
Resource Usage Monitoring in Clouds
Mohit Dhingra, J. Lakshmi, S. K. Nandy

CAD Lab, Indian Institute of Science
Bangalore 560 012 (India)

Email: mohit@cadl.iisc.ernet.in, jlakshmi@serc.iisc.in, nandy@serc.iisc.in

Abstract—Monitoring of infrastructural resources in clouds
plays a crucial role in providing application guarantees like
performance, availability, and security. Monitoring is crucial
from two perspectives - the cloud-user and the service provider.
The cloud user’s interest is in doing an analysis to arrive at
appropriate Service-level agreement (SLA) demands and the
cloud provider’s interest is to assess if the demand can be met. To
support this, a monitoring framework is necessary particularly
since cloud hosts are subject to varying load conditions. To illus-
trate the importance of such a framework, we choose the example
of performance being the Quality of Service (QoS) requirement
and show how inappropriate provisioning of resources may lead
to unexpected performance bottlenecks. We evaluate existing
monitoring frameworks to bring out the motivation for building
much more powerful monitoring frameworks. We then propose
a distributed monitoring framework, which enables fine grained
monitoring for applications and demonstrate with a prototype
system implementation for typical use cases.

Index Terms—Clouds, Monitoring, Quality of service, Perfor-
mance analysis, Virtual machine monitors.

I. INTRODUCTION

Cloud computing enables provisioning of a software, plat-
form or infrastructure as a utility to users. The underlying
technology that allows sharing of servers’ infrastructural re-
sources like processing cores, memory and I/O devices is
virtualization. However, varying infrastructural and service
loads may significantly impact the performance of an applica-
tion running on cloud hosts. As a result, building framework
that enables Service Level Agreements (SLAs) based on an
application’s QoS requirements [1] like performance guar-
antees, security levels, reliability and availability constraints
plays an important role for cloud adoption. Monitoring of
infrastructural resources is essentially the first step for building
such frameworks.

Monitoring can be done for various service models of the
Cloud. Service models like Platform as a Service (PaaS) and
Software as a Service (SaaS) are a result of the abstractions
built over the Infrastructure as a Service (IaaS) model. In order
to monitor at the application or platform level, it becomes
mandatory to have necessary monitors in place for the infras-
tructural resources. Unless performance guarantees at the level
of hardware resources like CPU, Memory and I/O Devices are
not given, there is no way that an application’s performance
can be guaranteed [2]. In other words, PaaS and SaaS models
cannot guarantee performance unless a monitoring and control
framework for IaaS model exists. Hence, as a first step, we
explore the resource monitoring frameworks for IaaS clouds.

Both Cloud provider and clients (which could be Service
providers in case of PaaS Clouds, or end users) are the
beneficiaries of resource monitoring. Cloud providers have to
monitor the current status of allocated resources in order to
handle future requests from their users efficiently and to keep
an eye on malicious users by identifying anomalous usage
behaviour [3]. Monitoring is also beneficial to the end-users
since it helps them to analyze their resource requirements, and
ensure that they they get the requested amount of resources
they are paying for. Also, it enables them to know when to re-
quest for more resources, when to relinquish any underutilized
resources, and what proportion of various physical resources
are appropriate for the kind of applications they are running.

The rest of the paper is organized as follows: Section II
provides a few experimental results which motivate the need
for a strong monitoring framework from the cloud-user’s
perspective; Section III provides analysis on the capabilities
and limitations of a few existing cloud monitoring frameworks;
Section IV provides proposal for a distributed resource moni-
toring framework which attempts to overcome the limitations
discussed; and Section V concludes the discussion.

II. MOTIVATION FOR MONITORING

Consider an example of a web server. The usage pattern of
a web server depends on various factors. One such factor is
the time of the day. For example, a server hosting a banking
website is likely to have more hits during day-time when most
of the transactions take place instantaneously rather than at
night-time. Similarly, a web server hosting news is likely to
have more hits on the occurrence of some unusual event like
a Tsunami. Web servers need to maintain sufficient resources
so as to provide uninterrupted service to end users even
during peak usage. However, this approach could keep the
associated resources under utilized mostly [4]. An alternative
approach to handling such scenarios is to map the web servers
to a Cloud Infrastructure, which would take care of the
elastic requirements of a web server and also result in an
economically viable model. Consequently, in the following
sections, we analyse the web server hosted on Cloud. For this
analysis, we use httperf [5] tool as representative of the web
server workload.

