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Abstract—One aspect of running applications over 

distributed resources is susceptibility to failures like system 

crashes, memory leaks, network congestions, overloaded 

resources, etc. Managing applications in face of such failures is 

a complex task. This is prominent in Grid like environments, 

wherein geographical diversity with resource heterogeneity is an 

inherent characteristic. An approach to masking of resource 

failures is to build applications that can recognize the failures 

and recover from them. This burdens the developer with the 

complex task of understanding and recognizing resource 

failures. This could be a daunting task, particularly with 

heterogeneous resources. The other approach is that the system 

recognizes the effect of resource failures over corresponding 

applications and takes appropriate actions to ensure 

transparency to these failures. Problem with this approach is 

characterizing the resource failure effect on applications.  

 

 In this paper we propose a middle-path approach that uses 

both sides information to effectively mask resource failures in 

distributed environments. We describe a framework that 

illustrates the context information needed within a distributed 

setup, to enable pro-active management. We argue that if the 

system publishes its resources’ availability information, the 

application can use the information to recognize resource 

failures and adapt to them. For this, the system should be 

capable of detecting its internal failures and do fault-

localization at runtime, and publish this fault effect as a loss in 

availability of the resources. As a first step towards this, we 

detail a dynamic fault localization method to obtain the 

availability information of the system hardware layer at 

runtime. Using the current availability information we make 

availability prognosis.  The initial studies made by us indicate 

that the predictions are 90% of the time correct and show 

deviations in about 10% of the cases.  This indicates the 

usability of these predictions at the time of scheduling the 

application. 

 
Index Terms— availability prognosis, distributed systems, 

fault-localization, resource failures. 

I. INTRODUCTION 

ISTRIBUTED systems are a collection of loosely coupled 

resources having independent control. Each system has 

its own operating system that manages its local resources. An 

application intending to use distributed resources has to 

address the lack of central control over resources particularly 

with respect to resource failures. Detecting and managing 

resource failures in distributed environments is a complex 

task in itself. And this complexity increases many folds in 

Grid [1] like environments, wherein geographical diversity 

with resource heterogeneity and independent administrative 

domains, is an inherent characteristic. In such setups, an 

application intending to use multiple systems does not have 

uniform access to information about all resource failures that 

could potentially affect it. In the present scenario of 

distributed environments, this is addressed as a best effort 

case. In existing schemes, on one hand, an application is 

written to trap elaborate exception conditions and make a best 

guess of what could have gone wrong. On the other hand, the 

management services monitor applications periodically, to 

verify its execution status using the local system’s process 

status. There are examples of end-to-end QoS provisioning, 

wherein the application requirements are guaranteed within 

the perspective of performance factors, but not in face of 

resource failures.  

 

Many times, in large distributed setups, there is enough 

resource redundancy that could have easily fulfilled the 

applications requirements. The lacuna lies in the fact, that at 

runtime, for an application, the resource failure or an 

impending resource failure is not visible, even though the 

system is aware of it. And, it is not possible for a system to 

predict when an application would use the failing resource. 

The application notices the resource failure when it’s usage 

request fails. At this point the application may wait forever or 

fail totally. In either case, the application needs user 

intervention. This could mean loss of time and productivity 

for the user.  

 

With the advent of Service Oriented Architecture (SOA), 

[2]-[4] applications and resources in the distributed 

environment are viewed as extensible set of services. SOA 

provides an organized mechanism for representing a service 

with its properties, state and functionality. Within SOA, user 

requests are fulfilled by coordinated interactions among 

various services (e.g. Open Grid Services Architecture - 

OGSA). In such architectures, each service maintains its state 

or context-information as a property, which can be accessed 

by an application intending to use the service. In this paper, 

we use Grid as a representative example of large-scale 

distributed system and explore mechanisms to provide 

proactive fault management of applications, with specific 

focus on highly available applications. To render high 

availability within such architectures, we propose that if each 

interacting service, publishes it’s availability information, the 

management module monitoring the application using that 
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service can monitor the service’s availability information for 

adapting to failures by noticing changes in this information. 

