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Abstract

Routing in road networks is an old problem with renewed interest. In this work, we focus
on how to extend real-timeliness to the routing problem. With the increasing availability of
rich time dependent data in the form of current traffic, weather conditions etc. and methods to
compute its impact on the travelling time in the given road segment, location based services
are increasingly becoming more demanding. While many algorithms exist to speed up the
traditional Dijkstra’s algorithm for computing shortest paths in static road networks, only few
have shown applicability in the dynamic case adapting to traffic updates on the road network.
We note that most algorithms either use history based modelling of road traffic to compute the
travelling time, neglecting the real time updates or distributed algorithms are used which let
the client decide which way to go based on its local view of the graph and updates relevant
to it. We give example scenarios illustrating the shortcomings of both these approaches and
identity the need for an approach which is able to handle real time updates and where route
computation requires server involvement and global viewpoint.

We model the routing problem into a real time job scheduling problem where jobs are the
shortest path queries submitted by the users and deadlines are computed on the fly depending
on the user characteristics (current location, speed group etc.). The framework is a proactive
one, in the sense that if the system has knowledge of updates relevant to its users, the results are
communicated back to the user without them specifically asking for it. This is done by sending
revised route to the user before user takes the next turn on the pre-specified path. Potentially
any routing algorithm that is capable of dealing with real time network updates can be used
to compute shortest path jobs in our framework, we demonstrate results with Dijkstra’s algo-

rithm. We also show that using the graph characteristics and by doing some precomputation,

iii



v

it can be predicted that which algorithm from our library could result in a faster response for a
particular query. We show results for Dijkstra’s algorithm and it’s bidirectional variant for this

observation.
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Chapter 1

Routing in Road Networks

In graph theory, the shortest path problem is the problem of finding a path between two vertices
(or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
This is analogous to the problem of finding the shortest path between two intersections on a

road map, known as routing problem.

1.1 Introduction

Geospatial road networks are being used extensively for many navigation based applications,
most important being finding optimal route between a given source and destination. The in-
crease in the popularity of such location based services and the need of doing real-time pro-
cessing for it has resulted in a renewed interest in the optimal routing problem in the recent
past. Many interesting algorithms have been developed over the years focusing mainly at
speeding up the route computation on continental sized networks. Most work in the area have
shown tremendous success in speeding up the traditional Dijkstra’s shortest path algorithm for
static graphs [1] [2] [3]. The routing problem can be modeled into a graph where the edges
represent road segments and the vertices represent intersections of the road networks. The
edge weight can be the distance covered on that road segment, time taken to travel on that road
segment or function of both. The graph thus modelled can either be static (where edge weights

remain constant throughout) or dynamic (where edge weights are variable). In time dependent
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scenario, the cost of travelling through an edge is generally dependent on the current traffic
on that road segment. Problem is thus modeled into a graph whose edge weights can either
be a function of current time, or can follow some historical pattern, or are determined by an
asynchronous stream of updates.

Road networks experience changing traffic and weather conditions which makes dynamic
graphs a more realistic representation for them. But many algorithms which successfully speed
up shortest path computation in static graphs, fail to do so for dynamic graphs. This is because
most of these algorithms rely on two phases for computation [4]. Phase I involves precom-
putation, which is done ’offline’ and is the time consuming step. Phase II involves the actual
query computation using a given source and destination. This step happens ’online’ and the
fastest algorithm takes a fraction of a second to do so, even on continental sized networks. For
static graphs, where edge weights and the graph topology remains constant, precomputation
step is done only once and usually takes a few hours. For dynamic graphs, phase I becomes
prohibitive since it is not possible to do the precomputation every time the graph is updated.
To overcome this and include dynamism in the graph, history based modelling of road traffic
is done and edge profiles are developed. Edge profiles determine the edge cost for a given time
of the day. So for example, if edge costs represents the time it takes to travel on a particular
edge, edge profile could tell what will be the travel time if you begin your journey at 8am, 9am
and so on. Precomputation step is then adapted for these time dependent graphs modelled after
traffic history [6]. This step however, is found to be quite expensive both in terms of memory
consumption and the time it takes which in some cases can take more than a day [5]. This
makes revision of edge profiles and the precomputation on it increasingly difficult.

