
Mechanisms and constructs for
System Virtualization

Content Outline

• Design goals for virtualization

• General Constructs for virtualization

• Virtualization for:

– System VMs

– Process VMs

• Prevalent trends: Pros and cons

31-01-2019 Mechanisms & Constructs for Virtualization 2

Requirements for virtualization

• Will depend on what kind of virtualization one
is attempting

– System Virtual Machines

– Process Virtual Machines

31-01-2019 Mechanisms & Constructs for Virtualization 3

Goals of System Virtualization

• Virtualization goals: (Goldberg(1974) first
survey paper on virtualization technologies.)

– Efficiency: Virtual Machine must be as efficient as
the non-virtualized machine, if not more!

– Isolation: Virtual Machine is an isolated duplicate
of the real machine.

– Safety: Virtual Machine can access resources
explicitly allocated to it only.

31-01-2019 Mechanisms & Constructs for Virtualization 4

Hardware Virtualizer - Desirables

• Need for hardware virtualizer that supports:
– System hygiene: Virtual machines should not be built

using instruction trap and simulation method since
such approaches are clumsy and awkward.

– Software simplicity: Inherent hardware support for
virtualization would make the VMM a small and
simple program that further contributes to system
reliability and security.

– System performance: Systems that are designed to
support virtualization should operate more efficiently
than their non-virtualized counterparts.

31-01-2019 Mechanisms & Constructs for Virtualization 5

f-map virtual resource definition

• The f-map transforms the virtual resource name
to its corresponding real resource name.

• f-map is transparent to the VM in its state of
execution in privileged or non-privileged mode.
Hence, the VM executes as it would on a real
machine.

• All real and virtual resources are under the
control of the VMM. VMM manipulates and
invokes the f-map, and any f-map violation passes
the control to the VMM.

31-01-2019 Mechanisms & Constructs for Virtualization 6

Conceptual view of f-map

Virtual Machine

Hypervisor/Virtualizer

Hardware

P
VR1

VM

PR1

PR1

R1

31-01-2019 Mechanisms & Constructs for Virtualization 7

Requirements for System VMs

• Support for multiple ISAs
– Static/dynamic Instruction translation/interpretation

• Support for multiple processor privilege modes
– ISA extended to support use of selective privileges

across these different privilege modes

• Memory support for multi-level address
translation

• I/O device support for virtualization
– I/O device virtualization support for multiple VM

access and associated address translations.

31-01-2019 Mechanisms & Constructs for Virtualization 8

HAL/ISA Interface

• Hardware Abstraction
Layer (HAL) & ISA form the
basic interface between
hardware and any
software.

• Mostly used by OS kernel
programmers

• Accessible to users through
– User ISA + OS Systems Calls

via the libraries and APIs

• System virtual machine
realization

Mechanisms & Constructs for Virtualization 31-01-2019 9

Mechanisms for System Virtualization

• Emulation

• Para-virtualization

• Hardware-virtualization

What needs to be virtualized - All aspects of the ISA
– User + System ISA

– Register Set

– Memory addressing architecture

– Traps & Interrupts architecture

31-01-2019 Mechanisms & Constructs for Virtualization 10

Emulation for ISA virtualization

• What is emulation?

• Need for emulation

• Mechanisms for emulation

– Interpretation

– Binary Translation

31-01-2019 Mechanisms & Constructs for Virtualization 11

Emulation

• Mechanism to implement
the interface and
functionality of one
system on a system that
has a different interface
and functionality.

• Why would one use
emulation?
– Validation of new ISA

– Binary code execution on
varied runtimes

Guest
Source-ISA

Host
Target-ISA

Emulated by

31-01-2019 Mechanisms & Constructs for Virtualization 12

Advantages & Pitfalls to using
Emulation

• Support for legacy runtime environments
– No code changes (emulator takes care of translation

at runtime)
– Existing applications get benefit of improved system

architecture
– Process VMs are native models for emulation based

virtualization

• System VMs need some support from hardware
– More than two privilege rings
– ISA should have all privileged instructions to trap or

raise exceptions such that GuestOS privileged
instructions can transit to VMM for correct execution.

