High Performance Computing Cloud - a
Platform-as-a-Service Perspective

Pratima Dhuldhule, J. Lakshmi, S. K. Nandy
Supercomputer Education and Research Centre
Indian Institute of Science, Bangalore, India
pratima@cadl.iisc.ernet.in, {jlakshmi, nandy}@serc.iisc.ernet.in

Abstract—HPC applications are widely used in scientific and
industrial research, data analytic and visualization, social be-
havioral studies etc. Most HPC applications require dedicated,
available and highly customized resources and environments for
computation since they exhibit intense resource utilization. These
needs were traditionally provided by clusters and supercomputers
which are difficult to setup, manage or operate. While majority of
the HPC installations ensure good resource utilization, the reach
of these is restricted to few who are members of a specific HPC
community. Cloud computing is emerging as a latest computing
technology. The on-demand nature of cloud has provoked interest
to explore if cloud properties can be useful for HPC setups.
This paper is a work in that direction. The prevalent public
clouds have accessibility to many and have been explored by the
HPC community too. The biggest deterrent identified on these
computing platforms for HPC workloads is the virtualization
layer used by the cloud systems for resource provisioning.

In this paper we propose a Platform-as-a-Service model to
build an HPC cloud setup. The key goals for the architecture
design is to include features like on-demand provisioning both
for hardware as well as HPC runtime environment for the cloud
user and at the same time ensure that the HPC applications
do not suffer virtualization overheads. The architecture builds
the required HPC platform by providing dedicated node or
a group of nodes booted with the desired HPC environment
without the virtualization layer. Technologies like Wake-on-LAN
and network booting are used to achieve this goal. Once the
usage of these resources is relinquished, the same nodes are
re-deployed for another HPC platform. Thus this architecture
merges cloud properties with HPC platforms for delivering
effective performance. We show the results of benchmarks used
to evaluate performance difference between a virtualized and
non-virtualized environment for this observation.

Keywords: Cloud Computing, High Performance Computing,
Virtualization, Platform-as-a-Service

I. INTRODUCTION

Cloud computing is growing as a popular computing tech-
nology. Cloud is being extensively used for enterprise or
business tasks because there is no need to own an infras-
tructure, handle the services and maintain it. It provides on-
demand resources and services on a metered basis. This is
cost efficient as we pay for whatever we are using and once
a task is done we give away the resources and stop paying
for it. Also the availability, scalability, flexibility are some
of the attractive features of cloud computing. It’s availability
and on-demand nature are some of the major reasons for it’s
growth. The main idea behind cloud computing is enabling a
virtual machine to run on any server. Since there are many

customers and many servers, the management of the infras-
tructure must be highly automated. A customer can request
the creation or removal of a virtual machine and without
human intervention a virtual machine is started or stopped
on one of the servers. To take advantage of the economic
benefits, the cloud providers use multi-tenancy, where virtual
machines from multiple customers share a server. This catering
to different users at a time is possible due the hypervisors
present in virtualization layer. At a physical level, the resources
are shared between different users and applications. It caters to
different variety of applications such as enterprise workload,
social networking, data storage and research computations.
The needs of these applications are also different. Resource
requirements are manly in the area of networking, disk IO,
CPU etc.

Due to all the benefits of cloud, it seems an attractive
option for HPC workloads. Feature like flexibility plays an
important role as it is not seen in dedicated machines. If on
a dedicated machine, different environment is required, a new
cluster has to be set up with the required environment which
can take upto several days. On the other hand cloud provides
variety of environment on-demand easily. The property of
elasticity in the cloud is also useful for HPC applications
as an HPC application may require scaling in between the
computation. Availability is also one of the property useful
for HPC workloads.

Inspite of all the above advantages of cloud for HPC
applications, there are some serious issues related with it.
HPC applications are used in academia and laboratories for
research, hence need guarantee of resources and timely results.
They tend to consume more than 90% of the available CPU
cycles, require low latency and high bandwidth inter-process
communication, which is difficult to achieve in a virtualized
environment due to I/O overhead and delay in CPU cycles
[1]. Previous work shows that Cloud is one or two mag-
nitude worse as compared to Infiniband, which is currently
used in supercomputers for interconnect network [2] [3]. The
virtualization of interconnect becomes a bottleneck for HPC
applications and increases latency of communication intense
applications. Thus the use of virtualization layer proves to be
a major hindrance in performance of HPC applications [4].

