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COLLECTIVE ALGORITHMS



Collective Communications -
Barrier

MPI_BARRIER(comm)

A return from barrier in one process tells the process 
that the other processes have entered the barrier.



Barrier Implementation
 Butterfly barrier by Eugene Brooks II

 In round k, i synchronizes with i   2k pairwise.

 Worstcase – 2logP pairwise synchronizations by a 
processor
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Barrier Algorithms

 Dissemination barrier by Hensgen, Finkel and Manser

 In round k, i signals (i+2k)modP

 No pairwise synchronization

 Atmost log(next power of 2 > P) on critical path 
irrespective of P
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Barrier Algorithms

 MPICH Barrier (pairwise exchange with recursive doubling)
 Same as butterfly barrier.
 If nodes not equal to power, find the nearest power of 2, i.e. m = 

2n

 The last surfeit nodes, i.e. surfeit = size – m, initially send 
messages to the first surfeit number of nodes

 The first m nodes then perform butterfly barrier
 Finally, the first surfeit nodes send messages to the last surfeit 

nodes
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AlltoAll

 The naive implementation

for all procs. i in order{

if i # my proc., then send to i and recv from i

}

 MPICH implementation – similar to 
naïve, but doesn’t do it in order

for all procs. i in order{

dest = (my_proc+i)modP

src = (myproc-i+P)modP

send to dest and recv from src

}



PARALLEL SORTING



Introduction

 The input sequence of size N is 
distributed across P processors

 The output is such that elements in Pi

is greater than elements in Pi-1 and 
lesser than elements in Pi+1



Parallel Sorting by Regular 
Sampling (PSRS)

1. Each processor sorts its local data

2. Each processor selects a sample vector 
of size p-1; kth element is  (n/p * 
(k+1)/p)

3. Samples are sent and merge-sorted on 
processor 0

4. Processor 0 defines a vector of p-1 
splitters starting from p/2 element; i.e., 
kth element is p(k+1/2); broadcasts to 
the other processors



Example



PSRS

5. Each processor sends local data to 
correct destination processors based on 
splitters; all-to-all exchange

6. Each processor merges the data chunk it 
receives



Step 5

 Each processor finds where each of the 
p-1 pivots divides its list, using a binary 
search

 i.e., finds the index of the largest 
element number larger than the jth pivot

 At this point, each processor has p 
sorted sublists with the property that 
each element in sublist i is greater than 
each element in sublist i-1 in any 
processor



Step 6

 Each processor i performs a p-way 
merge-sort to merge the ith sublists of 
p processors



Example Continued



Analysis

 The first phase of local sorting takes 
O((n/p)log(n/p))

 2nd phase:
 Sorting p(p-1) elements in processor 0 – O(p2logp2)

 Each processor performs p-1 binary searches of n/p 
elements – plog(n/p)

 3rd phase: Each processor merges (p-1) sublists
 Size of data merged by any processor is no more than 

2n/p (proof)

 Complexity of this merge sort 2(n/p)logp

 Summing up: O((n/p)logn)



Analysis

 1st phase – no communication

 2nd phase – p(p-1) data collected; p-1 
data broadcast

 3rd phase: Each processor sends (p-1) 
sublists to other p-1 processors; 
processors work on the sublists 
independently



 Graph Algorithms



Graph Traversal

 Graph search plays an important role in 
analyzing large data sets

 Relationship between data objects 
represented in the form of graphs

 Breadth first search used in finding 
shortest path or sets of paths



Parallel BFS
Level-synchronized algorithm

 Proceeds level-by-level starting with the source 
vertex

 Level of a vertex – its graph distance from the 
source

 Also, called frontier-based algorithm

 The parallel processes process a level, synchronize 
at the end of the level, before moving to the next 
level – Bulk Synchronous Parallelism (BSP) model

 How to decompose the graph (vertices, edges and 
adjacency matrix) among processors?



Distributed BFS with 1D 
Partitioning

 Each vertex and edges emanating from it 
are owned by one processor

 1-D partitioning of the adjacency matrix

 Edges emanating from vertex v is its 
edge list = list of vertex indices in row v 
of adjacency matrix A



1-D Partitioning

 At each level, each processor owns a set F –
set of frontier vertices owned by the 
processor

 Edge lists of vertices in F are merged to 
form a set of neighboring vertices, N

 Some vertices of N owned by the same 
processor, while others owned by other 
processors

 Messages are sent to those processors to 
add these vertices to their frontier set for 
the next level



Lvs(v) – level of v, i.e, 
graph distance from 
source vs



Parallel Depth First Search

 Easy to parallelize

 Left subtree can be searched in parallel 
with the right subtree

 Statically assign a node to a processor –
the whole subtree rooted at that node 
can be searched independently.



Maintaining Search Space

 Each processor searches the space 
depth-first

 Unexplored states saved as stack; each 
processor maintains its own local stack

 Initially, the entire search space 
assigned to one processor

 The stack is then divided and 
distributed to processors



Termination Detection

 As processors search independently, how 
will they know when to terminate the 
program?

 Dijikstra’s Token Termination Detection 
Algorithm
 Based on passing of a token in a logical ring; P0 

initiates a token when idle; A processor holds a 
token until it has completed its work, and then 
passes to the next processor; when P0 receives 
again, then all processors have completed



Tree Based Termination 
Detection

 Uses weights

 Initially processor 0 has weight 1

 When a processor transfers work to another 
processor, the weights are halved in both the 
processors

 When a processor finishes, weights are returned

 Termination is when processor 0 gets back 1

 Goes with the DFS algorithm; No separate 
communication steps



 Combinatorial algorithms - APSP



All-Pairs Shortest Paths
Floyd’s Algorithm

 Consider a subset S = {v1,v2,…,vk} of 
vertices for some k <= n

 Consider finding shortest path between 
vi and vj

 Consider all paths from vi to vj whose 
intermediate vertices belong to the set 
S; Let pi,j

(k) be the minimum-weight path 
among them with weight di,j

(k)



All-Pairs Shortest Paths
Floyd’s Algorithm

 If vk is not in the shortest path, then 
pi,j

(k) = pi,j
(k-1)

 If vk is in the shortest path, then the 
path is broken into two parts – from vi to 
vk, and from vk to vj

 So di,j
(k) = min{di,j

(k-1) , di,k
(k-1) + dk,j

(k-1) }

 The length of the shortest path from vi 
to vj is given by di,j

(n).

 In general, solution is a matrix D(n)



Parallel Formulation
2-D Block Mapping

 Processors laid in a 2D mesh

 During kth iteration, each process Pi,j 
needs certain segments of the kth row 
and kth column of the D(k-1) matrix

 For dl,r
(k): following are needed

 dl,k
(k-1) (from a process along the same 

process row)

 dk,r
(k-1) (from a process along the same 

process column)



Parallel Formulation
2D Block Mapping

 During kth iteration, each of the root(p) 
processes containing part of the kth row 
sends it to root(p)-1 in same column;

 Similarly for the same row


