
FaultLocalization-TR01-CADlab-May2006

1

Abstract—One aspect of running applications over

distributed resources is susceptibility to failures like system

crashes, memory leaks, network congestions, overloaded

resources, etc. Managing applications in face of such failures is

a complex task. This is prominent in Grid like environments,

wherein geographical diversity with resource heterogeneity is an

inherent characteristic. An approach to masking of resource

failures is to build applications that can recognize the failures

and recover from them. This burdens the developer with the

complex task of understanding and recognizing resource

failures. This could be a daunting task, particularly with

heterogeneous resources. The other approach is that the system

recognizes the effect of resource failures over corresponding

applications and takes appropriate actions to ensure

transparency to these failures. Problem with this approach is

characterizing the resource failure effect on applications.

 In this paper we propose a middle-path approach that uses

both sides information to effectively mask resource failures in

distributed environments. We describe a framework that

illustrates the context information needed within a distributed

setup, to enable pro-active management. We argue that if the

system publishes its resources’ availability information, the

application can use the information to recognize resource

failures and adapt to them. For this, the system should be

capable of detecting its internal failures and do fault-

localization at runtime, and publish this fault effect as a loss in

availability of the resources. As a first step towards this, we

detail a dynamic fault localization method to obtain the

availability information of the system hardware layer at

runtime. Using the current availability information we make

availability prognosis. The initial studies made by us indicate

that the predictions are 90% of the time correct and show

deviations in about 10% of the cases. This indicates the

usability of these predictions at the time of scheduling the

application.

Index Terms— availability prognosis, distributed systems,

fault-localization, resource failures.

I. INTRODUCTION

ISTRIBUTED systems are a collection of loosely coupled

resources having independent control. Each system has

its own operating system that manages its local resources. An

application intending to use distributed resources has to

address the lack of central control over resources particularly

with respect to resource failures. Detecting and managing

resource failures in distributed environments is a complex

task in itself. And this complexity increases many folds in

Grid [1] like environments, wherein geographical diversity

with resource heterogeneity and independent administrative

domains, is an inherent characteristic. In such setups, an

application intending to use multiple systems does not have

uniform access to information about all resource failures that

could potentially affect it. In the present scenario of

distributed environments, this is addressed as a best effort

case. In existing schemes, on one hand, an application is

written to trap elaborate exception conditions and make a best

guess of what could have gone wrong. On the other hand, the

management services monitor applications periodically, to

verify its execution status using the local system’s process

status. There are examples of end-to-end QoS provisioning,

wherein the application requirements are guaranteed within

the perspective of performance factors, but not in face of

resource failures.

Many times, in large distributed setups, there is enough

resource redundancy that could have easily fulfilled the

applications requirements. The lacuna lies in the fact, that at

runtime, for an application, the resource failure or an

impending resource failure is not visible, even though the

system is aware of it. And, it is not possible for a system to

predict when an application would use the failing resource.

The application notices the resource failure when it’s usage

request fails. At this point the application may wait forever or

fail totally. In either case, the application needs user

intervention. This could mean loss of time and productivity

for the user.

With the advent of Service Oriented Architecture (SOA),

[2]-[4] applications and resources in the distributed

environment are viewed as extensible set of services. SOA

provides an organized mechanism for representing a service

with its properties, state and functionality. Within SOA, user

requests are fulfilled by coordinated interactions among

various services (e.g. Open Grid Services Architecture -

OGSA). In such architectures, each service maintains its state

or context-information as a property, which can be accessed

by an application intending to use the service. In this paper,

we use Grid as a representative example of large-scale

distributed system and explore mechanisms to provide

proactive fault management of applications, with specific

focus on highly available applications. To render high

availability within such architectures, we propose that if each

interacting service, publishes it’s availability information, the

management module monitoring the application using that

Aids to Pro-active Management of Distributed

Resources through Dynamic Fault-Localization

and Availability Prognosis

D

FaultLocalization-TR01-CADlab-May2006

2

service can monitor the service’s availability information for

adapting to failures by noticing changes in this information.

Proactive management services also benefit if this availability

information is predicted for a future time. Proactive

management can be effective if one can identify or predict

failures ahead in time when mechanisms to mask failures can

provide adaptivity. Of course these mechanisms are rendered

useless in case of sudden failures where only reactive

approaches offer solution.

In order to enable proactive fault adaptivity to failures of

highly available applications we need to have the following:

1. Runtime Physical Resource Availability

Information.

