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Requirements for virtualization 

• Will depend on what kind of virtualization one 
is attempting 

– System Virtual Machines 

– Process Virtual Machines 
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Goals of System Virtualization 

• Virtualization goals: (Goldberg(1974) first 
survey paper on virtualization technologies.)  

– Efficiency: Virtual Machine must be as efficient as 
the non-virtualized machine, if not more!  

– Isolation: Virtual Machine is an isolated duplicate 
of the real machine.  

– Safety: Virtual Machine can access resources 
explicitly allocated to it only. 
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Hardware Virtualizer - Desirables 

• Need for hardware virtualizer that supports: 
– System hygiene: Virtual machines should not be built 

using instruction trap and simulation method since 
such approaches are clumsy and awkward. 

– Software simplicity: Inherent hardware support for 
virtualization would make the VMM a small and 
simple program that further contributes to system 
reliability and security. 

– System performance: Systems that are designed to 
support virtualization should operate more efficiently 
than their non-virtualized counterparts. 
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f-map virtual resource definition 

• The f-map transforms the virtual resource name 
to its corresponding real resource name. 

• f-map is transparent to the VM in its state of 
execution in privileged or non-privileged mode. 
Hence, the VM executes as it would on a real 
machine. 

• All real and virtual resources are under the 
control of the VMM. VMM manipulates and 
invokes the f-map, and any f-map violation passes 
the control to the VMM. 
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Conceptual view of f-map 
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Requirements for System VMs 

• Support for multiple ISAs 
– Static/dynamic Instruction translation/interpretation 

• Support for multiple processor privilege modes 
– ISA extended to support use of selective privileges 

across these different privilege modes 

• Memory support for multi-level address 
translation 

• I/O device support for virtualization 
– I/O device virtualization support for multiple VM 

access and associated address translations. 
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HAL/ISA Interface 

• Hardware Abstraction 
Layer (HAL) & ISA form the 
basic interface between 
hardware and any 
software. 

• Mostly used by OS kernel 
programmers 

• Accessible to users through 
– User ISA + OS Systems Calls 

via the libraries and APIs 

• System virtual machine 
realization 
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Mechanisms for System Virtualization 

• Emulation 

• Para-virtualization 

• Hardware-virtualization 

 

What needs to be virtualized - All aspects of the ISA 
– User + System ISA 

– Register Set 

– Memory addressing architecture 

– Traps & Interrupts architecture 
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Emulation for ISA virtualization 

• What is emulation? 

• Need for emulation 

• Mechanisms for emulation 

– Interpretation 

– Binary Translation 
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Emulation 

• Mechanism to implement 
the interface and 
functionality of one 
system on a system that 
has a different interface 
and functionality. 

• Why would one use 
emulation? 
– Validation of new ISA  

– Binary code execution on 
varied runtimes 
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Advantages & Pitfalls to using 
Emulation 

• Support for legacy runtime environments 
– No code changes (emulator takes care of translation 

at runtime) 
– Existing applications get benefit of improved system 

architecture 
– Process VMs are native models for emulation based 

virtualization 

• System VMs need some support from hardware 
– More than two privilege rings 
– ISA should have all privileged instructions to trap or 

raise exceptions such that GuestOS privileged 
instructions can transit to VMM for correct execution. 
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Anatomy of ISA 

• ISA defines a set of instructions that are used to 
carry out two distinct functions on the system 
hardware: 
– Use the system for computing (User-ISA) 

– Manage hardware resources (System-ISA) 

• Emulation is mostly concerned with the User-ISA 
part for Process-VMs. However, System-VMs may 
also need emulation of System-ISA or extend the 
System-ISA.  

 

Reference: Appendix-A Real Machines from Smith and 
Nair’s book on Virtual Machines 
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Techniques for Emulation 

• Interpretation: Translate instruction by instruction of the 
source binary and execute 
– Basic interpretation 
– Threaded Interpretation 
– Precoding 
– Direct threaded interpretation 
– CISC Interpretation 

• Binary Translation: Translate a block of source 
instructions to target instructions, additionally save the 
translated code for repeated execution 
– Precoding 
– Dynamic Translation 
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Forms of Emulation 
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Basic Interpretation 

• Goal: Apply interpretation techniques to 
program binaries. 