The other major disadvantage is the fact that it fails to take into account the available real time
updates on the road networks. However, incorporating real time updates is indeed important
to get more accurate and useful results. We show cases where results can go wrong, or in-
formation is not fully utilized if real time updates are not considered. In this work, we try
to incorporate real time updates along the road network and discuss one possible approach of
propagating these updates to the user in time. We do this by modelling the problem as a real

time job scheduling problem. Jobs are the shortest path queries submitted by the system users



CHAPTER 1. ROUTING IN ROAD NETWORKS 3

when they first connect with the system or by the system itself, to recompute the shortest path
in response to updates along the network. Deadlines for these recompute jobs are computed
online by the system using the user’s current location, among other things. These jobs have
a scheduling window, which marks the time period within which it should be scheduled for
computation. It is desired that recomputation takes place after the system is allowed to evolve
and doesn’t take place right away. So the start of scheduling window identifies the time after
which it is okay to invest in the recomputation. It is also desired that the recomputed route
should reach the end user before they move along the route and the update becomes irrelevant
to them. Thus, the end of scheduling window marks the time before which the job should
be scheduled for it’s result to be useful for it’s user. It is intended that any job is scheduled
as late as possible within its scheduling window so that latest updates are incorporated in the
route computation to the maximum extent. The actual route computation can be done using
any algorithm which is capable of dealing with dynamically changing graph and doesn’t rely
on heavy precomputation step. In our work, we show results using Dijkstra’s shortest path
algorithm.

We also discuss the possibility of using a query dependent algorithm for route computation.
Particularly, we try to optimize the usage of current routing algorithms by taking into consid-
eration the underlying structure of the network and using that information to choose which
algorithm to use for a given query. Specifically, we treat dense regions in the network dif-
ferently from the sparse regions by defining the notion of graph density. Graph density is
basically an estimate of the number of neighboring vertices of a given vertex in some distance
range. By doing a real time prediction of the nature of subgraph that needs to be dealt with for
a particular query, we are able to choose the most appropriate algorithm for the query compu-
tation. Given a source-destination pair and the results of some static precomputations it can
be determined which of the route computation algorithms from the library is most suitable for
computing the optimal route. We show results for this by comparing Dijkstra’s algorithm and

its bidirectional variant [7]. The key contributions of this work are as follows:

e We demonstrate a proactive method for using real-time updates in road networks that

can offer better utility for travellers.
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e We propose a graph density based method to choose time optimal algorithm for query

dependent route computation on networks.

1.2 Related Work

Even with the availability of rich real time information, current navigation systems rely on
history based models for route guidance. Most popularly, they formulate models which are
capable of predicting the optimal route between a given source and destination according to
the time of departure [2] [3] [4]. This approach lacks in adapting to the real time changes
in the road network such as an accident or development of a traffic jam. Other interesting
approaches include T-drive [12] where authors have collected time dependent taxi trajectories
over a period of time. For each query, they mine this data to suggest a route to the new user.
They have reported good results and attribute that to the intuitiveness of taxi drivers. [13] also
proposes mining of traffic data to find the optimal route.

In another work [14], a completely decentralized approach is taken where cars act as intel-
ligent agents and communicate among each other to reach an optimal route independently.
Game theoretic methods are employed to reach the conclusion. The drawback of such decen-
tralized approaches is that they require the presence of a high-end device at the client’s side,
which needs to store and maintain network data. We would ideally like the system to work
well for thin clients too, who are only capable of broadcasting their location (using GPS etc.)
and have some means of communication to get routes from the server. In [15], authors propose
sending 'k’ best possible routes to the client and then let the client choose which one to take.
Server also broadcasts any real time updates across the road network and its up to the client
to select relevant updates for its local view of the graph. Using this, the client then computes
the best possible route to follow. This approach is proposed to handle the scalability issues by
shedding some load off the server to the client itself. But the reported results suggest that the
local computation does not always result in globally optimum results.

One of our assumptions is the availability of some mechanism which analyzes the updates

along the graph and makes the proper edge weights assignments. In [16] authors integrate
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historical and real time information from multiple sources and develop energy/emission pa-

rameters for vehicles experiencing different traffic and road conditions.