Proactive management services also benefit if this availability 

information is predicted for a future time. Proactive 

management can be effective if one can identify or predict 

failures ahead in time when mechanisms to mask failures can 

provide adaptivity. Of course these mechanisms are rendered 

useless in case of sudden failures where only reactive 

approaches offer solution.  

In order to enable proactive fault adaptivity to failures of 

highly available applications we need to have the following: 

 

1. Runtime Physical Resource Availability 

Information. 

2. Impact of physical resource and system software 

failures on the high available process in 

consideration. 

3. Failure Monitoring and adaptivity services. 

 

Resource Availability Information: Every service is bound 

to a host in the distributed environment. To arrive at a 

meaningful availability number, for the service, apart from 

considering the service as a software (software availability) 

we also need to consider the current availability of the 

physical resource the service is running on. For this, the 

physical resource has to recognize it’s internal component 

failures at runtime and expose the failures in a 

standardized, resource-independent manner. Such a 

standardized, resource-independent representation of the 

availability of various hardware components, comprising a 

system, is included in the system’s hardware health vector. 

In this paper we use hardware health vector and resource 

availability information interchangeably. 

 

Impact of physical resource and system software failures: 

System software (operating system and distributed 

middleware) need to map hardware resource failures to the 

corresponding high level resources like virtual memory 

pages, files, processes, threads, sockets, etc. being used by 

an application process, of interest, and convert the 

hardware health vector to the process health vector. The 

process health vector contains not only the software 

availability of the process but also the availability of the 

virtual resources (operating system’s abstractions of the 

hardware devices) the process is using or intending to use. 

 

Failure Monitoring and adaptivity services: Management 

services enable monitoring and autonomic application 

recovery in face of failures. Examples of these are adaptive 

schedulers that take scheduling as well as rescheduling 

decisions based on predicted and current availability 

information. 

 

In this paper we describe a framework that enables a 

distributed application to autonomously adapt to resource 

failures. At present, for the context of this paper, we 

consider only hardware component failures impacting the 

application under consideration. We expect to extend this 

to include the impact of system software failures also. At 

each level of the framework we detail the function of the 

components and the necessary availability information 

required for that functionality. Following this, we state how 

a distributed scheduler could use the resource availability 

information to enable application adaptivity to hardware 

failures. As a first step to providing resource availability 

information, we describe a method to dynamically localize 

hardware faults. The identified failure is exposed as health 

vector of hardware resources representing the current 

working probability of each resource. We also state a 

method to compute the expected availability, in future time, 

of a hardware resource based on its current availability.   

II. REVIEW OF RELATED WORK 

Based on the contributions of the paper, the review of related 

work is divided into three sub-sections, namely: 

 

A. Review of pro-active fault management frameworks 

for distributed systems. 

B. Review of resource availability information 

representation. 

C. Review of fault localization methods.  

A. Framework for pro-active fault management in 

distributed environments.  

Most techniques on QoS management and fault tolerance, 

reported so far, either satisfy QoS guarantees or handle 

failures; each is addressed in isolation to the other. In large 

scale distributed environments like the Grid, where 

applications could run for many days or use services that are 

not locally accessible, it is necessary to address these two 

issues in conjunction. There are very few references on 

satisfying QoS in face of hardware failures and hardly any for 

proactive fault management for distributed systems. Most are 

reactive fault tolerant methods that use replication to 

overcome effects of faults. In this context there are various 

methods reported to correctly and efficiently communicate 

(group communication protocols) failed resource information 

for taking a decision on consistency of results. One reported 

work that brings out the issue of addressing real time 

guarantees in face of failures is “MEAD: Support for Real-

Time Fault-Tolerant CORBA”[5]. The MEAD system 

captures the need for considering the effect of faults/restarts 

on real-time behavior, uses replication of scheduling and 

resource management components and schedules recovery to 

avoid missing deadlines. The MEAD system addresses 

meeting timing guarantees in real-time systems in face of 

failures. In real-time systems the deadlines are stringent, 

which may not be directly applicable to Grid environments. 