31-01-2019 Mechanisms & Constructs for Virtualization 13

Anatomy of ISA

• ISA defines a set of instructions that are used to
carry out two distinct functions on the system
hardware:
– Use the system for computing (User-ISA)

– Manage hardware resources (System-ISA)

• Emulation is mostly concerned with the User-ISA
part for Process-VMs. However, System-VMs may
also need emulation of System-ISA or extend the
System-ISA.

Reference: Appendix-A Real Machines from Smith and
Nair’s book on Virtual Machines

31-01-2019 Mechanisms & Constructs for Virtualization 14

Techniques for Emulation

• Interpretation: Translate instruction by instruction of the
source binary and execute
– Basic interpretation
– Threaded Interpretation
– Precoding
– Direct threaded interpretation
– CISC Interpretation

• Binary Translation: Translate a block of source
instructions to target instructions, additionally save the
translated code for repeated execution
– Precoding
– Dynamic Translation

31-01-2019 Mechanisms & Constructs for Virtualization 16

Forms of Emulation

31-01-2019 Mechanisms & Constructs for Virtualization 17

Basic Interpretation

• Goal: Apply interpretation techniques to
program binaries.

• Definition: “An interpreter program emulates
and operates on the complete architected
state of the machine implementing the source
ISA, including all architected registers and
main memory”

31-01-2019 Mechanisms & Constructs for Virtualization 18

Interpreter Overview

Interpreter

Code Segment

Data Segment

Stack

Program Counter

Condition codes

Register 0

Register 1

Register n-1

⁞

⁞

Source Program
Memory State

Source Program
Context State

31-01-2019 Mechanisms & Constructs for Virtualization 19

Basic Interpreter: Decode & Dispatch

while (!halt && !interrupt) {

 inst = code[PC];

 opcode = extract(inst, 31,6);

 switch(opcode) {

 case LoadWordAndZero:

 LoadWordAndZero(inst);

 case ALU: ALU(inst);

 case Branch: Branch(inst);
 ⁞
 }

• Steps through source program
instructions and decodes and
modifies the state based on the
instruction.

• Decoded instruction is
dispatched to the interpreter
routine to execute on the target
ISA.

• One source instruction can
translate to many target
instructions.

• Many branch instructions may
not be pipeline friendly
(conditional branch).

• Basic interpretation has high
performance overheads.

31-01-2019 Mechanisms & Constructs for Virtualization 20

Threaded Interpretation

• In threaded interpretation,
the dispatch function is
added to each of the
decoding function.

• This eliminates some
overhead, namely
– Branch to case switch on the

dispatch loop

– Branch to return from
interpreter routine

– Branch to exit the dispatch
loop.

Instruction function list

LoadWordAndZero(inst){

 RT = extract(inst, 25,5);

 RA = extract(inst,20,5);

 displacement = extract(inst, 15, 16);

 if (RA==0) source = 0;

 else source = regs[RA];

 address = source + displacement;

 regs[RT] = (data[address]<<32) >>32;

 PC = PC + 4;

 If (halt || interrupt) goto exit;

 inst = code[PC];

 opcode = extract(inst,31,6);

 extended_opcode = extract(inst,10,10);

 routine = dispatch[opcode,extended_opcode];

 goto *routine;

}
31-01-2019 Mechanisms & Constructs for Virtualization 21

Interpretation Methods

Dispatch
Loop

Program
Source code

Interpreter
Functions

Basic Decode and Dispatch Method Indirect Threaded Interpretation

Interpreter
Functions
Dispatch

Table

Interpreter
Functions

Program
Source code

31-01-2019 Mechanisms & Constructs for Virtualization 22

Precoding & direct threaded
Interpretation

• Instruction specific
translation is pre-
decoded and stored.

• Pre-decoding allows
for direct threaded
interpretation

• Overheads on lookup
table is eliminated.