2. Impact of physical resource and system software

failures on the high available process in

consideration.

3. Failure Monitoring and adaptivity services.

Resource Availability Information: Every service is bound

to a host in the distributed environment. To arrive at a

meaningful availability number, for the service, apart from

considering the service as a software (software availability)

we also need to consider the current availability of the

physical resource the service is running on. For this, the

physical resource has to recognize it’s internal component

failures at runtime and expose the failures in a

standardized, resource-independent manner. Such a

standardized, resource-independent representation of the

availability of various hardware components, comprising a

system, is included in the system’s hardware health vector.

In this paper we use hardware health vector and resource

availability information interchangeably.

Impact of physical resource and system software failures:

System software (operating system and distributed

middleware) need to map hardware resource failures to the

corresponding high level resources like virtual memory

pages, files, processes, threads, sockets, etc. being used by

an application process, of interest, and convert the

hardware health vector to the process health vector. The

process health vector contains not only the software

availability of the process but also the availability of the

virtual resources (operating system’s abstractions of the

hardware devices) the process is using or intending to use.

Failure Monitoring and adaptivity services: Management

services enable monitoring and autonomic application

recovery in face of failures. Examples of these are adaptive

schedulers that take scheduling as well as rescheduling

decisions based on predicted and current availability

information.

In this paper we describe a framework that enables a

distributed application to autonomously adapt to resource

failures. At present, for the context of this paper, we

consider only hardware component failures impacting the

application under consideration. We expect to extend this

to include the impact of system software failures also. At

each level of the framework we detail the function of the

components and the necessary availability information

required for that functionality. Following this, we state how

a distributed scheduler could use the resource availability

information to enable application adaptivity to hardware

failures. As a first step to providing resource availability

information, we describe a method to dynamically localize

hardware faults. The identified failure is exposed as health

vector of hardware resources representing the current

working probability of each resource. We also state a

method to compute the expected availability, in future time,

of a hardware resource based on its current availability.

II. REVIEW OF RELATED WORK

Based on the contributions of the paper, the review of related

work is divided into three sub-sections, namely:

A. Review of pro-active fault management frameworks

for distributed systems.

B. Review of resource availability information

representation.

C. Review of fault localization methods.

A. Framework for pro-active fault management in

distributed environments.

Most techniques on QoS management and fault tolerance,

reported so far, either satisfy QoS guarantees or handle

failures; each is addressed in isolation to the other. In large

scale distributed environments like the Grid, where

applications could run for many days or use services that are

not locally accessible, it is necessary to address these two

issues in conjunction. There are very few references on

satisfying QoS in face of hardware failures and hardly any for

proactive fault management for distributed systems. Most are

reactive fault tolerant methods that use replication to

overcome effects of faults. In this context there are various

methods reported to correctly and efficiently communicate

(group communication protocols) failed resource information

for taking a decision on consistency of results. One reported

work that brings out the issue of addressing real time

guarantees in face of failures is “MEAD: Support for Real-

Time Fault-Tolerant CORBA”[5]. The MEAD system

captures the need for considering the effect of faults/restarts

on real-time behavior, uses replication of scheduling and

resource management components and schedules recovery to

avoid missing deadlines. The MEAD system addresses

meeting timing guarantees in real-time systems in face of

failures. In real-time systems the deadlines are stringent,

which may not be directly applicable to Grid environments.

In Grid environments the QoS guarantees need to be treated

as soft real time deadlines. Our framework considers

FaultLocalization-TR01-CADlab-May2006

3

combining the issues of guaranteeing QoS requirements with

fault tolerance by taking advantage of potentially abundant

resources for recovery of applications in face of failures. We

apply the layered recovery strategies taking advantage of

multi-tier architecture of Grid.

One recent paper describes a pro-active fault-tolerant

framework for Grid [6]. This paper presents an agent

oriented, fault tolerant grid framework where agents deal

with individual faults proactively. An agent is a software

service that can take decision on behalf of a user or an

application and initiate an action. In this framework the

agents maintain information about hardware conditions,

executing process’ memory consumption, available resources,

network conditions and component mean time to failure.

Based on this information and critical states, agents strive to

improve the reliability and efficiency of grid services. The

information of the system that the agent collects is the Mean

Time To Fail (MTTF) and Mean Time Between Failures

(MTBF) values along-with the system age. MTTF and MTBF

are average values and hence are coarse-grained for

predicting real time behavior. Also, deriving these values for

a system typically needs a statistical study with large data

collection. Age of a system typically depends on the usage of

its components and not just the time since its purchase. Any

method using these numbers may lead to under utilization of

the system even when it has capability to deliver correct

functionality.

