
Parallel Applications

Sathish Vadhiyar

Gaussian Elimination - Review

Version 1
for each column i
zero it out below the diagonal by adding multiples of row i to

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
add a multiple of row i to row j
for k = i to n
A(j, k) = A(j, k) – A(j, i)/A(i, i) * A(i, k)

0

0

0

0

0

0

0

0

0

0

0

i

i
i,i

X

X

x

j

k

Gaussian Elimination - Review

Version 2 – Remove A(j, i)/A(i, i) from inner loop
for each column i
zero it out below the diagonal by adding multiples of row i to

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
m = A(j, i) / A(i, i)
for k = i to n
A(j, k) = A(j, k) – m* A(i, k)

0

0

0

0

0

0

0

0

0

0

0

i

i
i,i

X

X

x

j

k

Gaussian Elimination - Review

Version 3 – Don’t compute what we already know
for each column i
zero it out below the diagonal by adding multiples of row i to

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
m = A(j, i) / A(i, i)
for k = i+1 to n
A(j, k) = A(j, k) – m* A(i, k)

0

0

0

0

0

0

0

0

0

0

0

i

i
i,i

X

X

x

j

k

Gaussian Elimination - Review

Version 4 – Store multipliers m below diagonals
for each column i
zero it out below the diagonal by adding multiples of row i to

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
A(j, i) = A(j, i) / A(i, i)
for k = i+1 to n
A(j, k) = A(j, k) – A(j, i)* A(i, k)

0

0

0

0

0

0

0

0

0

0

0

i

i
i,i

X

X

x

j

k

GE - Runtime

 Divisions

 Multiplications / subtractions

 Total

1+ 2 + 3 + … (n-1) = n2/2 (approx.)

12 + 22 + 32 + 42 +52 + …. (n-1)2 = n3/3 – n2/2

2n3/3

Parallel GE

 1st step – 1-D block partitioning along
blocks of n columns by p processors

0

0

0

0

0

0

0

0

0

0

0

i

i
i,i

X

X

x

j

k

1D block partitioning - Steps

1. Divisions

2. Broadcast

3. Multiplications and Subtractions

Runtime:

n2/2

xlog(p) + ylog(p-1) + zlog(p-3) + … log1 <
n2logp

(n-1)n/p + (n-2)n/p + …. 1x1 = n3/p (approx.)

< n2/2 +n2logp + n3/p

2-D block

 To speedup the divisions

0

0

0

0

0

0

0

0

0

0

0

i

i
i,i

X

X

x

j

k

P

Q

2D block partitioning - Steps

1. Broadcast of (k,k)

2. Divisions

3. Broadcast of multipliers

logQ

n2/Q (approx.)

xlog(P) + ylog(P-1) + zlog(P-2) + …. = n2/Q logP

4. Multiplications and subtractions

n3/PQ (approx.)

Problem with block partitioning for
GE

 Once a block is finished, the
corresponding processor remains idle
for the rest of the execution

 Solution? -

Onto cyclic

 The block partitioning algorithms waste
processor cycles. No load balancing
throughout the algorithm.

 Onto cyclic

0 1 2 3 0 2 3 0 2 31 1 0

cyclic 1-D block-cyclic 2-D block-cyclic

Load balance
Load balance, block operations,
but column factorization
bottleneck

Has everything

Block cyclic

 Having blocks in a processor can lead
to block-based operations (block
matrix multiply etc.)

 Block based operations lead to high
performance

AN ADVANCED
SCIENTIFIC
APPLICATION:
MOLECULAR DYNAMICS

GE: Miscellaneous
GE with Partial Pivoting

 1D block-column partitioning: which is
better? Column or row pivoting

 2D block partitioning: Can restrict the pivot
search to limited number of columns

•Column pivoting does not involve any extra steps since pivot search
and exchange are done locally on each processor. O(n-i-1)

•The exchange information is passed to the other processes by
piggybacking with the multiplier information

• Row pivoting

• Involves distributed search and exchange – O(n/P)+O(logP)

Molecular Dynamics

 Application in many areas including biological
systems (e.g. drug discovery), metallurgy (e.g.
interaction of metal with liquids) etc.