1.3 Motivation

Many algorithms use history based modelling of road traffic to compute the travelling time.
They neglect the real time updates completely or accumulate the updates over time and adapt
the model of road traffic accordingly. But with the real time updates being available along the
network, routing systems can now use it to provide better utility to its users. Accumulated up-
dates can only be used for route computation at a later stage, and will not benefit the users who
are currently travelling on the affected areas. One common limitation of all these approaches
seen thus far is that after route computation, user is abandoned and only after the user specif-
ically asks for route updation, a refreshed route query is registered and computed using the
current location. In this work, we instead propose a proactive system, which continuously tries
to track the user and any updates on the path that the user is on. Consider the scenario in
Figure 1. Here, initially when the user asks for a route from point A to point B, the system
computes it as A-P-Q-B (Fig. 1.1(a)). Upon getting this result, user takes the road segment
AP and starts moving. However, due to some event (an accident for example) as shown in Fig.
1.1(b), traffic on edge QB has started slowing down, making A-P-R-B a more favorable path
(Fig. 1.1(c)). If however, the system fails to communicate this to the user before she starts
travelling on the road segment PQ, then this user ends up travelling on a less optimal path in
spite of the system being able to prevent it. A proactive system, which updates the route for its
users based on latest information along the network can avoid such scenarios and make sure

all the information that it possesses is used to benefit maximum users.
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Figure 1.1: Motivating example for proactive route updation

The other trend followed in related work is to use distributed algorithms which let the client
decide which way to go based on their local view of the graph and updates relevant to it [14].
Such approaches cannot guarantee optimality. Note that even in the absence of an accident on
the current path, there may be scenarios when a proactive system will fair better for its clients.
For example, when there is disturbance on nearby roads, because of which traffic gets routed
to the current path user is travelling on, thereby decreasing the desirability of this path.

Also, note that not all mobile devices today have the capability to handle computations and
communication that is required here. This makes such applications limited to fat clients and
prohibitive for thin clients.

Motivation for discussing the possibility of using a query dependent algorithm for route com-
putation, comes from the various work done in literature. Many algorithms that are able to
speed up Dijkstra’s algorithm do so by using the underlying graph structure of road networks,
which makes it different from other general graphs. In [8], authors use the fact that certain
roads (or graph edges) like highways, are likely to be preferred in a long distance travel. Using

this property, they have optimized their route computation for such queries. But highways play
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no special role when it comes to short distance queries. Using the geographical locations of
the source and destination points, and the underlying graph characteristics it can thus be esti-
mated what kind of algorithm should be used for the computation. A study of the algorithms
is required in this case, to categorize them based on their use cases. For example, algorithm
A is more suitable for short range queries, algorithm B is more suitable for dense regions of
the graph, etc. In the next section, we propose our proactive framework, which deals with real
time updates and tries to communicate the results back to the user in time. We also discuss our

approach for query dependent route computation.



Chapter 2

Real Time Routing Framework

2.1 Overall System Model

Routing in road networks is modelled as shortest path problem on a graph with positive edge
weights. Users pose queries to find optimal paths between a source and a destination, and
navigation systems typically respond to them in a best effort fashion. As discussed in the
previous section, route re-computation is of utility to it’s users if network condition changes
and should reach them before they take the wrong turn. To enable this, we model the problem
as a real time job scheduling problem, where such recompute jobs come with a deadline.
Overall system model is shown in Fig. 2.1. Fresh jobs enter in the job queue from one end,
and are removed from the Job queue for computation from the opposite end. It is scheduler’s
job to find the next job to be computed. If the deadline to compute this next job has not
expired, its result is computed otherwise it is dropped. In either case, a refresh job is added in
the system so that user can be updated about the changing network conditions and the path that
has become more suitable as a consequence. These refresh jobs come with a deadline, which
decides their priority and appropriate place in the job queue. The system model is detailed

below in the subsections.
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Figure 2.1: Overall System Model

We make the following assumptions: Users can be polled for their current location and

some mechanism is in place which analyzes the graph updates in the form of current traffic,

weather conditions etc.

and appropriately adjusts the edge weights in the graph. For our

purpose, we assume the edge weights represent the time it would take to travel on the road

segment represented by the edge.
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2.2 Defining a Job

Jobs are the shortest path queries submitted into the system either by the users, or by the
system itself in response to updates along the network. We broadly define three categories of
jobs: fresh, refresh and redo as follows. While fresh jobs are added by the users, refresh jobs
are system generated as a proactive response to the changing network. Redo jobs can either be

generated by user or system itself.

e fresh job: Represents a new user connecting to the system, asking for a shortest path.
Each fresh job is given a unique ID which represents this user. Subsequent refresh and
redo jobs carry forward this same ID.

e refresh job: Represents a case when user is following the path and system pro-actively
decides whether the user should continue or switch to a different path.

e redo job: Represents scenario where system was late in giving response to the user,
who is now on a different path. Or the user chooses to take a different path and re-
computation is required based on current location. Presently, in our implementation we

are treating them as fresh jobs.

