Real Time Routing in Road Networks

Aakriti Gupta

Advisors: Dr. J. Lakshmi, Prof. S. K. Nandy
Cloud Systems Lab, CADL, SERC
Indian Institute of Science

aakriti@cadl.iisc.ernet.in

June 19, 2014

Routing in Road Networks
©000

Introduction

Renewed Interest in Routing Problem for Road Networks

Routing in Road Networks
©000

Introduction

Renewed Interest in Routing Problem for Road Networks

@ Increasing popularity of Location Based Services

Routing in Road Networks
©000

Introduction

Renewed Interest in Routing Problem for Road Networks

@ Increasing popularity of Location Based Services

@ Real-Time processing requirement (more on this later)

Routing in Road Networks
©000

Introduction

Renewed Interest in Routing Problem for Road Networks

@ Increasing popularity of Location Based Services

@ Real-Time processing requirement (more on this later)

Modeling Routing Problem for Road Networks

Routing in Road Networks
©000

Introduction

Renewed Interest in Routing Problem for Road Networks

@ Increasing popularity of Location Based Services

@ Real-Time processing requirement (more on this later)

Modeling Routing Problem for Road Networks

@ Road junctions as graph vertices

Routing in Road Networks
©000

Introduction

Renewed Interest in Routing Problem for Road Networks

@ Increasing popularity of Location Based Services

@ Real-Time processing requirement (more on this later)

Modeling Routing Problem for Road Networks

@ Road junctions as graph vertices

@ Connecting road segments as edges

Routing in Road Networks
©000

Introduction

Renewed Interest in Routing Problem for Road Networks

@ Increasing popularity of Location Based Services

@ Real-Time processing requirement (more on this later)

Modeling Routing Problem for Road Networks

@ Road junctions as graph vertices

@ Connecting road segments as edges

@ Static graph: constant edge weight

Routing in Road Networks
©000

Introduction

Renewed Interest in Routing Problem for Road Networks

@ Increasing popularity of Location Based Services

@ Real-Time processing requirement (more on this later)

Modeling Routing Problem for Road Networks

@ Road junctions as graph vertices

@ Connecting road segments as edges
@ Static graph: constant edge weight

@ Time Dependent graph: edge weight is a function of current
traffic, weather conditions etc.

Routing in Road Networks
©000

Introduction

Renewed Interest in Routing Problem for Road Networks

@ Increasing popularity of Location Based Services

@ Real-Time processing requirement (more on this later)

Modeling Routing Problem for Road Networks

@ Road junctions as graph vertices

@ Connecting road segments as edges
@ Static graph: constant edge weight

@ Time Dependent graph: edge weight is a function of current
traffic, weather conditions etc.

@ Now use any shortest path algorithm on this graph, like
Dijkstra's search[1].

Routing in Road Networks
0e00

So what has been done so far?

Routing in Road Networks
0e00

So what has been done so far?

Routing in Road Networks
0e00

So what has been done so far?

@ For static road networks, many heuristics based
algorithms|[2][3][4] exist to speed up the shortest path
computations

Routing in Road Networks
0e00

So what has been done so far?

@ For static road networks, many heuristics based
algorithms|[2][3][4] exist to speed up the shortest path
computations

@ Fastest known query time, hub labeling[5] computes shortest
path on road networks of Europe or the USA in fraction of a
microsecond[6]

Routing in Road Networks
0e00

So what has been done so far?

@ For static road networks, many heuristics based
algorithms|[2][3][4] exist to speed up the shortest path
computations

@ Fastest known query time, hub labeling[5] computes shortest
path on road networks of Europe or the USA in fraction of a
microsecond[6]

v

But the problem isn’t solved yet!

Routing in Road Networks
0e00

So what has been done so far?

@ For static road networks, many heuristics based
algorithms|[2][3][4] exist to speed up the shortest path
computations

@ Fastest known query time, hub labeling[5] computes shortest
path on road networks of Europe or the USA in fraction of a
microsecond[6]

v

But the problem isn’t solved yet!