 A domain consisting of number of particles
(molecules)

 Each molecule, i is exerted a force, fij by another
molecule, j

 Forces are of two kinds:
 Non-bonded forces – computations of pairwise

interactions.
 Bonded forces – computations of interactions between

molecules that are connected by bonds. Connectivities are
fixed. Hence these forces depend on topology of the
structure

Molecular Dynamics

 The sum of all the forces, Fi = ∑jfij makes the
particles assume a new position and velocity

 Particles that are r distance apart do not influence
each other

 Thus non-bonded forces are only computed
between atoms that are within this cutoff distance

 Given initial velocities and positions of particles,
their movements are followed for discrete time
steps

MD Parallelization

 3 methods

 1. Atom decomposition

 2. Space decomposition

 3. Force decomposition

Atom Decomposition

 Each processor is assigned N/P atoms
and updates their positions and velocities
irrespective of where they move in the
physical domain

 The computational work involved can be
represented by the NxN matrix, F,
where Fi,j is the non-bonded force on
atom i due to atom j

 x and f are vectors that represent
positions of and total force on each atom

Atom Decomposition

 For parallelization, F, x and f are
distributed with 1-D block distribution
across processors. i.e., every processor
computes consecutive N/P rows

 Each processor will need the positions of
many atoms owned by other processors;
hence each processor stores a copy of all
N atom positions, x

 Hence this algorithm is also called
replicated data algorithm

RD Algorithm

 For each time step

 each processor computes forces on its atoms

 updates positions

 processors communicate their positions to all the
other processors

 Different atoms have different neighbor entitites;
hence the F matrix has to be load balanced

 The main disadvantage is the all-to-all
communication of x; also causes memory overhead
since x is replicated

Method 2 – Space decomposition

 Using 2D decomposition
 In a typical Molecular Dynamics

simulation problem, the amount of data
that are communicated between
processors are not known in advance

 The communication is slightly irregular

Space Decomposition - Solution

 The cutoff distance, r is used to
reduce the time for summation from
O(n2)

r

r

Domain decomposed into cells of size rxr

Particles in one cell interact with particles in the
neighbouring 8 cells and particles in the same cell

Space Decomposition - Solution

Data structures:
An array of all particles. Each element holds <position,

velocity>
A 2D array of linked lists, one for each cell. Each element of a

linked list contains pointers to particles.
struct particle{
double position[2];
double velocity[2];

} Particles[MAX_PARTICLES];

struct list{
particle* part;
struct list* next;

}*List[MAX_CELLSX][MAX_CELLSY];

Linked List

Particles

Space Decomposition –
Sequential Logic

Initialize Particles and Lists;

for each time step
for each particle i
Let cell(k, l) hold i
F[i] = 0;
for each particle j in this cell and neighboring 8 cells, and
are r distance from i{
F[i]+= f[i, j];

}
update particle[i].{position, velocity} due to F[i];
if new position in new cell (m,n) update Lists[k,l] and
Lists[m,n]

MD – Space Decomposition

r

r

A 2D array of processors similar to Laplace

Each processor holds a set of cells

Differences:

•A processor can communicate with the diagonal neighbors

•Amount of data communicated varies over time steps

•Receiver does not know the amount of data

MDS – parallel solution

 Steps
1. Communication – Each processor communicates parameters
of the particles on the boundary cells to its 8 neighboring cells

Challenges – to communicate diagonal cells

2. Update – Each processor calculates new particle velocities
and positions

3. Migration – Particles may migrate to cells in other processors

Other challenges:

1. Appropriate packing of data.

2. Particles may have to go through several hops during migration

Assumptions:

1. For simplicity, let us assume that particles are transported to
only neighboring cells during migration

MDS – parallel solution – 1st step

 Communication of boundary data

A

A

A

A

a a a

a

a
a

a a a

a

a

a

B

B

B

B

b b b

b

b
b

b b b

b

b

b

C

C

C

C

c c c

c

c
c

c c c

c

c

c

D

D

D

d

d d d

d

d
d

d d d

d

d

d

MDS – parallel solution – 1st step

 Communication of boundary data

A

A

A

A

a a a

a

a
a

a a a

a

a

a

B

B

B

B

b b b

b

b
b

b b b

b

b

b

C

C

C

C

c c c

c

c
c

c c c

c

c

c

D

D

D

d

d d d

d

d
d

d d d

d

d

d

A

A

A

A

a a a

a

a
a

a a a

a

a

a

C Cc c c

C

C

C

C

c c c

c

c c c

c

c c

c c

B

B

B

B

b b b

b

b b b

b
b

b

b

b

D

D

D

d

d d d

d

d d d

d

d

d

d

d

A Aa a a B Bb b b

D Dd d d

B

B

b
b

b

A

A

a

a

a

C

C

c

c

c

D

D

d

d

d

MDS – parallel solution – 1st step

 Communication of boundary data

A

A

A

A

a a a

a

a
a

a a a

a

a

a

B

B

B

B

b b b

b

b
b

b b b

b

b

b

C

C

C

C

c c c

c

c
c

c c c

c

c

c

D

D

D

d

d d d

d

d
d

d d d

d

d

d

A

A

A

A

a a a

a

a
a

a a a

a

a

a

C Cc c c

C

C

C

C

c c c

c

c c c

c

c c

c c

B

B

B

B

b b b

b

b b b

b
b

b

b

b

D

D

D

d

d d d

d

d d d

d

d

d

d

d

A Aa a a B Bb b b

D Dd d d

B

B

b
b

b

A

A

a

a

a

C

C

c

c

c

D

D

d

d

d

D C

B A

Can be achieved by ?

Shift left, shift right, shift up, shift down

MDS – parallel solution – 1st step

Left shift
nsend = 0;
for(i=0; i<local_cellsx; i++){
for each particle p in cell (i, 1){
pack position of p in sbuf
nsend += 2

}
}

MPI_Sendrecv(sbuf, nsend, …, left,..
rbuf, max_particles*2, …, right, &status);

MPI_Getcount(status, MPI_DOUBLE, &nrecv);
particles = nrecv/2;
for(i=0; i<particles; i++){
read (x,y) from next 2 positions in rbuf;
add (x,y) to particles[local_particle_count+i];
determine cell k, l for the particle
Add it to list (k, l);

}

MDS – parallel solution – 2nd step

Update:

 Similar to sequential program.

 A processor has all the required information
for calculating Fi for all its particles

 Thus new position and velocity determined.

 If new position belongs to the same cell in
the same processor, do nothing

 If new position belongs to the different cell
in the same processor, update link lists for
old and new cells.

MDS – parallel solution – 3rd step

 If new position belongs to the different cell in a
different processor – particle migration

for each particle p
update {position, velocity}
determine new cell
if new cell # old cell
delete p from list of old cell
if(different processor)
pack p into appropriate communication buffer
remove p from particle array

Shift left
Shift right
Shift up
Shift down

MDS – parallel solution – 3rd step
 This shifting is a bit different from the previous shifting
 A processor may just act as a transit point for a particle
 Hence particles have to be packed with care
Shift left:
MPI_Sendrecv(leftbuf, nsend_left, …, left

rbuf, max_size*4, .., right, &status);
MPI_Getcount(status, MPI_DOUBLE, &nrecv);
particles = nrecv/4;

for(i=0; i<particles; i++){
read next 4 numbers in {x, y vx, vy}
if(particle in this process)

add particle to particle array
determine cell
add particle to list for the cell

else
put data in the appropriate comm. buffer for the next up or down

shifts
}

Force Decomposition

 For computing the total force on an
atom due to all the other atoms, the
individual force contributions from the
other atoms are independent and can
be parallelized

 Fine-grained parallelism

 Especially suitable for shared-memory
(OpenMP) parallelization

Hybrid Decomposition

 Divide the domain into cells (spatial
decomposition)

 Create a parallel thread whose
responsibility is to compute
interacting forces between every
pairs of cells (force decomposition)