• Definition: “An interpreter program emulates 
and operates on the complete architected 
state of the machine implementing the source 
ISA, including all architected registers and 
main memory” 
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Interpreter Overview 
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Basic Interpreter: Decode & Dispatch 

while  ( !halt && !interrupt) { 

           inst = code[PC]; 

           opcode = extract(inst, 31,6); 

           switch(opcode) { 

                       case LoadWordAndZero:  

                         LoadWordAndZero(inst); 

                        case ALU: ALU(inst); 

                        case Branch: Branch(inst); 
                         ⁞ 
 } 
  

• Steps through source program 
instructions and decodes and 
modifies the state based on the 
instruction. 

• Decoded instruction is 
dispatched to the interpreter 
routine to execute on the target 
ISA. 

• One source instruction can 
translate to many target 
instructions. 

• Many branch instructions may 
not be pipeline friendly 
(conditional branch). 

• Basic interpretation has high 
performance overheads. 
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Threaded Interpretation 

• In threaded interpretation, 
the dispatch function is 
added to each of the 
decoding function. 

• This eliminates some 
overhead, namely 
– Branch to case switch on the 

dispatch loop 

– Branch to return from 
interpreter routine 

– Branch to exit the dispatch 
loop. 

Instruction function list 
 
LoadWordAndZero(inst){ 

      RT = extract(inst, 25,5); 

      RA = extract(inst,20,5); 

      displacement = extract(inst, 15, 16); 

      if (RA==0) source = 0; 

      else source = regs[RA]; 

      address = source + displacement; 

      regs[RT] = (data[address]<<32) >>32; 

      PC = PC + 4; 

      If (halt || interrupt) goto exit; 

      inst = code[PC]; 

      opcode = extract(inst,31,6); 

      extended_opcode = extract(inst,10,10); 

      routine = dispatch[opcode,extended_opcode]; 

      goto *routine; 

} 
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Interpretation Methods 
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Precoding & direct threaded 
Interpretation 

• Instruction specific 
translation is pre-
decoded and stored. 

• Pre-decoding allows 
for direct threaded 
interpretation 

• Overheads on lookup 
table is eliminated. 
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Intermediate 
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Emulation by Interpretation Summary 

• Basic interpretation uses decode-and-dispatch, 
which is simple but causes many branches. 

• Indirect threaded interpretation eliminates the 
dispatch loop but uses dispatch table 

• Precoding techniques amortize on elimination of 
redundant extractions for repeated instructions. 

• Direct threaded interpretation uses precoding 
and eliminates dispatch table. 
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CISC Interpretation* 
• CISC versus RISC: 

– RISC ISAs have regular 
instruction formats 

– CISC ISAs have variety of 
instruction formats with 
variable instruction lengths 
and fields 

• General approach to 
interpreting a CISC ISA 
– Interpretation is divided into 

two phases:  
• Scan and decode various 

instruction fields 
• Dispatch for jumping to 

specialized routines for each 
instruction type 

• Generic interpretation is 
optimized for faster execution 
using common shared routines 
and threaded approaches.  
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Binary Translation 

• Translate source binary program to target 
binary before execution 

– Pre-decode 

– Enables optimization on the native code 

– Handles jumps by elimination  

– Better performance compared to interpretation 

– Source program state mapping onto the host or 
target program state(state mapping) requirement 
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Binary Translation 

Basic Idea 

x86 Source Binary 
addl %edx,4(%eax) 

movl 4(%eax),%edx 

add %eax,4 

Translate to PowerPC Target 
r1 points to x86 register context 
block 

r2 points to x86 memory image 

r3 contains x86 ISA PC value 

Example Code Sample 
lwz     r4,0(r1)    ;load %eax from register block 
addi   r5,r4,4      ;add 4 to %eax 
lwzx   r5,r2,r5     ;load operand from memory 
lwz     r4,12(r1)   ;load %edx from register block 
add    r5,r4,r5      ;perform add 
stw     r5,12(r1)   ;put result into %edx 
addi    r3,r3,3      ;update PC (3 bytes) 
lwz      r4,0(r1)    ;load %eax from register block 
addi    r5,r4,4      ;add 4 to %eax 
lwz      r4,12(r1)  ;load %edx from register block 
stwx    r4,r2,r5    ;store %edx value into memory 
addi     r3,r3,3     ;update PC (3 bytes) 
lwz      r4,0(r1)    ;load %eax from register block 
addi    r4,r4,4      ;add immediate 
stw     r4,0(r1)     ;place result back into %eax 
addi    r3,r3,3      ;update PC (3 bytes) 
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Static Binary Translation: Precoding 

• Binary translation refers 
to the mechanism 
wherein the source binary 
code is translated to the 
target binary code. 