In this paper, we propose a framework that uses the

availability information of service for proactive fault

management in a layered approach. This approach is different

from others cited above as it uses the current availability

information that is based on observing the current state of the

resources used. The availability information used is fine-

grained and gives the true picture of resource failures in the

system.

B. Resource availability information

Availability is a property attributed to a system and

understood as its readiness to perform a designated service.

This readiness is expressed by the MTBF value. MTBF

represents a statistical average and requires collection of large

data over long periods of time to arrive at a meaningful value.

In this paper we propose a novel method to represent resource

availability. Any computing system consists of hardware

components that are composed according to the system’s

architecture for a desired functional specification, and is

wrapped around in system software to provide the necessary

user interface. In order to draw conclusions on a system’s

availability we need to consider the current state of the system

hardware as well as its impact on software with respect to the

failures that are occurring. We need a method to identify this

current state and represent the system availability as a

composite of its components’ and software availability. In this

paper we propose a method to identify a system’s current

hardware failures and analyze the effect of these failures, at

runtime, from the perspective of its functionality and publish

them as a resource availability vector. We call this method

dynamic hardware fault localization. The method gives a

simple mechanism to quantify and represent hardware

resource availability information. As of this study we believe

that there is no published reference on such computation or

representation of resource availability information.

C. Dynamic Fault Localization

Many research efforts have been reported on analyzing event

logs [7]-[13]. Significant techniques that standout in these

analyses are statistical fits to log data [7], factor and cluster

analysis [8]and tupling schemes [9]-[10]. In [7], the authors

discuss methods for statistical analysis of error logs for

modeling intermittent and transient errors individually and

together. They report that since error logs contain an intermix

of error events from a number of error sources, it is essential

to separate related errors based on the error sources, to reach

a statistically meaningful conclusion. The authors used

Dispersion Frame Technique (DFT), based on heuristics, to

separate error logs into their constituent error sources and

provide a set of rules for fault prediction. DFT is reported to

have predicted 93.7% of the hard failures. In [8] raw event

log data is reduced to manageable clusters using event

filtering and time domain clustering methods. Probability

distributions characterizing the errors were obtained based on

7-month logged data. Multivariate statistical techniques are

used to correlate error and failure dependency among

different system components. The tupling methods reported

in [9]-[10] focus on generating appropriate rules for data

reduction to segregate repeated or related events. This work

examined large sets of data collected over extended period of

time to establish these rules. Recent publications [11]-[12]

report the use of time-series algorithms for predicting errors.

The authors of [11] report the evaluation of three different

algorithms, namely, time-series, rule-based classification and

Bayesian network algorithms, for event analysis. For each of

these algorithms, the parameters necessary for modeling are

generated out of data collected over a period of one year. The

authors combine time-series analysis and rule-based

classification algorithms with the Bayesian network analysis

for predicting future events based on the observed ones.

Yet another recently published work on predicting failures

using Hidden Markov Models [13], also extracts failure

patterns from log collections. It is noteworthy to observe here

that in all the approaches reported above, error log data

collected over long period of time was statistically studied and

methods are evolved based on these studies. The approach

proposed in this paper is non-statistical method and hence

does not depend on such a study. Instead, the method uses the

system architecture for deriving possible failure patterns and

encodes this into a Bayesian Belief Network in terms of

independent and dependent failure probabilities of

components in the system. The errors being logged are

dynamically segregated into related groups based on spatial

FaultLocalization-TR01-CADlab-May2006

4

and temporal classification rules and marked as evidences on

the Belief network. The inference derived out of the Belief

network is used to localize the fault to the respective

hardware component. So far reported literature indicates

studies done on massive collections of error event logs. We,

in this paper, use a method that works on runtime error

events being generated in the system and derive all the

parameters for analyzing these events from the system

architecture. To the best of our knowledge there exists no

earlier work based on this approach.

III. FRAME WORK FOR PRO-ACTIVE FAULT MANAGEMENT

In this section we detail the framework for pro-active fault

management for an application in distributed environments

like the Grid. The framework is however not restricted to

Grids. Figure 1 shows a schematic diagram of the framework.