In Grid environments the QoS guarantees need to be treated 

as soft real time deadlines. Our framework considers 
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combining the issues of guaranteeing QoS requirements with 

fault tolerance by taking advantage of potentially abundant 

resources for recovery of applications in face of failures. We 

apply the layered recovery strategies taking advantage of 

multi-tier architecture of Grid. 

 

One recent paper describes a pro-active fault-tolerant 

framework for Grid [6]. This paper presents an agent 

oriented, fault tolerant grid framework where agents deal 

with individual faults proactively. An agent is a software 

service that can take decision on behalf of a user or an 

application and initiate an action. In this framework the 

agents maintain information about hardware conditions, 

executing process’ memory consumption, available resources, 

network conditions and component mean time to failure. 

Based on this information and critical states, agents strive to 

improve the reliability and efficiency of grid services. The 

information of the system that the agent collects is the Mean 

Time To Fail (MTTF) and Mean Time Between Failures 

(MTBF) values along-with the system age. MTTF and MTBF 

are average values and hence are coarse-grained for 

predicting real time behavior. Also, deriving these values for 

a system typically needs a statistical study with large data 

collection. Age of a system typically depends on the usage of 

its components and not just the time since its purchase. Any 

method using these numbers may lead to under utilization of 

the system even when it has capability to deliver correct 

functionality.  

 

In this paper, we propose a framework that uses the 

availability information of service for proactive fault 

management in a layered approach. This approach is different 

from others cited above as it uses the current availability 

information that is based on observing the current state of the 

resources used. The availability information used is fine-

grained and gives the true picture of resource failures in the 

system.   

B. Resource availability information 

Availability is a property attributed to a system and 

understood as its readiness to perform a designated service. 

This readiness is expressed by the MTBF value. MTBF 

represents a statistical average and requires collection of large 

data over long periods of time to arrive at a meaningful value. 

In this paper we propose a novel method to represent resource 

availability. Any computing system consists of hardware 

components that are composed according to the system’s 

architecture for a desired functional specification, and is 

wrapped around in system software to provide the necessary 

user interface. In order to draw conclusions on a system’s 

availability we need to consider the current state of the system 

hardware as well as its impact on software with respect to the 

failures that are occurring. We need a method to identify this 

current state and represent the system availability as a 

composite of its components’ and software availability. In this 

paper we propose a method to identify a system’s current 

hardware failures and analyze the effect of these failures, at 

runtime, from the perspective of its functionality and publish 

them as a resource availability vector. We call this method 

dynamic hardware fault localization. The method gives a 

simple mechanism to quantify and represent hardware 

resource availability information. As of this study we believe 

that there is no published reference on such computation or 

representation of resource availability information. 

C. Dynamic Fault Localization 

Many research efforts have been reported on analyzing event 

logs [7]-[13]. Significant techniques that standout in these 

analyses are statistical fits to log data [7], factor and cluster 

analysis [8]and tupling schemes [9]-[10]. In [7], the authors 

discuss methods for statistical analysis of error logs for 

modeling intermittent and transient errors individually and 

together. They report that since error logs contain an intermix 

of error events from a number of error sources, it is essential 

to separate related errors based on the error sources, to reach 

a statistically meaningful conclusion. The authors used 

Dispersion Frame Technique (DFT), based on heuristics, to 

separate error logs into their constituent error sources and 

provide a set of rules for fault prediction. DFT is reported to 

have predicted 93.7% of the hard failures. In [8] raw event 

log data is reduced to manageable clusters using event 

filtering and time domain clustering methods. Probability 

distributions characterizing the errors were obtained based on 

7-month logged data. Multivariate statistical techniques are 

used to correlate error and failure dependency among 

different system components. The tupling methods reported 

in [9]-[10] focus on generating appropriate rules for data 

reduction to segregate repeated or related events. This work 

examined large sets of data collected over extended period of 

time to establish these rules. Recent publications [11]-[12] 

report the use of time-series algorithms for predicting errors. 