Interpreter
Functions

Intermediate
code

Program
Source code

Pre-
decoder

Direct Threaded Interpretation
31-01-2019 Mechanisms & Constructs for Virtualization 23

Emulation by Interpretation Summary

• Basic interpretation uses decode-and-dispatch,
which is simple but causes many branches.

• Indirect threaded interpretation eliminates the
dispatch loop but uses dispatch table

• Precoding techniques amortize on elimination of
redundant extractions for repeated instructions.

• Direct threaded interpretation uses precoding
and eliminates dispatch table.

31-01-2019 Mechanisms & Constructs for Virtualization 24

CISC Interpretation*
• CISC versus RISC:

– RISC ISAs have regular
instruction formats

– CISC ISAs have variety of
instruction formats with
variable instruction lengths
and fields

• General approach to
interpreting a CISC ISA
– Interpretation is divided into

two phases:
• Scan and decode various

instruction fields
• Dispatch for jumping to

specialized routines for each
instruction type

• Generic interpretation is
optimized for faster execution
using common shared routines
and threaded approaches.

Mechanisms & Constructs for Virtualization

General Decode
(fill-in instruction

structure)

Instruction I
 (Specialized

routine)

Instruction II
 (Specialized

routine)

Instruction N
 (Specialized

routine)

Dispatch

31-01-2019 25

Binary Translation

• Translate source binary program to target
binary before execution

– Pre-decode

– Enables optimization on the native code

– Handles jumps by elimination

– Better performance compared to interpretation

– Source program state mapping onto the host or
target program state(state mapping) requirement

Mechanisms & Constructs for Virtualization 31-01-2019 26

Binary Translation

Basic Idea

x86 Source Binary
addl %edx,4(%eax)

movl 4(%eax),%edx

add %eax,4

Translate to PowerPC Target
r1 points to x86 register context
block

r2 points to x86 memory image

r3 contains x86 ISA PC value

Example Code Sample
lwz r4,0(r1) ;load %eax from register block
addi r5,r4,4 ;add 4 to %eax
lwzx r5,r2,r5 ;load operand from memory
lwz r4,12(r1) ;load %edx from register block
add r5,r4,r5 ;perform add
stw r5,12(r1) ;put result into %edx
addi r3,r3,3 ;update PC (3 bytes)
lwz r4,0(r1) ;load %eax from register block
addi r5,r4,4 ;add 4 to %eax
lwz r4,12(r1) ;load %edx from register block
stwx r4,r2,r5 ;store %edx value into memory
addi r3,r3,3 ;update PC (3 bytes)
lwz r4,0(r1) ;load %eax from register block
addi r4,r4,4 ;add immediate
stw r4,0(r1) ;place result back into %eax
addi r3,r3,3 ;update PC (3 bytes)

Mechanisms & Constructs for Virtualization 31-01-2019 27

Static Binary Translation: Precoding

• Binary translation refers
to the mechanism
wherein the source binary
code is translated to the
target binary code.

• Each source instruction
translation is customized
and state register
mapping from source to
target is employed.

Binary translated
target code

Program Source
code

Binary
Translator

Binary Translation using Precoding 31-01-2019 Mechanisms & Constructs for Virtualization 28

State Mapping

• Refers to the mechanism employed to maintain
source program state from source ISA on the
host/target ISA

• Program state
– state includes source registers and memory contents

• Source registers can be held in host registers or in
host memory

• Reduces loads/stores significantly
• Straightforward when target registers > source

registers

Mechanisms & Constructs for Virtualization 31-01-2019 29

Register Mapping

• Map source registers
to target registers
– spill registers if

needed

• if target registers <
source registers
– map some to

memory

– map on per-block
basis

Mechanisms & Constructs for Virtualization 31-01-2019 30

Dynamic Binary Translation
• Static binary translation makes certain

assumptions about the ISA and coding
practice, which may not always be true!