@ Most of these approaches haven't shown success in dynamic
case[7]

Routing in Road Networks
0e00

So what has been done so far?

@ For static road networks, many heuristics based
algorithms|[2][3][4] exist to speed up the shortest path
computations

@ Fastest known query time, hub labeling[5] computes shortest
path on road networks of Europe or the USA in fraction of a
microsecond[6]

v

But the problem isn’t solved yet!

@ Most of these approaches haven't shown success in dynamic
case[7]

@ These algorithms involve 2 steps - preprocessing (slow) and
online computation (fast)

Routing in Road Networks
0e00

So what has been done so far?

@ For static road networks, many heuristics based
algorithms|[2][3][4] exist to speed up the shortest path
computations

@ Fastest known query time, hub labeling[5] computes shortest
path on road networks of Europe or the USA in fraction of a
microsecond[6]

v

But the problem isn’t solved yet!

@ Most of these approaches haven't shown success in dynamic
case[7]

@ These algorithms involve 2 steps - preprocessing (slow) and
online computation (fast)

@ Unrealistic to do the preprocessing step everytime as graph
changes. Periodic updates don't use real time information.

Routing in Road Networks
coeo

Real-Time processing requirement

u/ \

(a)t=0

accident
user, reported

(b)t=t1

~(Q

P
user
jammed
updated foad
path
Y
A

R)—— (B

©t=t2

Routing in Road Networks
coeo

Real-Time processing requirement

@ Real time updates are not
fully utilized if revised route

not sent to the user
/ \ @ Need for a proactive system

@ Also avoids misdirection!

@t=0 Driver followed satellite
navigation instructions in
/ oo the dark and her car was hit
by a train on a rail crossing
Bt=u that was not shown on the
system [8].

jammed
updatos foad
o) t=12

Routing in Road Networks
oooe

State of the art for dynamic road networks

Routing in Road Networks
oooe

State of the art for dynamic road networks

Some interesting approaches

Routing in Road Networks
oooe

State of the art for dynamic road networks

Some interesting approaches

@ Send top k shortest paths to end user and all updates along
these paths. User makes the routing decisions [9]

Routing in Road Networks
oooe

State of the art for dynamic road networks

Some interesting approaches

@ Send top k shortest paths to end user and all updates along
these paths. User makes the routing decisions [9]

@ Game theoretic approach: No central server, cars are the
intelligent agents, communicate among each other and
compute where to go next [10]

Routing in Road Networks
oooe

State of the art for dynamic road networks

Some interesting approaches

@ Send top k shortest paths to end user and all updates along
these paths. User makes the routing decisions [9]

@ Game theoretic approach: No central server, cars are the
intelligent agents, communicate among each other and
compute where to go next [10]

The problem with such decentralized approach is

Routing in Road Networks
oooe

State of the art for dynamic road networks

Some interesting approaches

@ Send top k shortest paths to end user and all updates along
these paths. User makes the routing decisions [9]

@ Game theoretic approach: No central server, cars are the
intelligent agents, communicate among each other and
compute where to go next [10]

The problem with such decentralized approach is

@ Prohibitive for thin clients: all mobile devices do not have the
capability to handle computations and communication that is
required.

Our Approach
®0000

So far...

Our Approach
®0000

So far...

Problems with current frameworks

Our Approach
®0000

So far...

Problems with current frameworks

@ Clients don't know when to ask for route updates.

Our Approach
®0000

So far...

Problems with current frameworks

@ Clients don't know when to ask for route updates.

@ Current systems model the road traffic based on history and
send results based on the time of the day. Real time updates
are largely ignored.

Our Approach
®0000

So far...

Problems with current frameworks
@ Clients don't know when to ask for route updates.
@ Current systems model the road traffic based on history and
send results based on the time of the day. Real time updates
are largely ignored.

Our Approach

Our Approach
®0000

So far...