The notion of virtualization was brought in mainly to utilize
all the existing resources, as virtual machines share the overall
resources instead of having equal share of it. Under-utilization

is not an issue in case of HPC applications as they are capable
of utilizing major portion of available resources. Past results
[2] [4] [5] on evaluation of HPC applications on Cloud using
laaS platform with virtualization have been pessimistic. [2]
tells that not all types of HPC applications are suitable for
Cloud. The HPC applications with less intensive communica-
tion patterns and having less sensitivity towards interference
perform well on Cloud. Applications with performance needs
that can be met at small to medium scale execution (in terms
of number of cores) are suitable for Cloud under virtualized
environment [5] [6].

This paper discusses the idea of converging the benefits
of Cloud like elasticity and flexibility with HPC platforms to
create an environment for HPC workload. PaaS properties are
explored for achieving this goal as PaaS has the ability to
provide on-demand platform, abstracts and controls the un-
derlying resources and gives choice of platform and guarantee
of performance. Instead of improving the virtualization layer
we propose a model where virtialization layer is completely
removed. By elimination of virtualization layer and with PaaS
model a framework is obtained for provisioning of dedicated
platforms. On-demand environment is setup by booting a
node with desired operating system and runtime libraries for
building user-specific HPC platform. The key contributions of
this work are as follows:

o Provision of a non-virtualized platform to obtain con-

tention free and dedicated use of resources.

e Design of a PaaS model to provide on-demand and iso-

lated environment to meet HPC application requirements.

The organization of the rest of the paper is as follows:
Section 2 discusses about the related work done in the field
of HPC cloud which is followed by Section 3 where we
discuss the methodology of the framework proposed. Section
4 talks about experimental setup and shows the results of the
experiments carried out for performance evaluation between
virtualized and non-virtualized environment. We discuss con-
clusion and future work in section 5.

II. RELATED WORK

Significant work has been done for achieving high per-
formance in cloud. The merging of the two worlds is not
new and has been studied from long time. Scientists have
marched towards deploying their HPC workloads on cloud.
So far, provision of dedicated resources for HPC applications
is largely unexplored on the cloud setup.

There has been work done towards using latest technology
for improving performance in various aspects in the cloud. A
design of heterogeneous high performance IaaS using Open-
Stack to address issues regarding virtualization performance,
heterogeneous hardware and GPUs, high speed interconnects,
advanced scheduling and high performance storage is dis-
cussed in [7]. Several science clouds have been establish
for scientific computations [8]. But no considerable work is
done towards completely removing the virtualization layer to
avoid the overhead. In [9], strategies have been discussed
to remove the hypervisor while still keeping the notion of

VMs. But there are architectural as well as implementation
issues which are not properly addressed. [10] discusses about
environment aware scheduling of HPC applications on cloud
setup to improve performance.

It has been observed that the performance obtained on
cloud is much below than the dedicated machines. The major
performance hindrance is virtualization. Also security issues
are also attached for the scientists while deploying their HPC
workload on cloud [11]. Amazon has come up with a HPC
cloud with special instances provided for compute intense
applications. Different instance types and sizes are provided
for deploying HPC workload at low cost. NASA has conducted
a performance evaluation test of Amazon EC2 vs Pleiades, a
supercomputer in NASA. There performance is tested using
various benchmarks, and considerable drop in performance
is shown in [12]. This work done by NASA concludes that
Amazon EC2 are not yet ready for HPC workloads but the
technology sure is catching up fast. Similar tests have been
carried out to evaluate the performance of HPC applications
on current Cloud setups in [5] [2] and [4].

[3] discusses about the virtualization impact on the network
performance. The unstable network characteristics are caused
by virtualization and processor sharing on server hosts. The
unstable network performance degrades the performance of
and bring new challenges to many applications.

[13] discusses about virtualization impact on HPC appli-
cations for IO and makes an effort in improving 10 perfor-
mance with the help of SR-IOV. It concludes that virtualized
performance for HPC workloads is competitive with that of
native if network-interrupt parameters are tuned to increase
the responsiveness of the SR-IOV system.