The authors of [11] report the evaluation of three different 

algorithms, namely, time-series, rule-based classification and 

Bayesian network algorithms, for event analysis. For each of 

these algorithms, the parameters necessary for modeling are 

generated out of data collected over a period of one year. The 

authors combine time-series analysis and rule-based 

classification algorithms with the Bayesian network analysis 

for predicting future events based on the observed ones.  

 

Yet another recently published work on predicting failures 

using Hidden Markov Models [13], also extracts failure 

patterns from log collections. It is noteworthy to observe here 

that in all the approaches reported above, error log data 

collected over long period of time was statistically studied and 

methods are evolved based on these studies. The approach 

proposed in this paper is non-statistical method and hence 

does not depend on such a study. Instead, the method uses the 

system architecture for deriving possible failure patterns and 

encodes this into a Bayesian Belief Network in terms of 

independent and dependent failure probabilities of 

components in the system. The errors being logged are 

dynamically segregated into related groups based on spatial 
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and temporal classification rules and marked as evidences on 

the Belief network. The inference derived out of the Belief 

network is used to localize the fault to the respective 

hardware component. So far reported literature indicates 

studies done on massive collections of error event logs. We, 

in this paper, use a method that works on runtime error 

events being generated in the system and derive all the 

parameters for analyzing these events from the system 

architecture. To the best of our knowledge there exists no 

earlier work based on this approach. 

III. FRAME WORK FOR PRO-ACTIVE FAULT MANAGEMENT 

In this section we detail the framework for pro-active fault 

management for an application in distributed environments 

like the Grid. The framework is however not restricted to 

Grids. Figure 1 shows a schematic diagram of the framework. 

The diagram depicts a typical multi-tier architecture of 

distributed environments. In this figure there are four-layers, 

namely, Grid user integrated development environment (Grid 

IDE), Adaptive Grid Meta-Scheduler (AGMETS), Grid 

Middleware and the Grid Fabric, in order of flow of execution 

control. A Grid user composes his application and states it as 

a workflow composed of job steps using the Grid IDE. Each 

job step could be an independent job composed of 

collaborating services. A job step is specified with its resource 

and QoS requirements. Resource availability is specified by 

the job step as a QoS requirement. A highly available 

application would specify its availability requirement as 

100% resource availability. For example, the job step 

specifies its resources requirements as: 

 
<ncpus=1,memory=1Gb,input_file=”/home/myinput”,outpu

t_file=”/homr/myouput”,scratch_dir=”/home/scratch”> 

 

and required resource availability as: 

 
 <processor=1.0, memory=1.0, input_file=1.0, 

output_file=1.0, scratch_dir=1.0> 

 

 The value of 1.0 as availability number against a resource 

means that the application expects all its required resources to 

be 100% available, at all times, during its execution run. An 

application that wants a best of effort run need not specify 

availability as a QoS requirement. AGMETS, Grid 

Middleware and the Grid Fabric use the availability 

information specified by the job step as an input for making 

scheduling, monitoring and recovery decisions. After the user 

completes the composition of his application, the Workflow 

manager calculates each job step’s dependencies, composes 

an execution plan and submits each job step according to this 

plan to AGMETS [14]-[15]. AGMETS parses the resource 

and availability requirements of the application and selects a 

suitable compute node for dispatching the job. AGMETS uses 

the job submission service of the Grid Middleware for this. 

Solid arrows depict this flow of execution control in Figure 1. 

Once the job step is in execution, AGMETS starts monitoring 

the host’s resource availability against the QoS requirements 

specified for the job step. AGMETS gets this information 

from the Grid Middleware’s resource service provider. 