Problems with current frameworks

@ Clients don't know when to ask for route updates.

@ Current systems model the road traffic based on history and
send results based on the time of the day. Real time updates
are largely ignored.

Our Approach

@ A proactive method for using real-time updates in road
networks, can offer better utility for travellers.

Our Approach
®0000

So far...

Problems with current frameworks

@ Clients don't know when to ask for route updates.

@ Current systems model the road traffic based on history and
send results based on the time of the day. Real time updates
are largely ignored.

Our Approach

@ A proactive method for using real-time updates in road
networks, can offer better utility for travellers.

@ A graph density based method to choose time optimal
algorithm for query dependent route computation.

Our Approach
0®000

Our approach

Our Approach E Query Dependent Computation

O@000

Our approach

@ Modelling the problem as a real time job scheduling problem.

Our Approach S ode Query Dependent Computation

O@000

Our approach

@ Modelling the problem as a real time job scheduling problem.

@ Job is the (src, dest) pair submitted by remote clients.

Our Approach
0®000

Query Dependent Computation

Our approach

@ Modelling the problem as a real time job scheduling problem.
@ Job is the (src, dest) pair submitted by remote clients.

@ Scheduling is done such that response is computed using real
time road network information.

ing in Road Networks Our Approach S ode Query Dependent Computation
0®000 [e oo

Our approach

@ Modelling the problem as a real time job scheduling problem.
@ Job is the (src, dest) pair submitted by remote clients.

@ Scheduling is done such that response is computed using real
time road network information.

@ After route is computed for (s,t) pair, with 'v' as next stop, a
refresh job (v,t) is added. Result of this refresh job is
supposed to reach user before user reaches 'v'.

Our Approach
0®000

Our approach

@ Modelling the problem as a real time job scheduling problem.
@ Job is the (src, dest) pair submitted by remote clients.

@ Scheduling is done such that response is computed using real
time road network information.

@ After route is computed for (s,t) pair, with 'v' as next stop, a
refresh job (v,t) is added. Result of this refresh job is
supposed to reach user before user reaches 'v'.

100s 12s

20s 30s

50s

Our Approach
0000

Assumptions

Our Approach
0000

Assumptions

@ Users can be polled for their current location.

Our Approach
0000

Assumptions

@ Users can be polled for their current location.

e Updates (like traffic, weather conditions) on the graph can be
analyzed and converted into edge weights [11].

Our Approach
0000

Assumptions

@ Users can be polled for their current location.

e Updates (like traffic, weather conditions) on the graph can be
analyzed and converted into edge weights [11].

o Edge weight represents the time it would take to travel on
that edge at current time.

Our Approach
[sleTe] Yo)

Types of jobs

@ A new user connecting to the system.

@ Given a unique ID which represents this user.

@ Subsequent refresh and redo jobs carry forward this same ID.

Our Approach
[sleTe] Yo)

Types of jobs

@ A new user connecting to the system.

@ Given a unique ID which represents this user.

@ Subsequent refresh and redo jobs carry forward this same ID.

@ User is following the system suggested path.

@ System pro-actively decides whether the user should continue
or switch to a different path.

Our Approach
[sleTe] Yo)

Types of jobs

@ A new user connecting to the system.

@ Given a unique ID which represents this user.

@ Subsequent refresh and redo jobs carry forward this same ID.

@ User is following the system suggested path.

@ System pro-actively decides whether the user should continue
or switch to a different path.

@ System was late in giving response to the user or user chooses
to take a different path.

@ Re-computation is required based on current location.

Our Approach
ooooe

More about our approach

More about Jobs

Our Approach
ooooe

More about our approach

More about Jobs

@ All jobs are aperiodic

@ Independent of each other, don't follow any precedence
relations among them.

@ Non-preemtive, because a job cannot be paused and resumed
as network might have seen updates during this time.

Our Approach
ooooe

More about our approach

More about Jobs

@ All jobs are aperiodic

@ Independent of each other, don't follow any precedence
relations among them.