A. httperf : A case study

Httperf is a benchmarking tool used to measure web server
performance. It runs on client machines to generate a specific
HTTP workload in the form of number of requests per second.

By varying the characteristics of the generated workload,
we analyse usage patterns of physical resources, maximum
achievable throughput, and the response time [6]. Physical
resource usage patterns are observed to identify resources that
act as bottlenecks leading to system saturation. Throughput
and Response time helps determine the request rate when the
system gets saturated. The goal of this experiment is to under-
stand the different resources contributing to the performance
of the application.

B. Experimental Setup

Table I lists the characteristics of the computing resources
we used during our experiment. OpenNebula cloud computing
toolkit [7] is used to build IaaS cloud with Xen [8] as Virtual
Machine Monitor (VMM) or hypervisor. Xen boots into a
privileged hypervisor, called Dom0, with exclusive access to
the hardware. In our setup, Dom0 is OpenSUSE 11.4 with
Xen aware kernel.

TABLE I
MACHINE SPECIFICATION

HW-SW Physical Machine Virtual Machine
Processor Intel i7 Quad-

Core 3.07 GHz
Intel i7 One Core
3.07 GHz

Memory 8 GB 1 GB
Storage 512 GB 8 GB
Platform OpenSUSE 11.4

Xen Kernel
OpenSUSE 11.4

Network
Bandwidth

1 Gbps1 N.A.2

1 Same Network Interface Card is shared by all VMs using
Xen paravirtualized driver.

2 Virtual Machines are connected through software bridge,
without any control/limit.

The table also lists the specifications of a Virtual Machine
(VM) created by OpenNebula toolkit, which is configured
to use Xen driver for Virtual Machine Management and
Information Management. All virtual machines created in
our experiments are identical in terms of their specifications.
Figure 1 shows the different components of the experimental
setup. Three Web Servers are hosted on three virtual machines
on a single host, with httpd as the program serving the http
requests. Client1, Client2, and Client3 simultaneously run
httperf benchmark tests for VM1, VM2, and VM3 respectively.
Since Dom0 has elevated privileges, it is displayed along with
the hypervisor.

C. Experimental Results

Figure 2 shows the experimental results. Figure 2(a) shows
the variation of Net I/O throughput with varying http request
rates from the client running httperf tests. Net I/O data rate
measures the actual network data rate on TCP connections,
excluding headers and retransmissions. Figure 2(b) shows the
variation of response time with varying http request rates.
Response time captures the average time the server takes,
to respond to requests. Both figures show that all VMs get

Client2

Httperf

Client1

NIC

VM1 VM2 VM3

Http Server Http Server

LAN

Httperf Httperf

Client3

Xen Bridge

Http Server

Dom0 +

Xen Hypervisor

Fig. 1. Experimental Setup

saturated at 400 requests per second, as response time in-
creases sharply and Net I/O shows random distribution among
VMs, beyond this request rate. After VMs are saturated,
timeout errors also increase sharply as web servers are unable
to handle requests exceeding their saturation limits, so they
start dropping packets leading to timeouts and subsequent
retransmissions. Both throughput and response time metrics
are measured at the client side.

To understand the resources contributing to the performance
of the httperf client, we observe the resource usage on the
cloud host. We notice that both the VM and Dom0 CPU
usage, and network bandwidth contribute to the behaviour of
httperf client. This is due to Xen virtualization architecture
used. In order to measure resource usage at server side, we
used the XenMon [9] tool to measure CPU usage for Dom0
and guest VMs (called DomUs). For the experiment, each of
the DomUs and Dom0 are pinned to a particular CPU Core.
Figure 2(c) shows the CPU usage with varying http request
rates. The output shows that there is a drastic difference
between the CPU usage of Dom0 and DomUs. Dom0 shows
more than 90% CPU usage when the system gets saturated.
This suggests a strong possibility of Dom0 CPU being a
performance bottleneck leading to system saturation. On the
other hand, all VMs consume just under 20% CPU even at the
time of saturation. Section II-D describes the reason for such
an unexpected behaviour of the system.