All jobs are aperiodic and independent of each other in the sense that they don’t follow any
precedence relations among them. Jobs are also classified as non-preemtive, because if a job
is paused to make resources free for another job, then it can’t be resumed from where it was
left, since network might have seen updates during this time. Hence, computation will have to
start from beginning. Job scheduling is dynamic and priority-driven. Scheduling is dynamic,
since job can be dispatched from the job queue to any of the available processors in the system,
there is no binding relation between a job and a particular processor. It is priority-driven since
scheduling decisions are based on the priorities of the jobs and take place when events such as
job completions occur.

Fresh jobs are submitted without any deadlines, and are added at the back of the job queue
(Fig. 2.1, block [i]). So their computation depends upon the length of job queue at the time
of their addition. After any shortest path computation is completed (in the form of any job),

a refresh job with source as the next hop and the same destination is added (Fig. 2.1, block
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[vii]). For example, in Fig. 1.1 after job(A,B) is computed, job(P,B) is added as a refresh job.
Refresh jobs come with a deadline since the result of these jobs must be computed before the
user reaches the next turn (vertex P in the above example), otherwise the user will go on the
previously specified path. This ensures that for a given user ID, atmost one job exists in the

system at a given time.

2.3 Computing Job Deadlines

Refresh jobs come with a scheduling window, marked by two timestamp values that are unique
to each refresh job. We note that refresh jobs should not be scheduled too soon. For example,
it doesn’t make much sense to recompute a user’s route when they just began. Thus, the
scheduling of a refresh job must be delayed as much as possible so we can get the most recent
updates on the graph. We call Timestampl as the maturity time for a job, after which it is
eligible for scheduling. A refresh job must not be scheduled before its Timestampl and must
not be scheduled after its Timestamp2 value, which marks its deadline. These jobs have a
deadline since the system must send the results back to the users before they take any turns
forcing them to travel on a suboptimal path. These timestamp values are computed as follows

and are illustrated in Fig. 2.2.

Timestampl = Current_time + a * time(s, v) (2.1)
Timestamp2 = Current_time + time(s,v) — A (2.2)

Timestampl < Scheduling time < Timestamp?2 (2.3)
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Figure 2.2: Timestamps for refresh jobs

Here « is any constant € (0,1) which is used to delay the execution of the refresh job so
that more updates can be included. Function time(s,v) returns the time it would take for user
to travel from point s to point v in the current network scenario. A is the upper limit on
the estimated time taken to compute the shortest path + communicate the result back to user.
Higher « value indicates that the route will be computed as late as possible and routing window
will be narrow. « is used in the computation of the maturity time (Timestampl) of a job and
A is used in the computation of the deadline (Timestamp2) of a job. While scheduling of a
job after Timestamp1 ensures that the latest updates in the network are included in the route
computation, scheduling before Timestamp?2 ensures that the results are sent to the user in time,
before she reaches the next junction and hence can take the appropriate turn. We drop a job if
the current time exceeds its Timestamp?2 value since it would result in wasted computational

effort (Fig. 2.1, block [iv]).

2.4 Job Scheduling

The overall scheduling algorithm is summarized in Algorithm 1 below.
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Algorithm 1 Job Scheduling
1: while (1) do

2:  while |(Queue Empty) do

3: ptr < queue head

4: if ptr.jobtype = fresh then

5: goto compute

6: else

7: if ptr.jobtype = refresh & matured(ptr) = true then
8: goto compute

9: else
10: if ptr.jobtype = refresh & expired(ptr) = true then
11: dropped jobs + +
12: goto add
13: else

14: ptr < next(ptr)

15: end if

16: end if

17: end if

18:  end while

19: compute:

20: compute shortest path
21:  add:

22: find next hop

23: add refresh job

24: end while

Relative priority between two refresh jobs is calculated using their deadlines or Times-
tamp?2 values. Earliest deadline first algorithm with Timestamp?2 as deadline is used to find the
next job to be scheduled for all the jobs that have matured at a given time. Relative priorities

between refresh jobs and the fresh jobs are dynamically assigned using aging for fresh jobs.
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A job queue is maintained, such that at any given time the first job in the queue is having the
highest priority for scheduling. If, however this job is not matured at the time, then next job is
checked and so on. Insertion in the job queue (Fig. 2.1, block [viii]) follows the rules as stated
below. Assume queue state as shown in Fig. 2.3(a). Here Queue is maintained as a linked list,
where cell with ’R’ denotes a refresh job and "F’ denotes a fresh job. Queue head is on the left,

from where next job to be computed is searched.