@ Non-preemtive, because a job cannot be paused and resumed
as network might have seen updates during this time.

Job scheduling is...

Our Approach
ooooe

More about our approach

More about Jobs

@ All jobs are aperiodic

@ Independent of each other, don't follow any precedence
relations among them.

@ Non-preemtive, because a job cannot be paused and resumed
as network might have seen updates during this time.

Job scheduling is...

@ Dynamic: no binding relation between a job and a particular
processor.

@ Periority-driven: scheduling decisions are based on the priorities
of the jobs and take place when events such as job
completions occur.

System Model
00000

Overall System Model

— correcl place)snfl;en?i't‘tje%b
in the in the queue
I T2 B

(ii) Scheduler

picks next *
job - ¥
. (iii)Find query|
dependent
Yes Deadline . No algorithm
expired? T
(iv) Job (v) Result
dropped computed
(vi) Schedule
Refresh job
based on

user’s location’

(vii) Add
Refresh job

S

Overall System Model

@ Fresh jobs enter job
queue from one end

—*|correct place (I)snfl;en?i't‘tje%b
in the queue

J1 7 J2 [J3 [J4

(ii) Scheduler

picks next *
job - ¥
. (iii)Find query|
dependent
Yes Deadline " No _algorithm
41: expired? —|
(iv) Job (v) Result
dropped computed
(vi) Schedule
Refresh job
based on

user’s location’

(vii) Add
Refresh job

|

System Model
©000000

Overall System Model

@ Fresh jobs enter job
queue from one end

L () Fresh job @ Scheduler finds the

in the queue submitted

next job to be
— —J computed.
n Hle fle s

J
(ii) Scheduler

picks next *
job - ¥
. (iii)Find query|
dependent
Yes Deadline . No algorithm
expired? T
(iv) Job (v) Result
dropped computed
(vi) Schedule
Refresh job
based on

user’s location’

(vii) Add
Refresh job

L]

System Model
©000000

Overall System Model

@ Fresh jobs enter job
queue from one end

L () Fresh job @ Scheduler finds the

in the queue submitted

next job to be
— i —J computed.
n Hle fle s

J
o @ If deadline not
(ii) Scheduler

pick next 1 expired, result is

b ———)
(mFind query computed. Otherwise

Yes Deadline . No ﬂ'm

expired? d rO p ped .

(iv) Job (v) Result
dropped computed
(vi) Schedule
Refresh job
based on

user’s location’

(vii) Add
Refresh job

L]

System Model
©000000

Overall System Model

@ Fresh jobs enter job
queue from one end

L () Fresh job @ Scheduler finds the

in the queue submitted

next job to be
[7J computed.
e e e

J
o @ If deadline not
(ii) Scheduler

peis e ! expired, result is

b s .

» faEna uary computed. Otherwise
T e Yo, \aioerim dropped.

@ In either case, refresh
job is added.

(iv) Job (v) Result
dropped computed
(vi) Schedule
Refresh job
based on

user’s location’

(vii) Add
Refresh job

e — |

System Model
©000000

Overall System Model

@ Fresh jobs enter job
queue from one end

L () Fresh job @ Scheduler finds the
in the queue submitted i
E— next job to be
Y P computed.
e fefue .
@ If deadline not
(ii) Scheduler . .
peis e ! expired, result is
jol ¥ .
A\ e computed. Otherwise
fes(Deadine Mo, {_dortm. dropped.
@ In either case, refresh
(iv) Job (v) Result -JOb IS added'
dropped computed .
— @ Deadline of refresh
atomnion jobs decides their
based on ..
o' ocaios priority and
(vi) Add appropriate place in
Refresh job .
the job queue.

System Model
©0®00000

Computing Job Deadlines

@ fresh and redo jobs are submitted without any deadline and
added at the back of the job queue.

System Model
©0®00000

Computing Job Deadlines

@ fresh and redo jobs are submitted without any deadline and
added at the back of the job queue.