• Code Discovery Problem
– Variable length instructions in case of CISC

ISAs
– Register indirect jumps
– Data interspersed with instructions
– Pads to align instructions

• Code-Location Problem
– Tracking jumps in source code via the

translated code and vice-versa.

• Incremental code Translation
– First interpret

• perform code discovery as a by-product

– Translate code
• incrementally, as it is discovered
• place translated code in code cache
• use lookup table to save source to target PC

mappings

– Emulation process
• execute translated block
• lookup next source PC in lookup table
• if translated, jump to target PC
• else, interpret and translate

SPC to TPC
Map Table

Emulation
Manager

Interpreter Translator

Miss

Hit

31-01-2019 Mechanisms & Constructs for Virtualization 31

Issues with Dynamic Binary Translation

• Tracking the source PC

– SPC used by the emulation manager and interpreter

• Handle self-modifying code

– programs modifying code (perform stores) at runtime

• Handle self-referencing code

– programs perform loads from the source code

• Provide precise traps

– provide precise source state at traps and exceptions

Mechanisms & Constructs for Virtualization 31-01-2019 32

Para-Virtualization

• OS assisted virtualization is commonly referred to as para-
virtualization
– Technique used to trap privileged instructions from GuestOS
– The GuestOS is modified to exit through a hypercall on a privileged

instruction to the hypervisor which then completes the instruction.
– In a non-virtualized OS device access is hidden behind the OS system

call interface as these are privileged instructions.
– OS ensures user and context isolation through the system call

interface
– Performance and security were the goals to devise para-virtualization
– Migration and portability are issues with para-virtualization

• Examples: Xen and VmWare hypercalls and back-end with front-end
device model

31-01-2019 Mechanisms & Constructs for Virtualization 33

Hardware Virtualization

• Hardware virtualization refers to building hardware support for
virtualization!

• Prevalent technology evolution has occurred mainly using software
techniques for providing the virtualization support.

• Hardware constructs to support concurrent access to hardware
resources.
– CPU privilege levels
– MMU with extended/nested page tables
– IOV devices

• Each of these constructs allows for building a virtual device context
for the resource.

• A set of these virtual devices are then exported to a VM and the
GuestOS boots over the virtual devices.

• Why is there no hardware virtualizer as yet?

31-01-2019 Mechanisms & Constructs for Virtualization 34

Goals of Process Virtualization

• Uses the concept of “process” abstraction to
virtualize.

• Resource access and controls are based on the OS
level resource abstractions and amenable for use
without any change in hardware.

• Process abstraction:
– Identity of access based on ownership rights
– Virtual memory address boundaries
– OS-system call interface for I/O device access

• Virtual Machine is executed as a process in the
host OS address space.

31-01-2019 Mechanisms & Constructs for Virtualization 36

ABI Interface

• The Application Binary
Interface (ABI)
– User ISA + OS-System

Calls

– Used by compiler writers

• Platforms supporting
common ABI
– Application execution

without recompilation

• Process Virtual Machine
realization

Mechanisms & Constructs for Virtualization 31-01-2019 38

Virtualization through ABI

• Binary translation

• The Process runs as a
Guest process inside a
Process VM with
runtime software

• The runtime software
interfaces with the
host process to
execute guest process
instructions

Network

communication

Mechanisms & Constructs for Virtualization 31-01-2019 39

Process Virtual Machine Implementation

Loader

31-01-2019 Mechanisms & Constructs for Virtualization 40

Structure of the Process VM

• Loader
– load guest code and data
– load runtime code

• Initialization
– allocate memory
– establish signal handlers

• Emulation engine
– interpreter and/or

translator

• Code cache manager
– manage translated guest

code
– flush outdated translations

• Profile database
– hold program profile info.
– block/edge/invocation

profile

• OS call emulator
– translate OS calls
– translate OS responses

• Exception emulator
– handle signals
– form precise state

• Side tables
– structures used during

emulation

31-01-2019 Mechanisms & Constructs for Virtualization 41

Containers as Process VMs

• Containers are logical isolated
groups of processes with well
defined resource controls within OS
space (containment features).