Dashed arrows in Figure 1 depict this flow of information.  

 

The job submission service of the Grid middleware sets up 

the Grid Job Service Monitor and Manager services after the 

job has been successfully submitted to the compute node. If 

the current host’s resource availability drops below acceptable 

limit, AGMETS triggers job-step recovery action like issuing 

an application checkpoint and job step migration to the next 

suitable node. The Grid Middleware publishes the host’s 

resource availability information specific to the job step, the 

process health vector. The Job service monitor uses this 

information to watch current availability of resources for the 

job step. In case a specific resource’s availability drops below 

acceptable limits, the monitor triggers resource specific 

recovery action. For example, the compute node detects file 

read error on the job step’s input file, after the time it has 

started reading, due to media errors on the file staging disk. 

At this point in time the job-step would fail with an I/O error 

on input_file. Since now the compute node is publishing loss 

of availability on the input_file, the Grid Job Service Manager 

can take an autonomous decision on relocating the file by 

issuing GridFTP afresh. The process resource manager 

running on compute node would request the operating system 

of the compute node to relocate the file from the recent 

transfer to an area on disk that has so far not experienced any 

media errors or locate it to an alternate disk.  

 

 

Figure 1: Pro-Active Fault Management Framework for 

Distributed Environments. 

In this framework, we use the concept of recovery oriented 

computing [16] to incorporate autonomous behavior, in face 

of failures, to the application. The necessary information to 

take decisions on when to start recovery is provided by the 

Comment [k1]:  Layers would require 
that the boxes are stacked up one above the 

other. But here they are vertical boxes. So 

the notion of layers is not obvious.  
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health vectors. At each layer of the above framework, we 

define a layer-specific health vector associated with the job-

step under observation. For example, AGMETS looks at the 

compute node’s health viz. Node1’s current capability to 

accept or complete the job-step; the Grid middleware looks at 

health of a specific resource used by the job, for example, 

health of input file for the job-step in the process health 

vector; and the compute node looks at process specific 

resources viz. health of the disk blocks and the file-system 

cache buffer pages associated with the input file. We envisage 

these health vectors to be interdependent and composed at 

runtime. The interdependence is bottom-up, i.e., once we 

know the compute node specific hardware resources (like 

disk, processor, etc.) availability, we can map the process’ 

resources (like thread, file, stack, etc.) health to that of the 

hosting hardware resources and from these compute the job-

step’s host’s health. 

 

As of this study, we have computed the health vector for 

the hardware resources of a node like health of the disk, 

processor, memory banks, etc. The definition and 

computation for the process and job related health, are 

underway. In the framework described here we use a dynamic 

method for hardware fault localization to compute the 

hardware health vector, which is described in section IV. The 

method analyses runtime error events generated on the system 

to compute the current resource availability information. The 

method also makes an availability prediction based on the 

observed error events. The resource managers and the 

schedulers can use this predicted resource availability while 

making resource reservations or allocations. In the following 

section we describe the dynamic fault localization method 

with availability prognosis, and show initial results on its 

effectiveness. 

IV. DYNAMIC FAULT LOCALIZATION 

Dynamic fault localization refers to analyzing error events 

occurring at runtime in a system to isolate the faulty 

component. As of this study, we have limited our fault 

localization to the hardware components in a system 

(Compute Node1 in Figure 1.) In this section we describe a 

non-statistical method for dynamic fault localization that uses 

interaction semantics between components to localize faults. 

During the design phase of the system, the semantics of the 

inter-component interactions drive the system architecture. 

These interactions inherently contain intuitive information 

about failure symptoms. At design time, based on the 

hardware components’ observable failure states, the failure 

monitoring mechanisms are arrived at. When the system is in 

operation, the failure monitoring mechanisms observe for the 

failure states and report them as error events. How a 

component’s failure affects the other components depends on 

the interaction semantics of the components, which can be 

derived based on the functions each component is rendering. 