@ refresh job has 2 timestamps associated with it. It has to be
scheduled at any time such that:

System Model
©0®00000

Computing Job Deadlines

@ fresh and redo jobs are submitted without any deadline and
added at the back of the job queue.

@ refresh job has 2 timestamps associated with it. It has to be
scheduled at any time such that:

Timestampl < Scheduling_time < Timestamp?2 (l)J

Our sroach System Model Query Dependent Computation

Routing in Road Networks
0®00000

Computing Job Deadlines

@ fresh and redo jobs are submitted without any deadline and
added at the back of the job queue.

@ refresh job has 2 timestamps associated with it. It has to be
scheduled at any time such that:

Timestampl < Scheduling_time < Timestamp?2 (1)
Timestampl = Current_time + « * time(s, v) (2)
Timestamp2 = Current_time + time(s,v) — A (3)

a is any constant € (0,1) and A is the estimated upper bound on
computation plus communication time.

System Model
00®0000

[llustration

Time(s,v)
s alpha=0.5 ‘ ‘ V — t
deha /
Schedullng window)/
Current Time Timestamp1 Timestamp2

@ Route computation before Timestampl will not have the
lastest information.

@ Route computation after Timestamp2 will not be complete
before user reaches 'v’, hence not useful.

System Model
0000000

Job Sceduling Algorithm

1: while (1) do
2: while !(Queue Empty) do
3 ptr < queue head
4: if ptr.jobtype = fresh then
5: goto compute
6: else
7 if ptr.jobtype = refresh & matured(ptr) = true then
8 goto compute
: else
10: if ptr.jobtype = refresh & expired(ptr) = true then
11: dropped jobs + +
12: goto add
13: else
14: ptr < next(ptr)
15: end if
16: end if
17: end if
18: end while
19: compute :
20: compute shortest path
21: add :
22: find next hop
23: add refresh job

24: end while

System Model
0000®00

Job Queue Insertion

00N
3 Do
oo Bno
oo D

System Model
0000®00

Job Queue Insertion

@ Case I: Fresh job is simply
. added in the back

00N
3 Do
oo Bno
oo D

//// < Y Y

System Model
0000®00

Job Queue Insertion

@ Case I: Fresh job is simply
. added in the back

S| G | G | G | G @ Case Il If refresh job's

—— O) G Timestamp?2 value falls
Lki{';‘rikiHJ between two consecutive
G refresh jobs, it is simply
B DR added in the midde

(c) Case Il
g ann

(d) Case Il

RkR#F‘TF{HR}\RJ

(f) Case V

System Model
0000®00

Job Queue Insertion

//// < y y y

(f) Case V

@ Case I: Fresh job is simply
added in the back

@ Case Il: If refresh job's
Timestamp?2 value falls
between two consecutive
refresh jobs, it is simply
added in the middle

o Case lll: Refresh job is given
higher priority over fresh job.

I —

(f) Case V

System Model
0000®00

Job Queue Insertion

Case I: Fresh job is simply
added in the back

Case II: If refresh job's
Timestamp?2 value falls
between two consecutive
refresh jobs, it is simply
added in the middle

Case Ill: Refresh job is given
higher priority over fresh job.

Case IV: Fresh job is given
higher priority.

System Model
0000®00

Job Queue Insertion

(f) Case V

Case I: Fresh job is simply
added in the back

Case II: If refresh job's
Timestamp?2 value falls
between two consecutive
refresh jobs, it is simply
added in the middle

Case Ill: Refresh job is given
higher priority over fresh job.
Case IV: Fresh job is given
higher priority.

Case V: Relative priorities of

fresh jobs and refresh jobs
are dynamically computed.