In [14], linux containers and VMs are discussed. This study
compares the performance of linux containers and virtual
machines. Performance over different physical resources is
measured and it concludes that the performance of linux
containers is equal or better than VMs in most cases.

The studies carried out till now talk about improvement of
HPC application on the existing architecture of Cloud. But
the methodology presented in this paper gives an architecture
which addresses all the challenges of deploying HPC on
Cloud. The architecture completely removes the virtualization
layer and provides dedicated resources in terms of CPU cores,
memory bandwidth, network bandwidth and storage.

III. METHODOLOGY

There has been work done towards improving the perfor-
mance of HPC applications on cloud platforms. The work
done till date leans towards minimization of the virtualization
overhead and building strategies for isolation on existing
cloud setups. But the problem of latency caused for HPC
workload remains. There is a need of such a strategy which
gives performance comparable to the supercomputers and
dedicated machines used for HPC workloads. In this work,
we present a strategy which brings together the benefits of
cloud and the necessity of HPC applications. In this section an
architecture is presented which delivers the required platform

T
(1) (2)

Platform
Manager

Availability

(10) Checker

-/ =

Admission Control Unit

=

Machine
Scheduler |_

Environment Setup Unit

Netboot
Server

()

(3 4)

v

©) Resource Pool

e,

Resource Information Manager

Monitor

(b)

(1) user sends request to the system

(2) request in the form of XML file

(3) check if the resources are available and compatible
(4) response to the request for resources

(5) resource list made available with machine scheduler
(6) list passed to ESU for creating a compute cluster
(7) ESU boots machines with required setups

Fig. 1.

to the user. The main components of the architecture, as
shown in Figure 1, are Platform Manager (PM), Admission
Control Unit (ACU), Resource Information Manager (RIM),
Environment Setup Unit (ESU) and Monitor. User interacts
with the system through PM which acts as front end, with the
help of which user sends a request for a platform. ACU accepts
the request from PM and performs the task of provisioning
of requested platform to the user if resources are available.
RIM is responsible for maintaining the record of available
resources, frequently updating it and providing it to the ACU.
The setting up of environment and platform is done by the
Environment Setup Unit. After a machine is given to a user
Monitor maintains the state of the machines and responds back
to the ACU. We call the machine or group of machines created
for the user as “compute cluster”. Each component of the
architecture is explained in detail below.

A. Platform Manager

The PM in the architecture acts as an interface between the
user and the system. It provides user the ability to create, man-
age and remove the machines allocated to it. Before specifying
resource requirement, user needs to specify the type of request,
that is, start a new compute cluster (fresh request), scale an
existing compute cluster (scalability request) and stop existing
compute cluster (termination request). Then the user specifies

(8) ESU sends machine ID to the machine scheduler
(9) machine scheduler informs monitor about new
cluster and gets status in return

response to the request is the status

status is informed to the user

(a) monitor gets status of all the machines

(b) monitor updates free list of machines

HPC Cloud Architecture

resource requirement which is divided into two parts. One is
the Host requirement and other is Environment requirement.
The host requirement part consist of type of processor, number
of CPU cores, RAM size etc. The environment requirement
part consist of type of OS, runtime environment etc. Once
this information is obtained, PM forwards it to the ACU in
the form of a XML file. PM is the only way to communicate
with the user hence the system responds back to the user
with the status of request. Also a machine ID is generated
to represent the compute cluster and to ensure isolation. Any
further communication related to the platform, like scaling or
stopping the machine, is done through this interface.

B. Admission Control Unit

The Admission Control Unit, shown in Figure 2, is re-
sponsible for managing the user requests and sending in-
struction to other units for provisioning of a platform. As
the request comes in the form of a XML file from the PM,
the Availability Checker passes this information to RIM and
asks to check for the required resources. If the resources
are available and compatible with the required environment,
RIM sends back the marked resources to ACU. Further the
Availability Checker Unit forwards these marked resources and
runtime environment requirement to the Machine Scheduler.
Machine Scheduler is responsible for giving away the control

compute
cluster
Specs.