D. Analysis

In our setup, Dom0 hosts the physical device driver for the
network interface. To support network device virtualization,
Dom0 hosts paravirtualized backend driver over the physical
device driver and all other guest VMs host the corresponding
frontend driver. All of the incoming packets are first processed
by Dom0’s backend driver, where it identifies their destination.
Dom0’s backend driver can either copy the packet buffer from
its address space to the guest VM’s address space, or it can
use the zero-copy page-flipping technique. Considering the
network packet size, copying data is faster than flipping the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700

N
et

 I
/O

 d
at

a
ra

te
 (

in
 M

bp
s)

Load (Req/sec)

Client1

Client2

Client3

(a) Net I/O throughput with varying httperf load

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700

R
es

po
ns

e
T

im
e

(i
n

m
s)

Load (Req/sec)

VM1

VM2

VM3

(b) Response Time with varying httperf load

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700

C
P

U
 u

sa
ge

 (
in

 %
)

Load (Req/sec)

Dom0

VM1

VM2

VM3

(c) CPU Usage with varying httperf load

Fig. 2. Experimental Results

pages. This entire process involves high CPU usage by Dom0.
Because high usage of CPU by Dom0 involves processing of
packets for other domains, there arises a need for handling
CPU division between domains carefully and appropriately.
This gives us the motivation for a monitoring framework that
gives a fine grained view of resource usage, at least in Dom0,
so that the cloud user knows what resources to ask for and
the cloud provider knows how to efficiently distribute the
resources. Also, fine-grained monitoring of resources can lead
to fairer resource accounting schemes.

TABLE II
MONITOR INFORMATION FROM OPENNEBULA MONITORING

FRAMEWORK

Metrics Value
CPU 15 %

Memory 1048576 Bytes
Net TX 133181200 Bytes
Net RX 185401946 Bytes

III. EXISTING MONITORING FRAMEWORKS

There are a number of open source Cloud Computing Tools
and Resources available, some of them with an inbuilt mon-
itoring module. For example, OpenNebula has a monitoring
subsystem which captures CPU usage of the created VM,
available memory and the Net data transmitted/received with
the help of configured hypervisor drivers, in this case, Xen.
Table II shows the sample output log from OpenNebula for a
particular virtual machine. Net TX and RX shows total number
of bytes transferred and received respectively.

Ganglia Monitoring System [10], initially designed for high
performance computing systems such as clusters and Grids, is
now being extended to Clouds, by the means of sFlow agents
present in the Virtual Machines. Currently, sFlow agents [11]
are available for XCP (Xen Cloud Platform) [12], Citrix
XenServer [13], and KVM/libvirt [14] virtualization platforms.
Nagios [15] is also one of the widely used network and
infrastructure monitoring software application, for which some
of the Cloud computing tools have provided hooks to integrate
with.

Eucalyptus [16] is another open source cloud computing
tool that implements IaaS private cloud, that is accessible via
an API compatible with Amazon EC2 and Amazon S3 [17].
The monitoring service provided by Eucalyptus makes it
possible for the guest virtual machines to be integrated with
Nagios and Ganglia.

A. Limitations in existing frameworks

The monitoring metrics that OpenNebula collects are coarse
grained and one may need to have fine grained process level
data (e.g. CPU usage by netback driver process segregated
into the ones used for different VMs [18], network bandwidth
for a particular process, etc.) to incorporate appropriate QoS
controls for some applications. In the future, OpenNebula
developers have plans to use monitoring data as a feedback to
scheduler (like Haizea [19]) to enforce placement policies [20].