The diagram depicts a typical multi-tier architecture of

distributed environments. In this figure there are four-layers,

namely, Grid user integrated development environment (Grid

IDE), Adaptive Grid Meta-Scheduler (AGMETS), Grid

Middleware and the Grid Fabric, in order of flow of execution

control. A Grid user composes his application and states it as

a workflow composed of job steps using the Grid IDE. Each

job step could be an independent job composed of

collaborating services. A job step is specified with its resource

and QoS requirements. Resource availability is specified by

the job step as a QoS requirement. A highly available

application would specify its availability requirement as

100% resource availability. For example, the job step

specifies its resources requirements as:

<ncpus=1,memory=1Gb,input_file=”/home/myinput”,outpu

t_file=”/homr/myouput”,scratch_dir=”/home/scratch”>

and required resource availability as:

 <processor=1.0, memory=1.0, input_file=1.0,

output_file=1.0, scratch_dir=1.0>

 The value of 1.0 as availability number against a resource

means that the application expects all its required resources to

be 100% available, at all times, during its execution run. An

application that wants a best of effort run need not specify

availability as a QoS requirement. AGMETS, Grid

Middleware and the Grid Fabric use the availability

information specified by the job step as an input for making

scheduling, monitoring and recovery decisions. After the user

completes the composition of his application, the Workflow

manager calculates each job step’s dependencies, composes

an execution plan and submits each job step according to this

plan to AGMETS [14]-[15]. AGMETS parses the resource

and availability requirements of the application and selects a

suitable compute node for dispatching the job. AGMETS uses

the job submission service of the Grid Middleware for this.

Solid arrows depict this flow of execution control in Figure 1.

Once the job step is in execution, AGMETS starts monitoring

the host’s resource availability against the QoS requirements

specified for the job step. AGMETS gets this information

from the Grid Middleware’s resource service provider.

Dashed arrows in Figure 1 depict this flow of information.

The job submission service of the Grid middleware sets up

the Grid Job Service Monitor and Manager services after the

job has been successfully submitted to the compute node. If

the current host’s resource availability drops below acceptable

limit, AGMETS triggers job-step recovery action like issuing

an application checkpoint and job step migration to the next

suitable node. The Grid Middleware publishes the host’s

resource availability information specific to the job step, the

process health vector. The Job service monitor uses this

information to watch current availability of resources for the

job step. In case a specific resource’s availability drops below

acceptable limits, the monitor triggers resource specific

recovery action. For example, the compute node detects file

read error on the job step’s input file, after the time it has

started reading, due to media errors on the file staging disk.

At this point in time the job-step would fail with an I/O error

on input_file. Since now the compute node is publishing loss

of availability on the input_file, the Grid Job Service Manager

can take an autonomous decision on relocating the file by

issuing GridFTP afresh. The process resource manager

running on compute node would request the operating system

of the compute node to relocate the file from the recent

transfer to an area on disk that has so far not experienced any

media errors or locate it to an alternate disk.

Figure 1: Pro-Active Fault Management Framework for

Distributed Environments.

In this framework, we use the concept of recovery oriented

computing [16] to incorporate autonomous behavior, in face

of failures, to the application. The necessary information to

take decisions on when to start recovery is provided by the

Comment [k1]: Layers would require
that the boxes are stacked up one above the

other. But here they are vertical boxes. So

the notion of layers is not obvious.

FaultLocalization-TR01-CADlab-May2006

5

health vectors. At each layer of the above framework, we

define a layer-specific health vector associated with the job-

step under observation. For example, AGMETS looks at the

compute node’s health viz. Node1’s current capability to

accept or complete the job-step; the Grid middleware looks at

health of a specific resource used by the job, for example,

health of input file for the job-step in the process health

vector; and the compute node looks at process specific

resources viz. health of the disk blocks and the file-system

cache buffer pages associated with the input file. We envisage

these health vectors to be interdependent and composed at

runtime. The interdependence is bottom-up, i.e., once we

know the compute node specific hardware resources (like

disk, processor, etc.) availability, we can map the process’

resources (like thread, file, stack, etc.) health to that of the

hosting hardware resources and from these compute the job-

step’s host’s health.

As of this study, we have computed the health vector for

the hardware resources of a node like health of the disk,

processor, memory banks, etc. The definition and

computation for the process and job related health, are

underway. In the framework described here we use a dynamic

method for hardware fault localization to compute the

hardware health vector, which is described in section IV. The

method analyses runtime error events generated on the system

to compute the current resource availability information. The

method also makes an availability prediction based on the

observed error events. The resource managers and the

schedulers can use this predicted resource availability while

making resource reservations or allocations. In the following

section we describe the dynamic fault localization method

with availability prognosis, and show initial results on its

effectiveness.