By capturing the failure-effect of the interacting components 

one can localize the faulty component, which in-turn 

minimizes the dependence on statistical data. This is 

extremely meaningful for new systems. 

 

Our approach to fault localization is based on analyzing the 

errors events generated at runtime. This is carried out in four 

steps as detailed below: 

 

1. Error Event Generation 

2. Spatial Classification 

3. Temporal Grouping 

4. Root Cause Inference. 

 

Error Event Generation: Whenever an erroneous condition, 

occurs in the hardware, certain error registers of that 

hardware are set
1
. These registers are monitored by firmware 

or operating system software components called hardware 

event monitors. These event monitors are normally 

programmed to poll periodically for the error conditions or 

are signaled to wake up on specified errors [17]. Hardware 

faults in a system are detected dynamically by these monitors 

and are registered as events, which are then reported by the 

operating system in the system logs. An incoming error event 

is extracted from the system log and is parsed to extract the 

information necessary for deriving spatial and temporal 

segregation as described later. For the rest of the paper, we 

will use the term system logs or event logs interchangeably to 

mean logs containing hardware error events reported at 

runtime. 

 

Spatial Classification: Most enterprise class systems are 

architected in a way that hardware error propagation in a 

component is contained using Error Correcting Codes and 

parity error checks [18]-[19]. As a consequence, most of the 

effects of failing component are designed to be visible within 

a spatial extent. For this paper, we term such a spatial extent 

(within which errors are contained) as the sub-system. For 

example, any disk adapter error would be restricted to the IO 

sub-system of which the adapter is a part, and not propagate 

to the processor sub-system. In this study, identifying each 

event with respect to the sub-system it originated from does 

spatial classification of events. Spatial classification is 

necessary since the system’s log may contain multiple sub-

system error events reported in temporal proximity, due to 

multiple hardware errors occurring almost at the same time. 

As an error event arrives, it is first sorted into the appropriate 

spatial group. Events in each spatial group are the separated 

into temporal groups as detailed below. 

 

Temporal Grouping:  Within a sub-system, for a permanent 

hardware error, the error set, containing the associated error 

events, cycles repeatedly till some action is taken to rectify the 

hardware error. This repetition, in the worst case, is observed 

once every polling interval. For performing fault localization, 

 
1 This is true in the case of all enterprise class servers. 
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we need to isolate such error sets. For identifying the 

repetitive error sets we define the term “interval of influence” 

(IoI). IoI is used in this paper to denote the time within which 

a related group of events are logged. The relation of events is 

with respect to the influence a hardware error has in the 

generation of that event. Since error events are noticed once 

in a polling interval, in this study, the IoI was set equal to the 

polling interval of the associated monitors of the sub-system 

chosen. From the spatial group, using the IoI, temporal event 

groups are formed. The temporal groups form the basis for 

error inference. 

 

Root Cause Inference: For each sub-system, we derive inter-

component failure-effect relationship using the component 

interaction semantics and capture them as Bayesian Belief 

Networks (BBNs) [20]-[21]. BBNs model problems that 

involve uncertainty. A BBN is a directed, acyclic graph, 

whose nodes are the uncertain variables and whose edges 

represent the causal relation between the variables. In a BBN, 

each node is assigned certain states with prior probability, i.e. 

independent probability of the state’s occurrence. The cause-

effect relations are captured as inter-node state associations 

with a conditional probability of occurrence, i.e. one state 

influencing the occurrence of the other. The BBNs use Bayes’ 

theorem for deducing the probability of occurrence of a 

certain state in a node given the prior probability of the state 

and the conditional probabilities of the affecting states.  