Other Cloud computing tools like Eucalyptus, which inte-
grate well with Ganglia and Nagios, also provide system level
information, but at a more fine grained level. The gap here
also remains the same when it comes to particular application
level monitors.

Hence, we conclude that there is a need for unification
of various software-hardware tools to be able to build an
end-to-end framework which can bridge the gap between the
existing frameworks and the required one. One such attempt
is presented in Section IV.

VM2

Dom0

Host 1 Host 2

Metrics Collector

Cloud Front−end

VM1

VM Agent

Dom0 Agent

VM Agent

Customer 1 Customer 2

Customer Interface Module (CIM)

VM Agent VM Agent

VM1 VM2

Dom0 Agent

Dom0

Fig. 3. Proposed Monitoring Framework Architecture

IV. PROPOSAL : A DISTRIBUTED MONITORING
FRAMEWORK

In this section, we propose a monitoring framework with
monitoring agents distributed over various components in
the Cloud. Next, we show monitoring results of the sample
applications with our implemented monitoring framework.

A. Architecture

Figure 3 shows the basic architecture of a Distributed
Monitoring framework. In a typical cloud setup, there could be
a number of physical hosts (all of them running an independent
hypervisor), and a front-end Cloud entity (like OpenNebula)
to talk to external world. In our proposed architecture, each
host carries a Dom0 agent and a number of VM agents (one
for each VM). All of them communicate with the Metrics
Collector (MC) placed inside the cloud front-end entity, which
in turn, communicates with the Customer Interface Module
(CIM).

Customers initiate the monitoring request by an interface
provided by CIM. CIM instantiates the MC module. MC on-
demand instantiates only those VM Agents and Dom0 Agent
which need to gather monitoring information as requested by
customers. The roles of each of these components is described
below in detail:

1) VM Agent: It resides in VM, collects all VM specific
metrics and passes it on to the Metrics Collector. VM specific
metrics could be CPU, Memory and I/O Bandwidth utilization,
either at the system level or fine-grained process level. Metrics
Collector configures VM Agent, such that, it collates the
required metrics. Most of the system level metrics could also
be obtained by the Dom0 agent directly, except that process
level metrics need a VM resident agent.

TABLE III
METRICS SPECIFICATIONS

Metric to monitor Monitoring Interval(in ms)
CPU Usage in VM 500

CPU Usage (Dom0 contribution) 500
Incoming Network Bandwidth 1000
Outgoing Network Bandwidth 1000

2) Dom0 Agent: Dom0 Agent may also be called as Hyper
Agent, since Dom0 is specific to Xen hypervisor. It resides in
Dom0 in case of Xen, collects the per-VM effort that Dom0
incurs and forwards it to the Metrics Collector. As discussed
earlier, Dom0 does a lot of processing on behalf of the guest
VMs, which needs to be accounted to the corresponding VM.
Hence, Dom0 agent complements the VM agent metrics in
order to obtain the complete information. As an example, this
could be the distribution of CPU usage contribution in the
device driver process, virtual switch, or the netback driver, for
each virtual machine.

3) Metrics Collector (MC): It collects the set of metrics,
that are required by the customer, from the CIM; segregates
the metrics required from each of the agents and configures the
agents to obtain the same. Typical configuration could be the
required monitoring metrics and the time interval after which
it needs the monitoring data repeatedly.

4) Customer Interface Module (CIM): Monitoring require-
ments for each customer could vary significantly. One may
require very fine-grained details for debugging purposes or to
take corrective actions at their end, others may leave it upto
the cloud provider. CIM provides a great deal of flexibility for
customers to customize the monitoring metrics based on their
requirements.

B. Applications and Monitoring Results

We choose three applications to demonstrate our monitoring
framework capabilities: Video streaming, Encrypted video
streaming, and httperf. All of the applications chosen gives
a new dimension to our monitoring framework capability.