Resource ID to
ESU for allocation

req. specs. from{PM

Machine

Availability el
cheduler |_

Checker

req. status to PM Allocation status

_ from ESU
Req. for marked Status to
information resources Monitor
to RIM from RIM

Y

Fig. 2. Admission Control Unit

of compute cluster to the user. It does this by communicating
environment requirements to the ESU to obtain a platform of
user specifications. Once ESU boots the required machines
it sends back a unique machine ID for the user which is
used for future communication related to the platform. Once a
desired machine with required platform is obtained, Machine
Scheduler sends status and machine ID to the PM informing
about the successful allocation of the platform. It also informs
the Monitor so that it makes an entry in its table to keep track
of running systems.

C. Resource Information Manager

The Resource Information Unit is responsible for maintain-
ing information about the available resources. RIM maintains
a list of all free machines in a table populated with information
like RAM size, number of CPU cores, size of disk, NICs
and runtime environment. These entries are maintained by the
Monitor in the table. RIM gets requests from the ACU to
check for required resources. RIM matches the request with
the available resource. The reason to check the availability is
that there is no notion of virtualization present, the resources
become finite in number. Hence availability of resources is
checked. Apart from availability RIM also checks for compat-
ibility of required runtime environment and hardware as some
hardware might not support all the libraries. If they match
then those resources are marked and removed from the free
list. The information about these marked resources like MAC
ID’s is passed back to the Availability Checker in the ACU.

D. Environment Setup Unit

The Environment Setup Unit is responsible for setting up
the required environment for the user platform. The Machine
Scheduler from the ACU sends MAC ids of the marked
machines and the runtime environment to setup on those
machines. The ESU has a netboot server which acts as NFS,
DHCP and FTP server. All the OS images are stored here. All
the machines in the resource pool are in low power mode and
hence the server in the ESU sends a magic packet to bring up
those machines i.e. a notion of Wake-on-LAN is used here.
Once the desired machines are up the netboot server configures
them for booting over network. Once the machines are booted

with desired OS, required libraries are installed in the selected
machines. After environment setup is done, ESU creates an
ID associated with the compute cluster for provisioning to the
user. This ID is unique and represents a single compute cluster.
As the user interacts with the machines using this unique ID,
total isolation of resources is achieved. This ID is given to
the Machine Scheduler to notify it about the completion of
platform creation.

E. Monitor

Monitor is responsible for keeping track of all the compute
clusters and maintaining their state. It maintains the informa-
tion in a table with fields such as User ID, compute cluster
ID, MAC IDs of all machines present in the compute cluster
and IP addresses associated with it and finally the status of the
compute cluster. The User ID column need not be unique as a
single user can own multiple compute clusters. The compute
cluster ID field is unique one as each group is given different
ID for isolation purpose. Monitor gets information about the
new compute cluster from the Machine Scheduler to make an
entry in the table. Until the machines are freed, Monitor keeps
track of all the activities and maintains the current status of the
compute cluster. Monitor is also responsible for updating the
free list of machines maintained by the RIM. Once a machine
or group of machines is freed by a user, Monitor adds those
machines in the free list again.

F. System Tasks

The architecture presented in this paper provides a platform
with specified environment on user demand. The main compo-
nent, ESU, is responsible for creating a compute cluster. It sets
up a platform over the network which gives flexibility to the
user to choose various options for the runtime environment.
The management of the user machine is done through the
user interface that is PM. PM allows user to start, scale or
shutdown the machine. The user monitors the system though
this interface only. All the status updates from the Monitor
are displayed to the user for monitoring of activity and for
the statistics of resource usage. During a scale up request, the
user sends requirements to ACU specifying that it is a scale up
request and provides the ID associated with the machine and
required amount of resources to scale. Now again the process
goes as before like a fresh request but the only difference now
is that rather than associating a new ID to the machine, the
old ID sent by the user is given. Hence it becomes a single
cluster associated with same ID.

For scaling down the user specifies the number of nodes
that are no longer required for the computation task. Hence
they are freed and corresponding changes are made in the
table managed by the Monitor. When user wants to give
away the resources, request to terminate the use is sent and
corresponding machines are freed and kept ready for re-
deploying. The respective changes are made with the Monitor.
In this manner, the architecture provides the functionality of
flexibility and elasticity similar to cloud for HPC workload.