 

By studying all possible events that can be monitored in a 

component, we find that there are basically two categories, 

one that are direct reflection of failures in the component and 

the other that are symptoms of external failures. For example, 

in an IO-subsystem, a failure in a disk is normally preceded 

with timeout and congestion errors on the switch or adaptor 

connecting to it. These timeout and congestion errors are the 

symptoms and not direct reflections of failure. The 

uncertainty here is that the symptoms may not be observed on 

the failing component. Usually, the symptoms appear before 

the cause and by capturing the cause-effect relation between 

the symptoms and failure cause, we can notice the failures 

ahead of their occurrence. BBN models provide an intuitive 

way to model these cause-effect relationships and also provide 

a good mechanism to quantify this relationship. In our model, 

as depicted in Figure 2, each node in the BBN is either the 

component that can fail or the monitor that is observing the 

error event being generated at runtime. A component is 

represented by two states, Working or Failed and the monitor 

is represented by the states corresponding to observable 

events. The cause-effect relation between the observed events 

and the affected component are captured as the conditional 

probability values.  

 

 
 

Figure 2: Depicts the Bayesian Belief Network Model for 

the Fibre Channel Storage Subsystem used in the case 

study for fault localization. The picture denotes only a 

subset of the components and monitors of the sub-system. 

This model was generated using JavaBayes software 

available at [23]. 

 

These conditional probability values quantify the belief of 

dependence among the related nodes and their corresponding 

states. For this study these values are derived from the system 

architecture, based on the interaction semantics of the 

components. Within BBNs independent nodes are designated 

prior probability values representing their independent chance 

to be in Working/Failure states. We have derived the prior 

probability values of the components from the MTBF values 

that are vendor specified. Although the component MTBF 

values are used to assign prior failure probability, it is the 

interaction semantics between the components that decide the 

runtime component failure probabilities, based on the error 

events observed. For building the sub-system BBN model, we 

followed the method described in [22]. The fault localization 

process is bootstrapped with a Bayesian Belief network for 

each sub-system. For each sub-system, events in a Temporal 

Group are marked as evidence of underlying error and an 

inference is drawn for failure probabilities of the components 

in the sub-system. Every time an inference is drawn, the 

current component availability information is derived from 

the failure probabilities and projected as the health vector of 

the system hardware.  

V. AVAILABILITY PROGNOSIS 

Using the current availability information we make 

availability prognosis for the component. The basis for this 

prognosis is as follows: a component fault is noticed once 

within the polling interval of the monitor and the resulting 

error is used to yield the failure probability of the localized 

component. Until the component fault is rectified or a new 

component replaces the faulty one, the error event will be 
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repeated periodically and, in the worst case, noticed every 

polling interval. We use this information to define the decay 

rate of the component. 

For the subsystem we have modeled the polling interval is 

1 hour and by observing the errors once in a polling interval, 

we arrive at the decay rate for the sub-system components to 

be equal to 1. The expected failure probability is calculated 

using an exponential decay function. The drop in availability 

is then calculated as 1-P(F), where P(F) represents probability 

of failure after time t. A(t) is the predicted availability at time 

t and Ac is the current availability. Following equations show 

these calculations: 

 

   P(F) = e
-αt 

, and 

A(t) = Ac(1-e
-αt

) , e
-αt 

 is the component decay 

function, 

α is the decay rate and set to 1 for 

our study, 

and t is time in future for which we 

want to calculate the expected 

component availability. 

VI. CASE-STUDY FOR DYNAMIC FAULT LOCALIZATION 

In order to assess the correctness of the fault localization 

method, we applied this method to analyze hardware error 

event logs generated on a system that was experiencing disk 

media errors in its IO sub-system. The IO sub-system 

consisted of a Fibre Channel Adapter connecting to a Fibre 

Channel Switch, which connected to the failing disk device. 

The error event data collected was for a period of 2 years 

from a HP customer system. A HP field engineer 

independently analyzed this data to identify the faulty disk 

media. The spatial and temporal grouping algorithm 

segregated error events into groups that initially had timeout 

and congestion errors on the adapter followed by intermittent 

disk controller errors (Figure 3). Subsequently, after a period 

of 14 hours disk media errors were reported. The BBN for 

this subsystem reported 75% failure probability with the 

initial event groups and subsequently the media error 

pinpointed to a disk failure; Figure 4 depicts the scenario. 