1) Video Streaming: We monitor a video streaming server
hosted on VMs on the cloud. For this application, four VMs
are deployed on OpenNebula cloud. VLC media player is used
as streaming media server in all of the VMs to stream video
to different clients based on the requests. Real time protocol
(RTP) is used for streaming video over the network, since it
is a standard for delivering audio and video over IP networks.
In order to understand the dynamics of the streaming server
resource usage, we use constant bit rate (CBR) streams in one
instance of an experiment and vary the bit rate in next instance.
CBR stream is generated by transcoding the variable bit rate
(VBR) stream, by padding of artificial bits in between.

An example of a set of metrics a customer may want to
monitor is shown in Table III. For realizing this requirement,
VM agent and Dom0 agent use different tools and provide the
relevant set of data to the MC, which in turn, forwards it to
the CIM.

 10

 20

 30

 40

 50

 60

 70

 10 20 30 40 50 60 70 80 90 100 110

S
tr

ea
m

in
g

R
at

e
ac

hi
ev

ed
 (

in
 M

bp
s)

Streaming Rate requested (in Mbps)

VM1
VM2
VM3
VM4

(a) Streaming rate throughput with varying requested rate

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90 100 110

C
P

U
 u

ti
li

za
ti

on
 (

in
 %

)

Streaming Rate (in Mbps)

Dom0
VM1
VM2
VM3
VM4

(b) CPU usage of Dom0 and VMs with varying requested rate

 0

 2

 4

 6

 8

 10

ovs-vswitchd

netbk
e1000e

openvswitch-mod

C
P

U
 U

sa
ge

 (
in

 %
)

Processes (Dom0)

VM1 Contribution
VM2 Contribution
VM3 Contribution
VM4 Contribution

(c) CPU Usage for Dom0 processes per-VM as measured by Dom0
Agent at the requested streaming rate of 60 Mbps per VM

Fig. 4. Monitoring Results for Streaming Application

a) Bandwidth Monitoring: In our implementation, the
VM agent uses the bwm-ng [21] tool for measuring input and
output bandwidth utilization. Figure 4(a) shows the variation
of achieved streaming rate with requested streaming rate.
Requested streaming rate is referred to the streaming rate
which client requests, or in other words, it the total bit rate
of the video file(s) streamed. Achieved streaming rate is the
actual streaming rate achieved measured by our VM agent.

b) CPU Usage Monitoring: Dom0 agent gathers Dom0
and VM CPU usage using XenMon tool. Figure 4(b) shows
the CPU usage of Dom0 and four VMs while performing

the test with different CBR streams. In contrast with previous
httperf test, system saturates at a very high aggregate network
bandwidth1 of 240-300 Mbps. An explanation to this could be
that, RTP applications typically use User Datagram Protocol
(UDP) as the underlying protocol, which has comparatively
less CPU overhead than TCP used in the httperf test.

Dom0 agent also calculates the CPU Usage distribution on
a per-VM basis, as configured by MC. Dom0 agent calculates
total number of pages mapped and unmapped by Dom0
on behalf of other VMs by capturing page grant map and
page grant unmap events for all VMs during the httperf test.
Since a guest VM always needs to keep buffers ready for the
incoming packet, it offers pages to Dom0 to map onto its own
address space. page grant map captures these map events.
After the reception of the incoming packet by VM, Dom0
unmaps the page. The number of pages actually copied by
Dom0 is approximately the same as number of map events as
well as the number of unmap events, excluding the boundary
conditions (for example, the number of pages that were already
mapped at the time of start of the profiler and at the end of
the profiler are assumed to be equal, unmap events that were
pending at the start of the profiler and at the end of the profiler
are also assumed to be equal, and so on). Hence, average
of these two events gives us a rough approximation of the
number of pages copied by Dom0 to the VM, as denoted by
pages copied[i] for ith VM in 1.

pages copied[i] ≈ (map[i] + unmap[i])/2 (1)

where, map[i] is no. of page grant map events for ith VM
and unmap[i] is no. of page grant unmap events for ith VM.

cpu contribution ratio[j] =
pages copied[j]∑
i

pages copied[i]
(2)

Using oprofile profiler [22], Dom0 agent calculates the CPU
percentage used for a Dom0 process which does processing
for other VMs and divide that in the ratio as calculated by
cpu contribution ratio[j] for the jth VM in 2. Figure 4(c)
shows the distribution of the CPU usage per-VM process level
for streaming . It shows four processes running in Dom0 and
their contribution towards each VM as calculated by above
equations.