AN AN /' /' RN )

(a) Initial queue state

A /N AN AN AN J
(b) Case |
" W U U
A J A AN AN AN J
(c) Case ll
N R
A /N J A AN AN J
(d) Case lll
SEREaEE &
A /N /N AN J A J
(e) Case IV
N
A AN AN J A AN J
(f) Case V

Figure 2.3: Job Queue Insertion

e Case I: If a fresh job is to be inserted in the job queue, it is added in the back as shown
in Fig. 2.3(b).

e Case II: If a refresh job is to be inserted, such that its Timestamp?2 value falls between
two consecutive refresh jobs, it is simply added in the middle as shown in Fig. 2.3(c).

e In case there are fresh jobs in between, then depending upon the priority, the position
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of the new job changes. If refresh job is given higher priority over fresh jobs then case
III is followed as shown in Fig. 2.3(d). If fresh job is given higher priority then case
IV is followed as shown in Fig. 2.3(e). If the relative priorities of fresh jobs and refresh
jobs are dynamically computed, then any of the case III, IV or V [Fig. 2.3(f)] can be

followed.

In our framework, we followed dynamic priority between fresh jobs and refresh jobs by
giving an aging factor to the fresh jobs. Initially Case I1I is followed, giving higher weightage
to a refresh job over fresh job. But, each time a fresh job is pushed back in the queue to make
room for a refresh job, its aging factor increases. If the age increases beyond a threshold,
all other refresh jobs are added behind it following case IV and case V. Addition of refresh
job is explained in Algorithm 2 below. When a fresh job enters queue, it’s age is 0. After
every insertion of a refresh job before it, its age is incremented. If its age value exceeds some
predefined threshold, then it gets higher priority then all the other refresh jobs that will enter
the system from then on.

Consider two refresh jobs denoted as R and fresh job as F. The following equations define

the relative priorities.

If, Timestamp2(R1) < Timestamp2(R2), then:

Priority(R1) > Priority(R2) (2.4)

If, AgingFactor(F) < Threshhold, then:

Priority(R) > Priority(F) (2.5)

If, AgingFactor(F') > Threshhold, then:

Priority(F) > Priority(R) (2.6)
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Algorithm 2 Insertion of refresh job
1: if (Queue Empty) then

2:  queue head < next_refresh_job

3:  return done

4: end if

5: ptr < queue head

6: while ptr ! = NULL do

7. if ptr.jobtype = refresh && ptrtimestamp2 > next_refresh_job.timestamp?2
then

8: insert next_refresh_job before ptr

9: return done

10:  end if

11:  if ptr.jobtype = fresh && ptr.age < threshold then

12: insert next_refresh_job be fore ptr

13: temp < pitr

14: while temp.jobtype = freshjob do

15: temp.age + +

16: temp < next(temp)

17: end while

18: return done

19:  end if

20:  ptr < next(ptr)

21: end while

22: add next_refresh_job at queue end
23: return done




Chapter 3

Case Study

In this section we present findings from our simulations. Road networks used for the experi-
ments are various cities of USA as provided by the Dimacs Implementation Challenge [9]. We
worked on the Great Lakes, USA (LKS) graph instance for testing our real time framework,
and many other input graphs for comparing Dijkstra and bidirectional Search, details of which

are provided in Table 3.1.

Table 3.1: Graph instances used

Graph Name Number of Vertices Number of Edges

TG 18263 23874
BAY 174956 223001
SF 321270 800172
COL 435666 1057066
LKS 2758119 6885658

3.1 Experimental Setup

All experiments were performed on a system with 7.9 GiB memory, Intel Core2 Quad CPU
Q9550 @ 2.83GHz x 4 processor and 300 GB disk. The implementation is C based, using
pthreads library. Some pre-computations for computing graph density were done in R using
the igraph package [10]. The graphs are static in nature, and the edge costs represents the time

it takes to travel on the road segment represented by the edge. Due to the lack of availability

17
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for dynamic datasets, we used random updates along the graph to demonstrate our model.