 

 

Figure 3: Failure Probability of IO subsystem components 

inferred with timeout and congestion error events followed 

by intermittent disk controller error. 

 

Figure 4: Failure Probability of the components inferred 

with disk media error events after a period of 14hrs. 

Using the observed component failure probabilities, we make 

an availability prognosis for a period of two hours from the 

observed values and compare with the actual observed failure 

probabilities two hours later. Figure 5 and Error! Reference 

source not found. show the trend curves for the current and 

predicted availability for the disk and disk controller as 

observed from the event logs of the system. We make an 

optimistic prediction in less than 10% of the cases. This is 

shown by the divergence of the predicted trend curve from the 

current trend curve. Observing the error event data in these 

cases indicates that the deviation of observed failure 

probability from the predicted value is due to the occurrence 

of an error event that helps in pinpointing the cause. To 

illustrate, when the timeout and congestion errors occur, the 

BBN indicated equal chances of failures on all of the IO sub-

system components. This changes to increased disk failure 

probability due to the intermittent disk controller error 

(Figure 3). At this point the predicted availability was 0.82 

whereas the observed availability is 0.25. 
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Figure 5: Trend curves for disk drive current and 

predicted availability. 
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Figure 6: Trend curves for disk controller current and 

predicted availability. 

This observation leads us to conclude two things: 

1. An application that got started due to acceptable 

predicted resource availability could continue till the 

current resource availability reaches an unacceptable 

threshold, wherein it can start a recovery procedure. 

2. This is true in cases where the failure symptoms are 

visible well ahead in time before the actual failure. The 

initial failure symptoms (that of timeout and 

congestion) in our case study coincide with conditions 

that can occur intermittently due to performance 

bottlenecks. Hence, by noticing a small drop (25%) in 

the current resource availability we cannot conclude a 

failure possibility as indicated by the prognosis, but a 

significant drop (75%) definitely indicates a problem. 

VII. ENHANCEMENTS AND FURTHER RESEARCH 

We propose the following enhancements to this method: 

1. The case study described was used for proof-of-concept. 

The BBN was built using a limited set of observed error 

events. However, to study utility of this method on a 

production machine we need to extend the BBN to 

contain all observable error events. These events may be 

a few tens of events. Analyzing event relationships with 

respect to interaction semantics of the components may 

become intricate and complex. We plan to formally 

model the sub-system interaction semantics with a view 

to automatically generate the sub-system BBN. Since the 

conditional probability values used for inference within 

the BBN is derived from the system architecture, we plan 

to conduct sensitivity tests on the BBNs to establish lower 

and upper bounds on the conditional probability values. 

2. It is possible that the BBNs generated could have missed 

interactions. While testing the BBNs we plan to evaluate 

them using actual data from many running systems and 

also integrate with a learning system to arrive at 

acceptable conditional probability values. 

3. As of this study we have evaluated the dynamic hardware 

fault localization method. We plan to evolve a dynamic 

method for analyzing and localizing the effect of system 

software errors and use the combined effect of hardware 

and system software to arrive at the process health vector. 

4. We also plan to integrate the process health vector with 

AGMETS. At the time of AGMETS development, the 

testing was done under simulated conditions. 

VIII. CONCLUSION 

In this paper we bring out the issues of failures while 

running applications over distributed resources. We propose a 

proactive fault-tolerant framework to bring out the context 

information needed to enable pro-active management. We 

state the need and a novel method to represent resource 

availability information and show how the framework uses 

this information, to provide failure transparency to the 

application, in face of failures. We also describe a method to 

quantify the resource availability information at runtime. 

Using a case study we bring out the effectiveness of this 

method. 
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