2) Encrypted Video Streaming: Next, we monitor the same
video streaming application, but with on-the-fly encryption of
the video and audio streams. We use Common Scrambling
Algorithm (CSA) for encryption of the streams, as it is the
most common algorithm used in Digital Video Broadcasting
(DVB), popularly known as DVB-CSA. In our experiment,
encryption is done purely in software by VLC media player.
Since encryption is CPU intensive task, we expect to see high
CPU usage of VM CPU. Figure 5(a) shows the variation of
achieved streaming rate with requested streaming rate, and

1Aggregate network bandwidth refers to the summation of the saturation
bandwidth of all VMs, namely VM1, VM2, VM3 and VM4.

 5

 10

 15

 20

 25

 30

 35

 10 15 20 25 30 35 40 45

S
tr

ea
m

in
g

R
at

e
ac

hi
ev

ed
 (

in
 M

bp
s)

Streaming Rate requested (in Mbps)

VM1
VM2
VM3
VM4

(a) Streaming rate throughput with varying requested rate

 20

 30

 40

 50

 60

 70

 80

 90

 10 15 20 25 30 35 40 45

C
P

U
 u

ti
li

za
ti

on
 (

in
 %

)

Streaming Rate (in Mbps)

Dom0
VM1
VM2
VM3
VM4

(b) CPU usage of Dom0 and VMs with varying requested rate

Fig. 5. Monitoring Results for Encrypted Video Streaming

clearly indicates the saturation at just 30 Mbps streaming
rate for one VM (or aggregate network bandwidth of 120
Mbps), reason for which is self-explanatory by the next figure.
Figure 5(b) shows VM and Dom0 CPU usage variation with
requested streaming rate. The key observation in this result
is, VM CPUs becomes the performance bottleneck, leading to
the system saturation. Dom0 processes’ contribution towards
each VM remains almost same in this case as of figure 4(c).

3) httperf: Let us now consider the httperf test application
running at the customer’s end. Along with the total VM and
Dom0 CPU usage, we also monitor the CPU usage distribution
of Dom0 processes on a per-VM basis. Figure 6(a) compares
the bandwidth monitored by our VM agent with the Net I/O
measured at the client end. As described earlier, Net I/O
numbers provided by httperf at the client side correspond
to the actual data transferred on TCP connections excluding
headers and retransmissions, therefore, the actual output data
rate by the Virtual Machines exceeds the Net I/O bandwidth
measured by the client. Total VM and CPU usage graph is
already depicted earlier in figure 2(c).

Figure 6(b) shows the distribution of the CPU usage per-VM
process level for httperf, as calculated in 1 and 2. Figure 6(c)
shows the monitored metrics as requested by the customer
from the cloud provider at the load of 400 requests/sec. Mon-
itored values are filled up dynamically by MC after gathering
relevant information from different agents, at the time interval

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700

N
et

 I
/O

 D
at

a
R

at
e

(i
n

M
bp

s)

Load (Req/sec)

VM Agent
httperf client

(a) Bandwidth Monitoring by VM Agent and its comparison with Net
I/O given by httperf for VM1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

ovs-vswitchd

netbk
e1000e

openvswitch-mod

C
P

U
 U

sa
ge

 (
in

 %
)

Processes (Dom0)

VM1 Contribution
VM2 Contribution
VM3 Contribution

(b) CPU Usage for Dom0 processes per-VM as measured by Dom0
Agent at the load of 400 requests/sec

Metric to Monitor
Speed

Monitored Value

VM CPU usage 3.07 GHz 1 500 ms 9.67 %

Dom0 CPU usage contribution 3.07 GHz 1 500 ms 14.31 %

Incoming Network Bandwidth

Outgoing Network Bandwidth

100 Mbps

100 Mbps

1000 ms

1000 ms

3.18049 Mbps

44.73642 Mbps

No. of Cores

Total Allocation

Interval

Update

(c) Metrics Monitored at the load of 400 requests/sec

Fig. 6. Monitoring Results for httperf Application

specified by the customer. In our example, Incoming Network
Bandwidth, and Outgoing Network Bandwidth are collected by
VM Agent and total VM CPU usage, and Dom0 CPU Usage
contribution for each VM is collected by Dom0 Agent.

