
messages to the first surfeit number of nodes

 The first m nodes then perform butterfly barrier
 Finally, the first surfeit nodes send messages to the last surfeit

nodes

0 1 2 3 4 5 6 7 8 9 10 11

Stage 0

Stage 1

Stage 2

Stage first

Stage last

AlltoAll

 The naive implementation

for all procs. i in order{

if i # my proc., then send to i and recv from i

}

 MPICH implementation – similar to
naïve, but doesn’t do it in order

for all procs. i in order{

dest = (my_proc+i)modP

src = (myproc-i+P)modP

send to dest and recv from src

}

PARALLEL SORTING

Introduction

 The input sequence of size N is
distributed across P processors

 The output is such that elements in Pi

is greater than elements in Pi-1 and
lesser than elements in Pi+1

Parallel Sorting by Regular
Sampling (PSRS)

1. Each processor sorts its local data

2. Each processor selects a sample vector
of size p-1; kth element is (n/p *
(k+1)/p)

3. Samples are sent and merge-sorted on
processor 0

4. Processor 0 defines a vector of p-1
splitters starting from p/2 element; i.e.,
kth element is p(k+1/2); broadcasts to
the other processors

Example

PSRS

5. Each processor sends local data to
correct destination processors based on
splitters; all-to-all exchange

6. Each processor merges the data chunk it
receives

Step 5

 Each processor finds where each of the
p-1 pivots divides its list, using a binary
search

 i.e., finds the index of the largest
element number larger than the jth pivot

 At this point, each processor has p
sorted sublists with the property that
each element in sublist i is greater than
each element in sublist i-1 in any
processor

Step 6

 Each processor i performs a p-way
merge-sort to merge the ith sublists of
p processors

Example Continued

Analysis

 The first phase of local sorting takes
O((n/p)log(n/p))

 2nd phase:
 Sorting p(p-1) elements in processor 0 – O(p2logp2)

 Each processor performs p-1 binary searches of n/p
elements – plog(n/p)

 3rd phase: Each processor merges (p-1) sublists
 Size of data merged by any processor is no more than

2n/p (proof)

 Complexity of this merge sort 2(n/p)logp

 Summing up: O((n/p)logn)

Analysis

 1st phase – no communication

 2nd phase – p(p-1) data collected; p-1
data broadcast

 3rd phase: Each processor sends (p-1)
sublists to other p-1 processors;
processors work on the sublists
independently

 Graph Algorithms

Graph Traversal

 Graph search plays an important role in
analyzing large data sets

 Relationship between data objects
represented in the form of graphs

 Breadth first search used in finding
shortest path or sets of paths

Parallel BFS
Level-synchronized algorithm

 Proceeds level-by-level starting with the source
vertex

 Level of a vertex – its graph distance from the
source

 Also, called frontier-based algorithm

 The parallel processes process a level, synchronize
at the end of the level, before moving to the next
level – Bulk Synchronous Parallelism (BSP) model

 How to decompose the graph (vertices, edges and
adjacency matrix) among processors?

Distributed BFS with 1D
Partitioning

 Each vertex and edges emanating from it
are owned by one processor

 1-D partitioning of the adjacency matrix

 Edges emanating from vertex v is its
edge list = list of vertex indices in row v
of adjacency matrix A

1-D Partitioning

 At each level, each processor owns a set F –
set of frontier vertices owned by the
processor

 Edge lists of vertices in F are merged to
form a set of neighboring vertices, N

 Some vertices of N owned by the same
processor, while others owned by other
processors

 Messages are sent to those processors to
add these vertices to their frontier set for
the next level

Lvs(v) – level of v, i.e,
graph distance from
source vs

Parallel Depth First Search

 Easy to parallelize

 Left subtree can be searched in parallel
with the right subtree

 Statically assign a node to a processor –
the whole subtree rooted at that node
can be searched independently.

Maintaining Search Space

 Each processor searches the space
depth-first

 Unexplored states saved as stack; each
processor maintains its own local stack

 Initially, the entire search space
assigned to one processor

 The stack is then divided and
distributed to processors

Termination Detection

 As processors search independently, how
will they know when to terminate the
program?

 Dijikstra’s Token Termination Detection
Algorithm
 Based on passing of a token in a logical ring; P0

initiates a token when idle; A processor holds a
token until it has completed its work, and then
passes to the next processor; when P0 receives
again, then all processors have completed

Tree Based Termination
Detection

 Uses weights

 Initially processor 0 has weight 1

 When a processor transfers work to another
processor, the weights are halved in both the
processors

 When a processor finishes, weights are returned

 Termination is when processor 0 gets back 1

 Goes with the DFS algorithm; No separate
communication steps

 Combinatorial algorithms - APSP

All-Pairs Shortest Paths
Floyd’s Algorithm

 Consider a subset S = {v1,v2,…,vk} of
vertices for some k <= n

 Consider finding shortest path between
vi and vj

 Consider all paths from vi to vj whose
intermediate vertices belong to the set
S; Let pi,j

(k) be the minimum-weight path
among them with weight di,j

(k)

All-Pairs Shortest Paths
Floyd’s Algorithm

 If vk is not in the shortest path, then
pi,j

(k) = pi,j
(k-1)

 If vk is in the shortest path, then the
path is broken into two parts – from vi to
vk, and from vk to vj

 So di,j
(k) = min{di,j

(k-1) , di,k
(k-1) + dk,j

(k-1) }

 The length of the shortest path from vi
to vj is given by di,j

(n).

 In general, solution is a matrix D(n)

Parallel Formulation
2-D Block Mapping

 Processors laid in a 2D mesh

 During kth iteration, each process Pi,j
needs certain segments of the kth row
and kth column of the D(k-1) matrix

 For dl,r
(k): following are needed

 dl,k
(k-1) (from a process along the same

process row)

 dk,r
(k-1) (from a process along the same

process column)

Parallel Formulation
2D Block Mapping

 During kth iteration, each of the root(p)
processes containing part of the kth row
sends it to root(p)-1 in same column;

 Similarly for the same row