G. Case Study - Machine Failure

A machine in the resource pool can fail or may not respond
at times. Failure can occur in two cases. Once when a machine
is not responding to the ESU during a netboot operation and
second when a machine is given to the user. In the first
scenario, failure is less likely to happen because the monitor
keeps a free machine list with RIM. During updating the free
machine list monitor has to talk to the machine and then
it gets added. Hence only those machines are kept which
respond to the monitor. But still if the machine fails and
does not respond during booting, the ESU send back an
error message to the Machine Scheduler conveying failure of
machines. The Machine Scheduler collects the information
about the required resources from the Monitor and again
requests the Availability Checker to check for the availability
of those resources. The Availability Checker again gives the
required resources if available. In the later scenario, that is
when the user owns the machine, the failure is detected by
the Monitor. Monitor informs the Machine Scheduler about
the failure and gives the information about failed machines.
Machine Scheduler asks the Availability Checker for machines
with same configurations. Once the machine MAC ids are
obtained they are booted with required environment setup.
Thus new set of nodes are booted up and are provided to
the user.

IV. EXPERIMENTS AND RESULTS

The proposed architecture in this paper builds a cluster
without virtualization of any resources. The resource allocated
by the architecture are dedicated to a particular user and no
other user intervenes in the working of it. Hence it can be
said that the compute cluster provided by this architecture
will be same as the non-virtualized dedicated machines used
for HPC workloads. Hence the performance measurement
on non-virtualized machines will justify the performance of
compute cluster and we claim that compute cluster will give
better performance than virtualized environment. To support
our claim, we have conducted experiments to measure per-
formance difference between virtualized and non-virtualized
environment. Experiments were carried out to measure usage
of physical resources like CPU, Memory, Disk and Network.

A. Experiment Setup

The experiments were conducted on a virtualized and a
non-virtualized environment. The host machine had quad-core
intel core 17 Processor with 8GB RAM and 1TB SATA2 disk.
For setting up virtualized environment KVM was used as a
hypervisor. All the VMs used in the experiments had single
vCPU, 1 GB RAM and 30 GB disk space. All the VMs were
pinned to separate CPU cores to obtain isolation and to avoid
delay caused by CPU scheduling. The corresponding non-
virtualized machine was booted with single CPU core and 1
GB RAM. All the machines used for the experiments were
booted with Linux. During the experiment, number of VMs
were increased gradually and the results were taken on VMs
running the same workload simultaneously. For experiments

running same workload on multiple VMs, only those results
were taken into consideration whose completion time differ
by negligible amount. Average of the results on all VMs
was calculated. The benchmarks considered depict the HPC
workload behavior in terms of CPU, memory, disk 10 and
networking. Stream benchmark was used to measure memory
bandwidth and corresponding execution time. NBench bench-
mark was used to measure CPU speed. IOR (Interleaved or
Random) benchmark was used to measure parallel file system
IO performance. And Iperf benchmark was used to measure
bandwidth, packet loss and jitter during UDP and TCP data
streams.

B. Results
60
Hnvm
v
2 Hlvm
m
>
] 2vm
-
£ H3vm
m4vm
integer index floating point index
Fig. 3. NBench : CPU performance
1) Effect of virtualization on CPU performance: For

measuring CPU performance NBench benchmark was used.
NBench algorithm consist ten tasks which are a mixture of
integer and floating point operations. Due to this mix, this
benchmark resembles the HPC compute intense workload. The
iterations per cycle are calculated for each algorithm. The
integer index and the floating point index plotted in the graph
are nothing but geometric mean of tests that require integer and
floating point processing respectively. The benchmark was run
on non-virtualized and virtualized machines and the number
of VMs was increased gradually. It is clear from the graph
shown in figure 3, that CPU performance is not affected by the
virtualization layer and the performance is comparable with
the non-virtualized machine.