IV. DYNAMIC FAULT LOCALIZATION

Dynamic fault localization refers to analyzing error events

occurring at runtime in a system to isolate the faulty

component. As of this study, we have limited our fault

localization to the hardware components in a system

(Compute Node1 in Figure 1.) In this section we describe a

non-statistical method for dynamic fault localization that uses

interaction semantics between components to localize faults.

During the design phase of the system, the semantics of the

inter-component interactions drive the system architecture.

These interactions inherently contain intuitive information

about failure symptoms. At design time, based on the

hardware components’ observable failure states, the failure

monitoring mechanisms are arrived at. When the system is in

operation, the failure monitoring mechanisms observe for the

failure states and report them as error events. How a

component’s failure affects the other components depends on

the interaction semantics of the components, which can be

derived based on the functions each component is rendering.

By capturing the failure-effect of the interacting components

one can localize the faulty component, which in-turn

minimizes the dependence on statistical data. This is

extremely meaningful for new systems.

Our approach to fault localization is based on analyzing the

errors events generated at runtime. This is carried out in four

steps as detailed below:

1. Error Event Generation

2. Spatial Classification

3. Temporal Grouping

4. Root Cause Inference.

Error Event Generation: Whenever an erroneous condition,

occurs in the hardware, certain error registers of that

hardware are set
1
. These registers are monitored by firmware

or operating system software components called hardware

event monitors. These event monitors are normally

programmed to poll periodically for the error conditions or

are signaled to wake up on specified errors [17]. Hardware

faults in a system are detected dynamically by these monitors

and are registered as events, which are then reported by the

operating system in the system logs. An incoming error event

is extracted from the system log and is parsed to extract the

information necessary for deriving spatial and temporal

segregation as described later. For the rest of the paper, we

will use the term system logs or event logs interchangeably to

mean logs containing hardware error events reported at

runtime.

Spatial Classification: Most enterprise class systems are

architected in a way that hardware error propagation in a

component is contained using Error Correcting Codes and

parity error checks [18]-[19]. As a consequence, most of the

effects of failing component are designed to be visible within

a spatial extent. For this paper, we term such a spatial extent

(within which errors are contained) as the sub-system. For

example, any disk adapter error would be restricted to the IO

sub-system of which the adapter is a part, and not propagate

to the processor sub-system. In this study, identifying each

event with respect to the sub-system it originated from does

spatial classification of events. Spatial classification is

necessary since the system’s log may contain multiple sub-

system error events reported in temporal proximity, due to

multiple hardware errors occurring almost at the same time.

As an error event arrives, it is first sorted into the appropriate

spatial group. Events in each spatial group are the separated

into temporal groups as detailed below.

Temporal Grouping: Within a sub-system, for a permanent

hardware error, the error set, containing the associated error

events, cycles repeatedly till some action is taken to rectify the

hardware error. This repetition, in the worst case, is observed

once every polling interval. For performing fault localization,

1 This is true in the case of all enterprise class servers.

FaultLocalization-TR01-CADlab-May2006

6

we need to isolate such error sets. For identifying the

repetitive error sets we define the term “interval of influence”

(IoI). IoI is used in this paper to denote the time within which

a related group of events are logged. The relation of events is

with respect to the influence a hardware error has in the

generation of that event. Since error events are noticed once

in a polling interval, in this study, the IoI was set equal to the

polling interval of the associated monitors of the sub-system

chosen. From the spatial group, using the IoI, temporal event

groups are formed. The temporal groups form the basis for

error inference.

Root Cause Inference: For each sub-system, we derive inter-

component failure-effect relationship using the component

interaction semantics and capture them as Bayesian Belief

Networks (BBNs) [20]-[21]. BBNs model problems that

involve uncertainty. A BBN is a directed, acyclic graph,

whose nodes are the uncertain variables and whose edges

represent the causal relation between the variables. In a BBN,

each node is assigned certain states with prior probability, i.e.

independent probability of the state’s occurrence. The cause-

effect relations are captured as inter-node state associations

with a conditional probability of occurrence, i.e. one state

influencing the occurrence of the other. The BBNs use Bayes’

theorem for deducing the probability of occurrence of a

certain state in a node given the prior probability of the state

and the conditional probabilities of the affecting states.