System Model
000000

Computing relative priorities for insertion

Routing in Road Networks [h System Model Quer Computation

olojolo]e 00000e0

Computing relative priorities for insertion

If, Timestamp2(R1) < Timestamp2(R2), then:

Priority(R1) > Priority(R2) (4)

If, AgingFactor(F) < Threshhold, then:

Priority(R) > Priority(F) (5)

If, AgingFactor(F) > Threshhold, then:

Priority(F) > Priority(R) (6)

System Model
©000000e

Algorithm for insertion of refresh job

1: if (Queue Empty) then
2: queue head < next_refresh_job
3: return done
4: end if
5: ptr + queue head
6: while ptr | = NULL do
T: ifhptr.jobtype = refresh && ptr.timestamp2 > next_refresh_job.timestamp?2
then
8: insert next_refresh_job before ptr
9: return done
10: end if
11: if ptr.jobtype = fresh && ptr.age < threshold then
12: insert next_refresh_job before ptr
13: temp < ptr
14: while temp.jobtype = freshjob do
15: temp.age + +
16: temp < next(temp)
17: end while
18: return done
19: end if
20: ptr < next(ptr)
21: end while

22: add next_refresh_job at queue end
23: return done

Query Dependent Computation
[1)

Optimize Route Computation per Query

@ Selecting the best algorithm for a particular query.

Query Dependent Computation
[1)

Optimize Route Computation per Query

@ Selecting the best algorithm for a particular query.

@ We tried to do this by estimating the search space using the
notion of graph density.

Query Dependent Computation
[1)

Optimize Route Computation per Query

@ Selecting the best algorithm for a particular query.

@ We tried to do this by estimating the search space using the
notion of graph density.

@ Most algorithms use Bidirectional search over simple Dijkstra’s
algorithm because of it's lesser avg. query computation time.

Query Dependent Computation
[1)

Optimize Route Computation per Query

@ Selecting the best algorithm for a particular query.

@ We tried to do this by estimating the search space using the
notion of graph density.

@ Most algorithms use Bidirectional search over simple Dijkstra’s
algorithm because of it's lesser avg. query computation time.

@ Possible to select which of the two algorithms would be better
for a given query.

Query Dependent Computation
[1)

Optimize Route Computation per Query

Selecting the best algorithm for a particular query.

We tried to do this by estimating the search space using the
notion of graph density.

Most algorithms use Bidirectional search over simple Dijkstra’s
algorithm because of it's lesser avg. query computation time.

Possible to select which of the two algorithms would be better
for a given query.

Also reduces the average query computation time.

Query Dependent Computation
oe

Search Space and Graph Density

Search SPace for Dijkstra's Search

>

€4
Search Space for Bidirectional Dijkstra's Search

Query Dependent Computation
oe

Search Space and Graph Density

Search SPace for Dijkstra's Search Densities from source vertex S

>
o

il
©o

€4
Search Space for Bidirectional Dijkstra's Search

Case Study
[elelelele)

Experimental Setup

@ Road networks were taken from Dimacs Implementation
Challenge.

Table: Graph instances used

Graph Name Number of Vertices Number of Edges

TG 18263 23874
BAY 174956 223001
SF 321270 800172
COoL 435666 1057066

LKS 2758119 6885658

Case Study
0®0000

Results for Real Time Routing

@ Showing simulation
results with oo = 0.6 (top)

800 and 0.5 (bottom) and two

700 threads.

600
2 Total jobs — 0,
§ s00 IFIFO:JDeadjobs @ For a =05, 31_:_32%
s 40 RealTime: Dropped queries are dead in FIFO,
£ zgg 23-24% queries are

100 dropped by our

0 ; . , framework.
Simulation results @ With increasing «,

scheduling window
decreases and more
a0 number of queries result
70 into dead/drop

600 computation.

500

400 @ Our framework processes

300 7-10% more number of

200 .

100 useful queries and takes
0 ” . 10-12% lesser time than

FIFO on an average.