2) Effect of virtualization on Memory performance: Stream
benchmark is a popular benchmark in HPC community. It
measures the memory bandwidth and the corresponding rate
for four simple vector kernels. During the experiment, the
data handled by Stream was kept more than the size of
cache to eliminate any caching effect. The four vector kernels
run multiple times and average bandwidth is calculated for
those runs. The graph in figure 4 clearly shows that the
bandwidth of non-virtualized machine is greater than the single
virtual machine case. As the memory instruction goes through
an additional address translation layer of hypervisor, loss in
bandwidth is observed. Further as we increase the number

7000
6000
o
& 5000
o
2 4000 B nvm
=
2 3000 =vm
=
o
§ 2000 M 2vm
o
1000 H 3vm
0
copy scale add triad
operations
Fig. 4. Stream : Memory Bandwidth
0.09
0.08 7
_ 007
2
“T:' 0.06 7 H nvm
E 005 -
= mym
§ 004 -
=] W 2vm
2 0.03
P H 3vm
0.02 -
0.01 1
G T T 1
copy scale add triad
Fig. 5. Stream : Execution Time for Memory Operations

of VMs, the individual bandwidth for each VM decreases.
The VMs share the memory channels and thus the placement
of memory intense application affect the performance. The
virtualization layer becomes a bottleneck for multiple VM
case. The other graph in figure 5 shows execution rate for
completing a task for each machine. As the bandwidth de-
creases, the corresponding latency raises. This effect is due
to overhead caused by virtualization layer as VMs need extra
time for going through extra abstraction layer.

3) Effect of virtualization on Disk 10 performance: T0R
is designed to measure parallel file system I/O performance
at both the POSIX and MPI-1O level. This parallel program
performs writes and reads to/from files under several sets of
conditions and reports the resulting throughput rates. The api
used here for conducting experiments is MPI-IO with number
of clients set to 16. To avoid the possibility of caching, the
file size was kept more than the free memory on each client
hence the file size used here is 8 GB. While performing the
operation, each participating task opens a shared file, transfers
the data and closes the file. The time elapsed for transferring
the data and total amount of data transferred is calculated from
which bandwidth is obtained. As seen from the graph shown
in figure 6, there is slight drop in write bandwidth while 30%
drop in read bandwidth for a single VM case. As the number

140

120

40

v

]

= 100

o

=

- 80 -

] B write
-

'E 60 o read
c

m

o

-

2

a

20

nvm vm 2vm 3vm

Fig. 6. IOR : Disk Bandwidth

of VMs are increased the write and read bandwidth starts
to degrade further. This drop in bandwidth is caused due to
the longer path a VM has to take to perform the operation.
The disk request has to go from guest OS to the hypervisor
and from the hypervisor to the host OS. The host OS then
generates a call to the disk drivers to perform the operation.
This process is not as speedy as direct physical hardware call
by the host system. Due to this delay the bandwidth of the
VM suffers. Thus virtualization of disk leads to degradation
of 10 performance.

90
80 -
70
60 -
50 -
40
30 +
20
10 ~

W vm-3
W vm-2
o ym-1

M nvm

Bandwidth [Mbits/sec)

nvm vm 2vm 3vm

Fig. 7. Iperf : Bandwidth Measurement for UDP

4) Effect of virtualization on Network performance: Iperf
benchmark creates Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP) data streams and measure the
throughput of a network that is carrying them. For conducting
this experiment, server and client were setup on different
machines present in the same network. For virtualization
case, server was setup on a VM while client was setup
on different machine in a non-virtualized environment. The
number of server was increased gradually. Each VM was
running as a server while clients were connected to each server
separately. To get accurate results, experiment was conducted
during a time when network usage was minimum. Network
performance was evaluated in terms of bandwidth, jitter and