By studying all possible events that can be monitored in a

component, we find that there are basically two categories,

one that are direct reflection of failures in the component and

the other that are symptoms of external failures. For example,

in an IO-subsystem, a failure in a disk is normally preceded

with timeout and congestion errors on the switch or adaptor

connecting to it. These timeout and congestion errors are the

symptoms and not direct reflections of failure. The

uncertainty here is that the symptoms may not be observed on

the failing component. Usually, the symptoms appear before

the cause and by capturing the cause-effect relation between

the symptoms and failure cause, we can notice the failures

ahead of their occurrence. BBN models provide an intuitive

way to model these cause-effect relationships and also provide

a good mechanism to quantify this relationship. In our model,

as depicted in Figure 2, each node in the BBN is either the

component that can fail or the monitor that is observing the

error event being generated at runtime. A component is

represented by two states, Working or Failed and the monitor

is represented by the states corresponding to observable

events. The cause-effect relation between the observed events

and the affected component are captured as the conditional

probability values.

Figure 2: Depicts the Bayesian Belief Network Model for

the Fibre Channel Storage Subsystem used in the case

study for fault localization. The picture denotes only a

subset of the components and monitors of the sub-system.

This model was generated using JavaBayes software

available at [23].

These conditional probability values quantify the belief of

dependence among the related nodes and their corresponding

states. For this study these values are derived from the system

architecture, based on the interaction semantics of the

components. Within BBNs independent nodes are designated

prior probability values representing their independent chance

to be in Working/Failure states. We have derived the prior

probability values of the components from the MTBF values

that are vendor specified. Although the component MTBF

values are used to assign prior failure probability, it is the

interaction semantics between the components that decide the

runtime component failure probabilities, based on the error

events observed. For building the sub-system BBN model, we

followed the method described in [22]. The fault localization

process is bootstrapped with a Bayesian Belief network for

each sub-system. For each sub-system, events in a Temporal

Group are marked as evidence of underlying error and an

inference is drawn for failure probabilities of the components

in the sub-system. Every time an inference is drawn, the

current component availability information is derived from

the failure probabilities and projected as the health vector of

the system hardware.

V. AVAILABILITY PROGNOSIS

Using the current availability information we make

availability prognosis for the component. The basis for this

prognosis is as follows: a component fault is noticed once

within the polling interval of the monitor and the resulting

error is used to yield the failure probability of the localized

component. Until the component fault is rectified or a new

component replaces the faulty one, the error event will be

FaultLocalization-TR01-CADlab-May2006

7

repeated periodically and, in the worst case, noticed every

polling interval. We use this information to define the decay

rate of the component.

For the subsystem we have modeled the polling interval is

1 hour and by observing the errors once in a polling interval,

we arrive at the decay rate for the sub-system components to

be equal to 1. The expected failure probability is calculated

using an exponential decay function. The drop in availability

is then calculated as 1-P(F), where P(F) represents probability

of failure after time t. A(t) is the predicted availability at time

t and Ac is the current availability. Following equations show

these calculations:

 P(F) = e
-αt

, and

A(t) = Ac(1-e
-αt

) , e
-αt

 is the component decay

function,

α is the decay rate and set to 1 for

our study,

and t is time in future for which we

want to calculate the expected

component availability.

VI. CASE-STUDY FOR DYNAMIC FAULT LOCALIZATION

In order to assess the correctness of the fault localization

method, we applied this method to analyze hardware error

event logs generated on a system that was experiencing disk

media errors in its IO sub-system. The IO sub-system

consisted of a Fibre Channel Adapter connecting to a Fibre

Channel Switch, which connected to the failing disk device.

The error event data collected was for a period of 2 years

from a HP customer system. A HP field engineer

independently analyzed this data to identify the faulty disk

media. The spatial and temporal grouping algorithm

segregated error events into groups that initially had timeout

and congestion errors on the adapter followed by intermittent

disk controller errors (Figure 3). Subsequently, after a period

of 14 hours disk media errors were reported. The BBN for

this subsystem reported 75% failure probability with the

initial event groups and subsequently the media error

pinpointed to a disk failure; Figure 4 depicts the scenario.

Figure 3: Failure Probability of IO subsystem components

inferred with timeout and congestion error events followed

by intermittent disk controller error.

Figure 4: Failure Probability of the components inferred

with disk media error events after a period of 14hrs.