• Each source instruction 
translation is customized 
and state register 
mapping from source to 
target is employed. 

Binary translated 
target code  

Program Source 
code  

Binary 
Translator 
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State Mapping 

• Refers to the mechanism employed to maintain 
source program state from source ISA on the 
host/target ISA 

• Program state 
– state includes source registers and memory contents 

• Source registers can be held in host registers or in 
host memory 

• Reduces loads/stores significantly 
• Straightforward when target registers > source 

registers 
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Register Mapping 

• Map source registers 
to target registers 
– spill registers if 

needed 

• if target registers < 
source registers 
– map some to 

memory 

– map on per-block 
basis 
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Dynamic Binary Translation 
• Static binary translation makes certain 

assumptions about the ISA and coding 
practice, which may not always be true! 

• Code Discovery Problem 
– Variable length instructions in case of CISC 

ISAs 
– Register indirect jumps 
– Data interspersed with instructions 
– Pads to align instructions 

• Code-Location Problem 
– Tracking jumps in source code via the 

translated code and vice-versa. 

• Incremental code Translation 
– First interpret 

•  perform code discovery as a by-product 

– Translate code 
• incrementally, as it is discovered 
• place translated code in code cache 
• use lookup table to save source to target PC 

mappings 

– Emulation process 
• execute translated block 
• lookup next source PC in lookup table 
• if translated, jump to target PC 
• else, interpret and translate 

SPC to TPC 
Map Table 

Emulation 
Manager 

Interpreter Translator 

Miss 

Hit 
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Issues with Dynamic Binary Translation 

• Tracking the source PC 

– SPC used by the emulation manager and interpreter 

• Handle self-modifying code 

– programs modifying code (perform stores) at runtime 

• Handle self-referencing code 

– programs perform loads from the source code 

• Provide precise traps 

– provide precise source state at traps and exceptions 
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Para-Virtualization 

• OS assisted virtualization is commonly referred to as para-
virtualization 
– Technique used to trap privileged instructions from GuestOS  
– The GuestOS is modified to exit through a hypercall on a privileged 

instruction to the hypervisor which then completes the instruction. 
– In a non-virtualized OS device access is hidden behind the OS system 

call interface as these are privileged instructions. 
– OS ensures user and context isolation through the system call 

interface 
– Performance and security were the goals to devise para-virtualization 
– Migration and portability are issues with para-virtualization 

• Examples: Xen and VmWare hypercalls and back-end with front-end 
device model 

 

31-01-2019 Mechanisms & Constructs for Virtualization 33 



Hardware Virtualization 

• Hardware virtualization refers to building hardware support for 
virtualization! 

• Prevalent technology evolution has occurred mainly using software 
techniques for providing the virtualization support. 

• Hardware constructs to support concurrent access to hardware 
resources. 
– CPU privilege levels 
– MMU with extended/nested page tables 
– IOV devices 

• Each of these constructs allows for building a virtual device context 
for the resource. 

• A set of these virtual devices are then exported to a VM and the 
GuestOS boots over the virtual devices. 

• Why is there no hardware virtualizer as yet? 
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Goals of Process Virtualization 

• Uses the concept of “process” abstraction to 
virtualize. 

• Resource access and controls are based on the OS 
level resource abstractions and amenable for use 
without any change in hardware. 

• Process abstraction:  
– Identity of access based on ownership rights 
– Virtual memory address boundaries 
– OS-system call interface for I/O device access 

• Virtual Machine is executed as a process in the 
host OS address space. 
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ABI Interface 

• The Application Binary 
Interface (ABI) 
– User ISA + OS-System 

Calls 

– Used by compiler writers 

• Platforms supporting 
common ABI  
– Application execution 

without recompilation 

• Process Virtual Machine 
realization 
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Virtualization through ABI 

• Binary translation 

• The Process runs as a 
Guest process inside a 
Process VM with 
runtime software 

• The runtime software 
interfaces with the 
host process to 
execute guest process 
instructions 