• They are achieved by using
extensions to OS like Solaris zones
with chroot access to filesystem
space or Linux container features.
– Zones enable restricted namespace

thereby limiting visibility to processes
and users within the zone

– chroot restricts access to filesystem
space

• Containers are restricted Process
VMs that share a common host OS
and hence support same-ISA-same-
OS processes or supported-ISA-
similar-OS processes.

 Mechanisms & Constructs for Virtualization 31-01-2019 42

Linux Docker Containers

• Linux docker containers
offer an environment close
to a VM but without
running a separate guest
kernel and simulating the
hardware.

• Linux Docker containers use
a combination of kernel
security features such as
– isolated namespaces (LXCFS)

– mandatory access control
(LXC)

– control groups (CGManager)

Mechanisms & Constructs for Virtualization 31-01-2019 43

Application’s Perspective of Cloud
based Runtimes

Mechanisms & Constructs for Virtualization 31-01-2019 44

SaaS

API Interface

• Application Programming
Interface (API)

– User ISA + Library calls

– Used by application
programmers

• Realization of HLL based
virtual machines

Mechanisms & Constructs for Virtualization 31-01-2019 46

Motivation for API based VMs

• Application portability is the key
goal behind using API layer for
virtualization.

• Conventional ISAs not built for
virtualization!
– Most constructs are after thoughts

for supporting virtualization.
– Portability and performance are

seemingly orthogonal goals to
achieve!

• Virtual ISA
– Primary design goal is VM based

portability
– V-ISA is not designed for real

hardware processor!

Mechanisms & Constructs for Virtualization 31-01-2019 47

Virtualization using APIs (HLL VMs)
Examples

• Pascal P-code

• JVM

• CLI/.Net framework

31-01-2019 Mechanisms & Constructs for Virtualization 48

Virtualization using APIs (HLL VMs)

• Compiler frontend produces binary files that is common to
all ISAs

• Binary files are intermediate code that is interpreted or
translated at runtime.

• Contains both code and metadata

Mechanisms & Constructs for Virtualization
31-01-2019 49

Genesis of V-ISAs

• Virtualizing using
conventional ISAs:
– Not built for virtualization
– OS dependencies
– Address-space and page size

limitations
– ISA features and memory

formation coupled
– Maintaining precise

exceptions
– Instruction discovery during

indirect jumps
– Self-referencing and self-

modifying code poses
problems for translated code

• HLL V-ISA
– Design goal is virtualization
– Generous use of metadata
– Metadata allows for type safe

code verification,
interoperability and
performance

– Reduced OS dependencies as
programs interact through
library API

– Abstract memory model of
indefinite size; memory
regions allocated based on
needs; actual memory
addresses not visible

Mechanisms & Constructs for Virtualization 31-01-2019 50

V-ISAs compared to C-ISAs
• Conventional ISA

– unrestricted address computation
– difficult to protect runtime from

unauthorized guest program
accesses

– Trap and exceptions need precise
state; difficult to emulate

– guest ISA registers > host registers is
a problem

– ISAs with condition codes are
difficult to emulate

– indirect jumps to potentially
arbitrary locations

– variable-length instruction,
embedded data, padding

• HLL V-ISA
– pointer arithmetic not

permitted
– memory access only through

explicit memory pointers
– static/dynamic type checking

employed
– Traps are limited and

exceptions are tested within
the programs; precise
exception state requirement is
relaxed

– stack-oriented; condition codes
are avoided

– restricted indirect jumps
– no mixing of code and data;

variable-length instructions
permitted

– self-modifying and self-
referencing code not permitted

Mechanisms & Constructs for Virtualization 31-01-2019 51

Summary

• Goals for Virtualization

• Basic Requirements and constructs used for

– System VMs

– Process VMs

• Shortfalls and advantages of the constructs

31-01-2019 Mechanisms & Constructs for Virtualization 53