Using the observed component failure probabilities, we make

an availability prognosis for a period of two hours from the

observed values and compare with the actual observed failure

probabilities two hours later. Figure 5 and Error! Reference

source not found. show the trend curves for the current and

predicted availability for the disk and disk controller as

observed from the event logs of the system. We make an

optimistic prediction in less than 10% of the cases. This is

shown by the divergence of the predicted trend curve from the

current trend curve. Observing the error event data in these

cases indicates that the deviation of observed failure

probability from the predicted value is due to the occurrence

of an error event that helps in pinpointing the cause. To

illustrate, when the timeout and congestion errors occur, the

BBN indicated equal chances of failures on all of the IO sub-

system components. This changes to increased disk failure

probability due to the intermittent disk controller error

(Figure 3). At this point the predicted availability was 0.82

whereas the observed availability is 0.25.

FaultLocalization-TR01-CADlab-May2006

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200000 400000 600000

Occurrence of events in

time (seconds)

A
v
a
il

a
b

il
it

y
Disk Drive
Current

Disk Drive
Predicted

Linear (Disk
Drive Current)

Linear (Disk
Drive
Predicted)

Figure 5: Trend curves for disk drive current and

predicted availability.

0

0.2

0.4

0.6

0.8

1

1.2

0 200000 400000 600000

Occurrence of events in

time (seconds)

A
v
a
il

a
b

il
it

y

Disk Controller

Current

Disk Controller

Predicted

Linear (Disk

Controller

Current)

Linear (Disk

Controller

Predicted)

Figure 6: Trend curves for disk controller current and

predicted availability.

This observation leads us to conclude two things:

1. An application that got started due to acceptable

predicted resource availability could continue till the

current resource availability reaches an unacceptable

threshold, wherein it can start a recovery procedure.

2. This is true in cases where the failure symptoms are

visible well ahead in time before the actual failure. The

initial failure symptoms (that of timeout and

congestion) in our case study coincide with conditions

that can occur intermittently due to performance

bottlenecks. Hence, by noticing a small drop (25%) in

the current resource availability we cannot conclude a

failure possibility as indicated by the prognosis, but a

significant drop (75%) definitely indicates a problem.

VII. ENHANCEMENTS AND FURTHER RESEARCH

We propose the following enhancements to this method:

1. The case study described was used for proof-of-concept.

The BBN was built using a limited set of observed error

events. However, to study utility of this method on a

production machine we need to extend the BBN to

contain all observable error events. These events may be

a few tens of events. Analyzing event relationships with

respect to interaction semantics of the components may

become intricate and complex. We plan to formally

model the sub-system interaction semantics with a view

to automatically generate the sub-system BBN. Since the

conditional probability values used for inference within

the BBN is derived from the system architecture, we plan

to conduct sensitivity tests on the BBNs to establish lower

and upper bounds on the conditional probability values.

2. It is possible that the BBNs generated could have missed

interactions. While testing the BBNs we plan to evaluate

them using actual data from many running systems and

also integrate with a learning system to arrive at

acceptable conditional probability values.

3. As of this study we have evaluated the dynamic hardware

fault localization method. We plan to evolve a dynamic

method for analyzing and localizing the effect of system

software errors and use the combined effect of hardware

and system software to arrive at the process health vector.

4. We also plan to integrate the process health vector with

AGMETS. At the time of AGMETS development, the

testing was done under simulated conditions.

VIII. CONCLUSION

In this paper we bring out the issues of failures while

running applications over distributed resources. We propose a

proactive fault-tolerant framework to bring out the context

information needed to enable pro-active management. We

state the need and a novel method to represent resource

availability information and show how the framework uses

this information, to provide failure transparency to the

application, in face of failures. We also describe a method to

quantify the resource availability information at runtime.

Using a case study we bring out the effectiveness of this

method.

REFERENCES

[1] Ian Foster, C. Kesselman, S. Tuecke, Anatomy of the Grid: Enabling
scalable virtual organizations, International Journal of Supercomputer

Applications, 15(3), 2001.

[2] Ian Foster, C. Kesselman, Jeffery M. Nick, S. Tuecke, Grid Services for

Distributed System Integration, IEEE Computer, June 2002, p37–46.

[3] Foster, Globus Toolkit Version 4: Software for Service-Oriented Systems.
IFIP International Conference on Network and Parallel Computing,

Springer-Verlag LNCS 3779, pp 2-13, 2005.