C. Discussion

There are a number of potential applications which could
use monitoring data of infrastructural resources in clouds. One
of them could be for scheduling decision of a new VM request
by a client. Another application could dynamic reprovision
resources based on monitoring feedback.

Let us consider the case when an existing VM finds its
resources insufficient due to a new incoming requirement.
We could reprovision the VM and Dom0 with more VCPUs,

or place a new VM on a different host. In the streaming
application, the system gets saturated because Dom0 CPU
happens to be the bottleneck. Intuition suggests that allocating
more VCPUs to Dom0 would prevent it from becoming a
bottleneck. However this is not true because the ethernet driver
used in our experiments executes in a serial fashion, hence
it can’t exploit parallelism provided by multiple cores. Since
providing more VCPUs to Dom0 doesn’t help, placing it on a
new VM on a different host turns out to be a better decision
in this case.

In the encrypted streaming application, the system gets
saturated because VM CPU happens to be the bottleneck.
Since the application is inherently multi-threaded, providing
more number of VCPUs to the VM would prevent it from
becoming a bottleneck. In contrast to the previous application,
if an existing VM wants to scale its resources, reprovisioning
the VM CPU is a better option here than to place a new VM
on a different host.

In general, one can solve a system of equations to take
the scheduling decisions numerically, based on the monitoring
feedback. Further details are out of scope of this paper.

V. CONCLUSION

On a cloud infrastructure, having a monitoring framework
for tracing the resource usage by a customer is useful in help-
ing him to analyze and derive the resource requirements. Such
frameworks also provide the transparency to the customer in
knowing his actual usage. The proposed architecture provides
a generic framework that can be customized as per the needs
of the customers. It enables both provider and customer to
monitor their application at a much finer granularity. Our
future work would be to develop a closed loop framework,
wherein the monitoring information would be used as feedback
with proper controls in place, for meeting SLA requirements
of customers.

REFERENCES

[1] J. Lakshmi, “System Virtualization in the Multi-core Era - a QoS
Perspective,” Ph.D. dissertation, Supercomputer Education and Research
Center, Indian Institute of Science, 2010.

[2] Vincent C. Emeakaroha and Marco A.S. Netto and Rodrigo N.
Calheiros and Ivona Brandic and Rajkumar Buyya and Csar A.F.
De Rose, “Towards autonomic detection of SLA violations in Cloud
infrastructures,” Future Generation Computer Systems, no. 0, pp. –,
2011. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167739X11002184

[3] Jin Shao and Hao Wei and Qianxiang Wang and Hong Mei, “A Runtime
Model Based Monitoring Approach for Cloud,” in 2010 IEEE 3rd
International Conference on Cloud Computing (CLOUD), july 2010,
pp. 313 –320.

[4] Michael Armbrust, et al, “Above the Clouds: A Berkeley
View of Cloud Computing,” University of California, Berkeley,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf,
Tech. Rep., 2009.

[5] Mosberger, David and Jin, Tai, “httperf - a tool for measuring web
server performance,” SIGMETRICS Perform. Eval. Rev., vol. 26, no. 3,
pp. 31–37, Dec. 1998. [Online]. Available: http://doi.acm.org/10.1145/
306225.306235

[6] Alhamad, Mohammed and Dillon, Tharam and Wu, Chen and
Chang, Elizabeth, “Response time for cloud computing providers,”
in Proceedings of the 12th International Conference on Information
Integration and Web-based Applications & Services, ser. iiWAS
’10. New York, NY, USA: ACM, 2010, pp. 603–606. [Online].
Available: http://doi.acm.org/10.1145/1967486.1967579

[7] D. Miloji andi and, I. M. Llorente, and R. S. Montero, “Opennebula: A
cloud management tool,” Internet Computing, IEEE, vol. 15, no. 2, pp.
11 –14, march-april 2011.