Number of Jobs

Simulation results

Case Study

[ele] le]ele]

Results for Query Dependent Route Computation

Ratio of Iterations at points where Diksira performs better

Difstra’s betler
Bidrectional is better| |

o
7

jesiras Bidirectional)

g
g
£
s
2
5
&

100 200 300 500 500 700

4002 002

= Blaostions
Prociation

3008 002
2006002
- . I
e Bay s =

Timing results (in seconds) for various road networks

Case Study
000e00

Future Work

@ Experimentally coming up with optimal system parameters
like a and aging factor.

Case Study
000e00

Future Work

@ Experimentally coming up with optimal system parameters
like a and aging factor.

@ Including driver dependent information like speed group
categorization for varying «.

Case Study
000e00

Future Work

@ Experimentally coming up with optimal system parameters
like a and aging factor.

@ Including driver dependent information like speed group
categorization for varying «.

@ Turnaround time for fresh jobs vs. number of dropped jobs
influence the aging factor.

Case Study
000e00

Future Work

@ Experimentally coming up with optimal system parameters
like a and aging factor.

@ Including driver dependent information like speed group
categorization for varying «.

@ Turnaround time for fresh jobs vs. number of dropped jobs
influence the aging factor.

@ Between Dijkstra’s search and it's bidirectional variant, the
nature of subgraph influences the computation time. We can
categorize more algorithms using the underlying network
structure in similar way.

Case Study
000e00

Future Work

@ Experimentally coming up with optimal system parameters
like a and aging factor.

@ Including driver dependent information like speed group
categorization for varying «.

@ Turnaround time for fresh jobs vs. number of dropped jobs
influence the aging factor.

@ Between Dijkstra’s search and it's bidirectional variant, the
nature of subgraph influences the computation time. We can
categorize more algorithms using the underlying network
structure in similar way.

This work has been submitted to the 4th IEEE International Conference on Big Data and Cloud
Computing (BDCloud 2014).

Case Study
[elelete] Yo}

References

1 E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische
mathematik, vol. 1, no. 1, pp. 2693271, 1959

2 R. Geisberger, P. Sanders, D. Schultes, and D. Delling, Contraction hierarchies:
gigtAe:Sr?)%nd simpler hierarchical routing in road networks. Springer, 2008, pp.
3333.

3 H. Bast, S. Funke, P. Sanders, and D. Schultes, Fast routing in road networks
with transit nodes, Science, vol. 316, no. 5824, pp. 5663566, 2007

4 J. Sankaranarayanan and H. Samet, Query processing using distance oracles for
spatial networks, Knowledge and Data Engineering, IEEE Transactions on, vol.
22, no. 8, pp. 115831175, 2010.

5 Abraham, Ittai; Delling, Daniel; Goldberg, Andrew V, A Hub-Based Labeling
Algorithm for Shortest Paths on Road Networks, Symposium on Experimental
Algorithms, pages 230-241, 2011

6 Wikipedia.org, Shortest path problem, Road networks

7 D. Delling, P. Sanders, D. Schultes, and D. Wagpner, EnEineering route planning
algorithms, in Algorithmics of large and complex networks. Springer, 2009, pp.
1173139

8 Wikipedia.org, Automotive navigation system, Misdirection

9 Jing Yuan ; Yu Zheng ; Xing Xie, T-Drive: Enhancing Driving Directions with
Taxi Drivers’ Intelligence, IEEE Transactions on , vol.25, no.I, pp.220,232, Jan.
2013

10 Verroios, Vasilis and Kollias, Konstantinos and Chrysanthis, Panos K. and Delis,
Alex, Adaptive Navigation of Vehicles in Congested Road Networks, ICPS '08

11 Boriboonsomsin, K.; Barth, M.J.; Weihua Zhu; Vu, A., 3Eco-Routin)
Navigation System Based on Multisource Historical and Real-Time Traffic

Information,3 Intelligent Transportation Systems, IEEE Transactions on , vol.13,
no.4, pp.1694,1704, Dec. 2012

Thank you.

	Routing in Road Networks
	Introduction

	Our Approach
	Our Approach

	System Model
	System Model

	Query Dependent Computation
	Query Dependent Computation

	Case Study
	Case Study