[4] Steven Newhouse, David Berry, Malcolm Atkinson, Savas P, “Service

Grids: Current Activity and Requirements”, [online] available:

http://www.nesc.ac.uk/talks/415/intro.pdf
[5] P. Narasimhan, T. A. Dumitras, A. M. Paulos, S. M. Pertet, C. F. Reverte,

J. G. Slember and D. Srivastava, MEAD: Support for Real-Time Fault-

Tolerant CORBA, Concurrency and Computation: Practice and

Experience, vol. 17, no. 12, 2005, pp. 1527-1545; Copyright 2005 John
Wiley and Sons.

[6] Mohammad Tanvir Huda, Heinz W. Schmidt and Ian D. Peake, “An

Agent Oriented ProActive Fault-tolerant Framework for Grid Computing”,

Proceedings of the First International Conference on e-Science and Grid

Computing (e-Science’05), IEEE, Dec. 2005.
[7] Ting-Ting Y. Lin, Daniel P. Siewiorek, Error Log analysis: Statistical

Modeling and Hueristic Trend Analysis, IEEE Trans. On Reliability, Vol.

39, No. 4, p 419-432, October 1990.

FaultLocalization-TR01-CADlab-May2006

9

[8] Inhwan Lee, Ravishankar K. Iyer, and Dong Tang, Error/Failure Analysis

Using Event Logs from Fault Tolerant Systems, FTCS-21, Computing

Digest of Papers, p10-17, June 1991.

[9] Michael F. Buckley' and Daniel P. Siewiorek, VAX/VMS Event

Monitoring and Analysis, FTCS-25, Computing Digest of Papers, p414-
423, June 1995.

[10] M.F. Buckley and D. P. Siewiorek, Comparative Analysis of event tupling

schemes, FTCS-26, Computing Digest of Papers, p294-303, June 1996.

[11] R. K. Sahoo, A.J. Oliner, I. Rishi, M. Gupta, J. E. Moreira, S. Ma, R.
Vilalta, A. Sivasubramaniam, Critical Event Prediction for Proactive

Management in Largescale Computer Clusters, Proceedings of the 9th

ACM SIGKDD, p426-435, August 2003.

[12] Ramendra K. Sahoo, Myung Bae, Ricardo Vilalta, Jose Moreira, Shenga

Ma, and Manish Gupta, Providing Persistent and Consistent Resources
through Event Log Analysis and Predictions for Large-scale Computing

Systems, In SHAMAN, Workshop, ICS'2002, June 2002.

[13] Salfner F, Predicting Failures with Hidden Markov Models, In Proceedings

of the fifth European Dependable Computing Conference (EDCC
5),Student Forum, Budapest, April 2005.

[14] Nainwal, KC and Lakshmi, J and Nandy, SK and Narayan, Ranjani and

Varadarajan, K (2005) A Framework for QoS Adaptive Grid Meta

Scheduling. In Proceedings Sixteenth International Workshop on :

Database and Expert Systems Applications, 2005, pages pp. 292-296,
Denmark.

[15] Kalash Chandra Nainwal, Adaptive Grid Meta-Scheduling – A QoS

Perspective, MSc (Engg). Thesis, SERC, IISC, May 2005.

[16] David Patterson, et. Al., Recovery Oriented Computing (ROC):
Motivation, Definition, Techniques, and Case Studies, Computer Science

Technical Report UCB//CSD-02-1175, U.C. Berkeley, March 15, 2002

[17] HP’s EMS Hardware Monitors User's Guide and Event Descriptions found

at http://docs.hp.com.

[18] Overview of HP Integrity rx1620-2, rx2620-2 and rx4640-8 Servers, A
technical white paper from HP, available online at

http://h71028.www7.hp.com/ERC/downloads/5982-9835EN.pdf

[19] Overview of SunFire 15K/12K – Chapter 3 Reliability, Availability, and

Serviceability, available online at http://www.sun.com/products-

nsolutions/hardware/docs/html/806-3509-12/3__RAS.html
[20] Marek J. Druzdzel and Linda C. van der Gaag, Building Probabilistic

Networks: Where Do the Numbers Come From?, IEEE Transactions on

Knowledge and DataEngineering, 12(4); 481-486, 2000.

[21] Finn V. Jensen, Bayesian Networks and Decision Graphs, Springer
Publication, August 2001.

[22] Martin Neil, Norman Fenton, and Lars Neilson, Building Large-Scale

Bayesian Networks, Knowledge Engineering Review, 15(3) vol. 15, no. 3,

pp. 257-284, 2000.

[23] JavaBayes software found at http://www.cs.cmu.edu/~javabayes/Home