0.2 - 100
0.18 - 90
0.16 T 807
5 014 ¥ 707 Hym-3
£ 012 a2 60
3 = | mvm-2
& 0.1 = 50
g 0.08 - l ' ‘g a0 - Evm-1
< 0,06 - FEECE Hnvm
0.04 - @ 20
0.02 10 A
0 : : 0 . .
nvm vm 2vm 3vm nvm vm 2vm 3vm
Fig. 8. Iperf : Jitter during UDP Transmission Fig. 10. Iperf : Bandwidth Measurement for TCP
experiment. It can be seen from the graph that the total
707 bandwidth used remains same while individual bandwidth for
60 - each VM differ. Also it is observed from the graph that the
50 - individual bandwidth of VMs is not as uniform as in case
E w0 | of UDP. This is due to the re-transmissions caused when a
g packet or its acknowledgement is lost. When a re-transmission
é 30 1 is caused the host resets its TCP window and size of buffer to
20 minimum default size. And thus the throughput suffers due to
10 - this. Thus sharing of NIC causes each VM to wait for its share
F 4 of packets and this delay causes re-transmission of packets.
0 ' ' Thus virtualization of NIC is a bottleneck for VMs.
nvm vm 2vm 3vm
12000
Fig. 9. [Iperf : Packet Loss during UDP Transmission 10000
2 8000
= A
packet loss during communication. Two separate tests for UDP £ 6000 ——nvm
and TCP were conducted. UDP transmission gives information 75: 4000 —-um
about bandwidth, jitter and packet loss. As seen from the a 5000 e um
graph in figure 7, the total bandwidth during UDP transmission ——3um
remains same while individual VM bandwidth is decreased as 0 Prrrrrrre T
we increase the number of VMs. It can be seen clearly that the AR .\9"?‘ ‘,.%"’h,@%“’“@?’b@'»"‘hﬁé‘:&&
bandwidth is uniformly distributed among all the VMs. The vy
graph in figure 8 shows jitter i.e. delay for response, which Message Size
increases with number of VMs. As the VMs share the same
NIC, the communication overhead increases with increased Fig. 11. OSU micro benchmarks : Bandwidth for point-to-point communi-

number of VMs. During the UDP transmission, packet loss is
seen in the network. This packet loss also differs from machine
to machine. Packet loss can be seen in the third graph from
figure 9, where there is nearly 50% packet loss when 2 VMs
are running simultaneously and 70% packet loss when 3 VMs
run simultaneously.

The TCP transmission gives information about the band-
width alone. TCP waits for an acknowledgement for certain
amount of time and if it doesn’t get one it considers that
the packet was lost and again transmits the packet. Hence
it ensures that all packet reach destination. Hence there is
no notion of packet loss in TCP transmission. Figure 10
shows bandwidth of a network during TCP transmission. Same
experimental setup as UDP was repeated for conducting this

cation

We have also conducted experiments with the MPI version
of OSU micro benchmarks to check the communication band-
width and communication latency amoung the MPI processes.
The algorithms checked the bandwidth, bi-directional band-
width and latency for point-to-point communication. Measures
uni-directional bandwidth from one to another MPI rank. Sev-
eral Isends are started followed by a Waitall. The receving side
uses matching Irecvs with Waitall. One iteration ends when the
sending side gets the receive of all messages acknowledged.
The graph in figure 11 shows the bandwidth measured for
different message sizes. It is observed that we get a peak
performance for message size of approximately 64 KB. Also

14000

12000

10000

8000

6000 —¢—nvm

—l—vm

f

2000 \

4000

i BT

Bi-directional Bandwidth [MB/s)

O* B m s s s s e |

T R SR N S © > Ao
WSS @% Py q;;\ &
S

Message Size

Fig. 12. OSU micro benchmarks : Bi-directional bandwidth for point-to-point
communication

1800
1600
1400
1200
1000
800
600
400
200

O -

Latency [us)

Message Size

Fig. 13. OSU micro benchmarks : Latency for point-to-point communication

as the message size increases bandwidth for multiple VM case
decreases.

Figure 12 shows results for bi-directional bandwidth for
point-to-point communication. This benchmark works as the
uni-directional bandwidth benchmark only that both sides
issue first Irecvs followed by Isends and Waitalls. Here also
a peak performance is observed for message size of 64 KB.
The VM performance keeps decreasing as the message size is
increased.

Figure 13 shows the graph for latency during point-to-point
communication. Latency denotes the time taken to transfer a
message of a certain size from one MPI rank to another. Here
the communication is point-to-point and thus two processes
communicate with each other. From the graph it can be seen
that the difference in latency for non-virtualized machine and
a virtualized machine is very less. Also as the number of VMs
are increased the latency increases. The amount of increase is
not drastic but for the realtime applications this loss can be
severe if the application is moved from a dedicated machine
to a cloud setup.