[8] Chisnall, David, The Definitive Guide to the Xen Hypervisor (Prentice
Hall Open Source Software Development Series). Upper Saddle River,
NJ, USA: Prentice Hall PTR, 2007.

[9] D. Gupta, R. Gardner, and L. Cherkasova, “Xenmon:
Qos monitoring and performance profiling tool,” HP Labs,
http://www.hpl.hp.com/techreports/2005/HPL-2005-187.pdf, Tech.
Rep., 2005.

[10] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed
monitoring system: design, implementation, and experience,” Parallel
Computing, vol. 30, no. 7, pp. 817 – 840, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819104000535

[11] “Using Ganglia to monitor virtual machine pools,
http://blog.sflow.com/2012/01/using-ganglia-to-monitor-virtual.html,”
2012.

[12] “Xen Cloud Platform Project,” 2012. [Online]. Available: http:
//xen.org/products/cloudxen.html

[13] “XenServer.” [Online]. Available: http://www.xensource.com
[14] “Kernel Based Virtual Machine.” [Online]. Available: http://www.

linux-kvm.org/
[15] “Nagios.” [Online]. Available: www.nagios.org/
[16] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,

L. Youseff, and D. Zagorodnov, “The eucalyptus open-
source cloud-computing system,” in Proceedings of the 2009
9th IEEE/ACM International Symposium on Cluster Computing and
the Grid, ser. CCGRID ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 124–131. [Online]. Available:
http://dx.doi.org/10.1109/CCGRID.2009.93

[17] “Amazon Elastic Compute Cloud,” 2012. [Online]. Available: http:
//aws.amazon.com/ec2/

[18] L. Cherkasova and R. Gardner, “Measuring CPU Overhead for I/O
Processing in the Xen Virtual Machine Monitor.” 2005 USENIX Annual
Technical Conference, April, pp. 387–390.

[19] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual
infrastructure management in private and hybrid clouds,” IEEE Internet
Computing, vol. 13, pp. 14–22, 2009.

[20] “Extending the Monitoring System,” 2012. [On-
line]. Available: https://support.opennebula.pro/entries/
352602-extending-the-monitoring-system

[21] “Bandwidth Monitor NG,” 2012. [Online]. Available: http://sourceforge.
net/projects/bwmng/

[22] J. Levon and P. Elie., “Oprofile: A system profiler for linux.” [Online].
Available: http://oprofile.sourceforge.net

http://www.sciencedirect.com/science/article/pii/S0167739X11002184
http://www.sciencedirect.com/science/article/pii/S0167739X11002184
http://doi.acm.org/10.1145/306225.306235
http://doi.acm.org/10.1145/306225.306235
http://doi.acm.org/10.1145/1967486.1967579
http://www.sciencedirect.com/science/article/pii/S0167819104000535
http://xen.org/products/cloudxen.html
http://xen.org/products/cloudxen.html
http://www.xensource.com
http://www.linux-kvm.org/
http://www.linux-kvm.org/
www.nagios.org/
http://dx.doi.org/10.1109/CCGRID.2009.93
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
https://support.opennebula.pro/entries/352602-extending-the-monitoring-system
https://support.opennebula.pro/entries/352602-extending-the-monitoring-system
http://sourceforge.net/projects/bwmng/
http://sourceforge.net/projects/bwmng/
http://oprofile.sourceforge.net

	Introduction
	Motivation for Monitoring
	httperf : A case study
	Experimental Setup
	Experimental Results
	Analysis

	Existing Monitoring Frameworks
	Limitations in existing frameworks

	Proposal : A Distributed Monitoring Framework
	Architecture
	VM Agent
	Dom0 Agent
	Metrics Collector (MC)
	Customer Interface Module (CIM)

	Applications and Monitoring Results
	Video Streaming
	Encrypted Video Streaming
	httperf

	Discussion

	Conclusion
	References