Network 

communication 
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Process Virtual Machine Implementation 

Loader 
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Structure of the Process VM 

• Loader 
– load guest code and data 
– load runtime code 

• Initialization 
– allocate memory 
– establish signal handlers 

• Emulation engine 
– interpreter and/or 

translator 

• Code cache manager 
– manage translated guest 

code 
– flush outdated translations 

• Profile database 
– hold program profile info. 
– block/edge/invocation 

profile 

• OS call emulator 
– translate OS calls 
– translate OS responses 

• Exception emulator 
– handle signals 
– form precise state 

• Side tables 
– structures used during 

emulation 
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Containers as Process VMs 

• Containers are logical isolated 
groups of processes with well 
defined resource controls within OS 
space (containment features). 

• They are achieved by using 
extensions to OS like Solaris zones 
with chroot access to filesystem 
space or Linux container features. 
– Zones enable restricted namespace 

thereby limiting visibility to processes 
and users within the zone 

– chroot restricts access to filesystem 
space 

• Containers are restricted Process 
VMs that share a common host OS 
and hence support same-ISA-same-
OS processes or supported-ISA-
similar-OS processes. 
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Linux Docker Containers 

• Linux docker containers  
offer an environment close 
to a VM but without 
running a separate guest 
kernel and simulating the 
hardware. 

• Linux Docker containers use 
a combination of kernel 
security features such as 
– isolated namespaces (LXCFS) 

– mandatory access control 
(LXC) 

– control groups (CGManager) 
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Application’s Perspective of Cloud 
based Runtimes 
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API Interface 

• Application Programming 
Interface (API) 

– User ISA + Library calls 

– Used by application 
programmers 

• Realization of HLL based 
virtual machines 
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Motivation for API based VMs 

• Application portability is the key 
goal behind using API layer for 
virtualization. 

• Conventional ISAs not built for 
virtualization! 
– Most constructs are after thoughts 

for supporting virtualization. 
– Portability and performance are 

seemingly orthogonal goals to 
achieve! 

• Virtual ISA  
– Primary design goal is VM based 

portability 
– V-ISA is not designed for real 

hardware processor! 
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Virtualization using APIs (HLL VMs) 
Examples 

• Pascal P-code 

• JVM 

• CLI/.Net framework 
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Virtualization using APIs (HLL VMs) 

• Compiler frontend produces binary files that is common to 
all ISAs 

• Binary files are intermediate code that is interpreted or 
translated at runtime. 

• Contains both code and metadata 
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Genesis of V-ISAs 

• Virtualizing using 
conventional ISAs: 
– Not built for virtualization 
– OS dependencies 
– Address-space and page size 

limitations 
– ISA features and memory 

formation coupled 
– Maintaining precise 

exceptions 
– Instruction discovery during 

indirect jumps 
– Self-referencing and self-

modifying code poses 
problems for translated code 

• HLL V-ISA 
– Design goal is virtualization 
– Generous use of metadata 
– Metadata allows for type safe 

code verification, 
interoperability and 
performance 

– Reduced OS dependencies as 
programs interact through 
library API 

– Abstract memory model of 
indefinite size; memory 
regions allocated based on 
needs; actual memory 
addresses not visible 
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V-ISAs compared to C-ISAs 
• Conventional ISA 

– unrestricted address computation 
– difficult to protect runtime from 

unauthorized guest program 
accesses 

– Trap and exceptions need precise 
state; difficult to emulate 

– guest ISA registers > host registers is 
a problem 

– ISAs with condition codes are 
difficult to emulate 

– indirect jumps to potentially 
arbitrary locations 

– variable-length instruction, 
embedded data, padding 
 
 

• HLL V-ISA 
– pointer arithmetic not 

permitted 
– memory access only through 

explicit memory pointers 
– static/dynamic type checking 

employed 
– Traps are limited and 

exceptions are tested within 
the programs; precise 
exception state requirement is 
relaxed 

– stack-oriented; condition codes 
are avoided 

– restricted indirect jumps 
– no mixing of code and data; 

variable-length instructions 
permitted 

– self-modifying and self-
referencing code not permitted 
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Summary 

• Goals for Virtualization 

• Basic Requirements and constructs used for 

– System VMs 

– Process VMs 

• Shortfalls and advantages of the constructs 
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