V. CONCLUSIONS AND FUTURE WORK

In this paper we studied different performance tradeoffs of
HPC applications. We evaluated performance across different

physical resources and studied the effect of virtualization on
each of them and found that HPC applications do not give
fair performance on virtualized environment. We presented
an architecture to overcome this performance degradation
caused by the virtualization layer. The key goal of providing
a dedicated and on-demand platform for HPC workload was
achieved through the design of the architecture.

The current architecture has the functionality of starting,
scaling and terminating the compute cluster. The future work
will consist of improving the current architecture for better
functionality and adding more features to it such as paus-
ing/resuming and saving the state of compute cluster to make
it a full fledged framework which acts as a cloud setup for
HPC applications.

REFERENCES

[11 V. Mauch, M. Kunze, and M. Hillenbrand, “High performance cloud
computing,” Future Generation Computer Systems, vol. 29, no. 6, pp.
1408-1416, 2013.

[2] A. Gupta and D. Milojicic, “Evaluation of hpc applications on cloud,”
in Open Cirrus Summit (OCS), 2011 Sixth. 1EEE, 2011, pp. 22-26.

[3] G. Wang and T. E. Ng, “The impact of virtualization on network per-
formance of amazon ec2 data center,” in INFOCOM, 2010 Proceedings
IEEE. IEEE, 2010, pp. 1-9.

[4] C. Evangelinos and C. Hill, “Cloud computing for parallel scientific hpc
applications: Feasibility of running coupled atmosphere-ocean climate
models on amazons ec2,” ratio, vol. 2, no. 2.40, pp. 2-34, 2008.

[5] A. Gupta, P. Faraboschi, F. Gioachin, L. V. Kale, R. Kaufmann, B.-S.
Lee, V. March, D. Milojicic, and C. H. Suen, “Evaluating and improving
the performance and scheduling of hpc applications in cloud,” 2014.

[6] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia,
J. Shalf, H. J. Wasserman, and N. J. Wright, “Performance analysis of
high performance computing applications on the amazon web services
cloud,” in Cloud Computing Technology and Science (CloudCom), 2010
IEEE Second International Conference on. 1EEE, 2010, pp. 159-168.

[71 A. J. Younge, J. P. Walters, J. Suh, D.-I. D. Kang, Y. Park, S. P.
Crago, and G. C. Fox, “Towards a high performance virtualized iaas
deployment.”

[8] S. Srirama, O. Batrashev, and E. Vainikko, “Scicloud: scientific com-
puting on the cloud,” in Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing. 1EEE
Computer Society, 2010, pp. 579-580.

[9]1 E. Keller, J. Szefer, J. Rexford, and R. B. Lee, “Nohype: virtualized
cloud infrastructure without the virtualization,” in ACM SIGARCH
Computer Architecture News, vol. 38, no. 3. ACM, 2010, pp. 350-
361.

[10] S. K. Garg, C. S. Yeo, A. Anandasivam, and R. Buyya, “Environment-
conscious scheduling of hpc applications on distributed cloud-oriented
data centers,” Journal of Parallel and Distributed Computing, vol. 71,
no. 6, pp. 732-749, 2011.

[11] K. Yelick, S. Coghlan, B. Draney, R. S. Canon et al., “The magellan
report on cloud computing for science,” US Department of Energy, Office
of Science, Office of Advanced Scientific Computing Research (ASCR),
2011.

[12] P. Mehrotra, J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff,
S. Saini, and R. Biswas, ‘“Performance evaluation of amazon ec2 for
nasa hpc applications,” in Proceedings of the 3rd workshop on Scientific
Cloud Computing Date. ACM, 2012, pp. 41-50.

[13] M. Musleh, V. Pai, J. P. Walters, A. Younge, and S. Crago, “Bridging the
virtualization performance gap for hpc using sr-iov for infiniband,” in
Cloud Computing (CLOUD), 2014 IEEE 7th International Conference
on. IEEE, 2014, pp. 627-635.

[14] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated perfor-
mance comparison of virtual machines and linux containers,” technology,
vol. 28, p. 32, 2014.