Random shortest path queries are generated using internal BASH function SRANDOM.

3.2 Implementation

The framework was implemented using C pthreads library. Main thread or scheduler, initial-
izes a fixed number of worker threads whose job is to compute shortest path and add a refresh
job if the destination hasn’t been reached yet. Scheduler manages the job queue, and selects
the next job to be computed by traversing the queue from the head. The first fresh job or
matured refresh job is picked and given to a free worker thread. A separate thread focuses on
updating the edge weights along the network. New jobs are regularly fed to the scheduler in a

random order.

3.3 Results for Real Time Routing Framework

We compared our framework with FIFO queue setup. In FIFO setup, priority is given to
the job which was submitted earlier and this priority doesn’t change dynamically. Since, job
deadlines are not maintained, FIFO responds in best effort fashion. Our framework on the other
hand, prioritize jobs based on their deadlines and dynamically change it using aging. We also,
avoid doing computations whose results can’t reach users in time. Keeping everything else
same, jobs are added in the FIFO queue using their Timestamp1 values and are computed in
first come first serve basis without any regard to their deadlines. If a job is computed after it’s
Timestamp?2 value expires, then it is considered as wasted computation and termed as dead job.
The number of dead jobs are then compared with the number of dropped jobs from our setup.
Fig. 3.1 shows the simulation results with oo = 0.5. Total queries (fresh and refresh) submitted
are shown in blue, red bar shows the number of dead computations being made in case of
FIFO. Yellow bar shows the number of dropped jobs when our framework was used. Not only
is the number of dropped jobs lower than the dead jobs, it is to be noted that simulation run

using our framework took significantly lesser time since a lot of wastefull computation was
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avoided. We can see that for an increasing number of total queries, number of dead jobs (or
wasted computation) by FIFO also increases, and stays higher than the number of dropped
jobs in case of our real time job scheduling framework. Note that dropped jobs are not wasted
computation since they are not executed at all. Fig. 3.2 shows simulation results for o = 0.6
for the same number of total queries. With increasing «, the scheduling window decreases and
we see that more number of queries result into dead computation or are dropped as compared
to before. So, if there is a requirement of including the most recent updates into the results,
then our framework out-performs FIFO. The aging factor for fresh jobs is kept at 3 in all the

experiments, meaning at most three refresh jobs can push a fresh job back in the queue only.
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Chapter 4

Query Dependent Route Computation

4.1 Background

Dijkstra search is an algorithm to find shortest path from a given source (.5) to a given des-
tination (7). In each iteration of the algorithm a new vertex is added to the list of vertices
whose shortest path has been found (called visited vertex). Roughly, the method is analogous
to growing concentric circles of increasing diameter around S, each including a new vertex
into the list of visited vertices. Till the next circle touches 7', at which point the search stops.

This is illustrated in Fig. 4.1.

Search Space for Dijkstra's Search
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Figure 4.1: Search space of Dijkstra’s algorithm grows in concentric circles

21



CHAPTER 4. QUERY DEPENDENT ROUTE COMPUTATION 22

The disadvantage of Dijkstra’s search is that it spans a huge search space, before reaching
T it finds all the vertices of distance less than 7" in all directions. To alleviate this problem,
bidirectional search is employed. In this method, two simultaneous searches, one from S and
another from ’t’ are started and in each iteration of bidirectional search two vertices are found,
one from S and one from 7". The searches stop when they encounter a common visited vertex,

say V. Fig. 4.2 illustrates the search space for the two methods.

Search Space for Dijkstra's Search

|
|

Search Space for Bidirectional Dijkstra's Search

Figure 4.2: Search Space: Dijkstra’s search vs. Bidirectional Search

Below is the proof of the fact that the shortest path from S to 7" can now be found only

among the visited vertices of both the searches.

4.1.1 Proof of Correctness: Bidirectional search

To prove that the shortest path from .S to 7" will only consist of vertices inside the search space
of bidirectional search consider the following:
Assume there’s a vertex U in the shortest path from s to t which is outside the search space

of bidirectional search. Fig. 4.3 illustrates the same.
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Figure 4.3: Stopping criteria for Bidirectional Search

So the assumption is that shortest path from S to 7" is equal to SU + UT'. Since this the

shortest path it must be lesser than (or equal to) any other path from S to 7". We have:

SU+UT <SV+VT (4.1)

Also from definition of Dijkstra’s search algorithm, we know that any vertex that has not
already been visited is farther from the vertices that have been visited. Since U has not been

visited, we can safely say that V' is nearer to .S and 7". Thus we have:

SV < SU 4.2)

VT <UT (4.3)

Adding equations (2) and (3) gives us:

SV+VT <SU+UT (4.4)

Comparing equations (1) and (4) we get that

SV +VT =SU+UT 4.5)
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Thus the path through U is only as small as the path through V' and can’t be smaller than
that. Hence the proof that shortest path can be found inside the search space of Bidirectional

search is complete.

4.2 Our Approach

While computing route for a given query, further optimizations can be made by selecting the
best algorithm for that particular query (Fig. 2.1, block [iii]). Most algorithms use bidirectional
search over simple Dijkstras algorithm because of its lesser average query computation time.
However, we observed that for a significant percentage of queries, bidirectional search does not
perform better than Dijkstras algorithm. We tried to predict which algorithm out of two will
be more suitable for a given query. We do this by estimating the search space of the algorithm
using the notion of graph density. By doing so, we are able to achieve lesser average query
time than both Dijkstras and bidirectional search.

The success of bidirectional search over Dijkstra’s algorithm is in the reduction of the
search space as can be seen in Fig. 4.2. If the reduction in search space is not much (beyond a
certain limit) then the speedup of carrying out bidirectional search falls short of the overhead
incurred. In our method, we try to estimate the reduction in search space for a given source and
destination , before running the query itself. To enable this, we define a notion of density in
a graph. Intuitively, if for a given query, graph is dense in the regions pruned by bidirectional
search, it is beneficial. But if the pruned regions are sparse, we don’t extract much benefit out
of using bidirectional search for this query. In our setup, density is a function of two values,
source vertex and distance range. It is the number of vertices whose shortest path distances

from source are inside the given distance range as shown in Fig. 4.4.
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Densities from source vertex S

Figure 4.4: Graph Density

Here density around source S for distance range 10 is 5, distance range 15 is 9 and so on. To
calculate exact density we need to compute all pair shortest path distances and form our density
table for lookup as part of pre-computation. This can be improved using the approximation
approach as discussed in [11]. They reduce the O(V?) space requirement to O(%;) where V
is the number of vertices in the graph and ¢ is the error in the accuracy of the shortest path

distance.

4.3 Results for Query Dependent Route Computation

Using the notion of density as defined above, we ran experiments where we take ratio of
the search space as will be spanned by Dijkstra’s search over that of bidirectional search.
Experimentally we found if the ratio is not greater than 1.4, Dijkstra’s search performs faster.
For cases where ratio is greater running bidirectional search is more likely to give better results.
Fig. 4.5 shows that out of 250 random queries, Dijkstra’s algorithm outperformed bidirectional
search for 83 queries for San Francisco Road Network (SF). These are shown in red, rest in
blue. The horizontal axis here represents the number of hops in the shortest path. Vertical axis
represents ratio of iterations taken by Dijkstra over bidirectional search. It can be observed

that there’s a nice separation between the queries for which bidirectional search is better at
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around y = 1.4. Also, we observe that it has nothing to do with long or short distance queries
(hops). At the query processing time, given source and destination vertex, we do a lookup to
determine in which distance range does the destination vertex lie and thus get the density value
of source for that distance range. Fig. 4.6 shows speedup achieved in average query time by

using this lookup based prediction.
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Chapter 5

Conclusion and Future Work

In this work we developed a deadline based, real time routing framework which is proactive in
it’s route updation and includes the real time updates for route computation that are available
along the network. The categorization of jobs as fresh and recompute jobs and calculating
their scheduling window is the takeaway from this work. Experimental results suggest that
our framework fairs better over a general FIFO like method as it reduces the wasted computa-
tional effort and thus is able to do more work. Possible extensions to this work are including
driver dependent information like speed group categorization, and changing the parameters
accordingly. We also discussed the possibility of using query dependent algorithm for route
computation. Results suggest that between Dijkstra’s search and it’s bidirectional variant, the
nature of subgraph does influence the speed up that can be attained. Future work in this direc-
tion would be to categorize more algorithms using underlying network structure and develop

their use cases.
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