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Abstract

Virtualization is one of the important enabling technologies for Cloud Computing which fa-

cilitates sharing of resources among the virtual machines. However, it incurs performance

overheads due to contention of physical devices such as disk and network bandwidth. Vari-

ous I/O applications having different latency requirements may be executing concurrently on

different virtual machines provisioned on a single server in Cloud data-centers. It is pertinent

that the performance SLAs of such applications are satisfied through intelligent scheduling and

allocation of disk resources.

The underlying disk scheduler at the server is unable to distinguish between the application

requests being oblivious to the characteristics of these applications. Therefore, all the applica-

tions are provided best effort services by default. This may lead to performance degradation for

the latency sensitive applications. In this work, we propose a novel disk scheduling framework

PriDyn (Dynamic Priority) which provides differentiated services to various I/O applications

co-located on a single host based on their latency attributes and desired performance. The

framework employs a scheduling algorithm which dynamically computes latency estimates for

all concurrent I/O applications for a given system state. Based on these, an appropriate pri-

ority assignment for the applications is determined which is taken into consideration by the

underlying disk scheduler at the host while scheduling the I/O applications on the physical

disk. The proposed scheduling framework is able to successfully satisfy QoS requirements for

the concurrent I/O applications within system constraints. This has been verified through ex-

tensive experimental analysis.

In order to realize the benefits of differentiated services provided by the PriDyn scheduler,

proper combination of I/O applications must be ensured for the servers through intelligent

meta-scheduling techniques at the Cloud data-center level. For achieving this, in the second

part of this work, we extended the PriDyn framework to design a proactive admission control

and scheduling framework PCOS (Prescient C loud I/O Scheduler). It aims to maximize the
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Abstract

utilization of disk resources without adversely affecting the performance of the applications

scheduled on the systems. By anticipating the performance of the systems running multiple

I/O applications, PCOS prevents the scheduling of undesirable workloads on them in order

to maintain the necessary balance between resource consolidation and application performance

guarantees. The PCOS framework includes the PriDyn scheduler as an important component

and utilizes the dynamic disk resource allocation capabilities of PriDyn for meeting its goals.

Experimental validations performed on real world I/O traces demonstrate that the proposed

framework achieves appreciable enhancements in I/O performance through selection of optimal

I/O workload combinations, indicating that this approach is a promising step towards enabling

QoS guarantees for Cloud data-centers.

“If we knew what it was we were doing, it would not be called research, would it?”

– Albert Einstein
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Chapter 1

Performance on Cloud Storage

Cloud computing has emerged as one of the most popular computing paradigms facilitating

on-demand delivery of compute resources on a pay per use basis. Virtualization is one of the

chief enabling technologies for the Cloud which provides the means for scalable delivery of

services through sharing of physical resources across different users and applications. Cloud

computing also assists in the consolidation of applications having varied requirements such as

I/O intensive and computation intensive on a single server. However, several multi-tenancy

issues have been aggravated by such consolidation use-cases. Various applications executing in

shared Cloud environments interfere with each other for resource access, resulting in degradation

of performance [1]. This interference emanates from the lack of proper isolation and controls

for shared usage of the physical resources such as disk, CPU, memory controllers etc. Such

sharing issues may affect the Quality of Service(QoS) requirements of the applications in terms

of the performance expectations and lead to violation of Service Level Agreements(SLAs).

The Cloud computing model benefits workloads that have some I/O access since during

I/O wait by the applications, the idle CPU cycles can be exploited by other applications. It

is essentially this property that motivates the server consolidation case. However, evolution of

current virtualization technologies has occurred on systems not designed for concurrent access

demanded by the multi-tenancy aspects. This is particularly true in case of I/O devices like the

network interfaces and disk controllers and disk devices. I/O devices have traditionally been

designed for access through protected modes using OS system calls and most virtualization

technologies to date preserve this model by providing software virtualization abstraction over

this design. There are extensive studies in literature that demonstrate the issues with such

virtualization mechanisms [2, 3, 4, 5, 6, 7]. As a consequence of which, PCI-SIG (Peripheral
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Component Interconnect Special Interest Group) on I/O virtualization formulated constructs

for providing hardware virtualization support for I/O device access on virtualized platforms

[8]. However, I/O Virtualization (IOV) constructs are beneficial for highly I/O intensive work-

loads wherein performance is critical. Also, IOV platforms impose VM migration constrains.

In large Cloud data-centers where a varied mix of different types of resource and performance

requirements manifest, it is necessary to look at commodity platforms and see if one can lever-

age performance guarantees without changing the commodity nature of the solution. It is

in this context that we focus mainly on I/O intensive applications contending for common

disk resources on a single server in Cloud storage that may suffer unpredictable delays due to

multi-tenancy. Virtualization techniques are anticipated to incur processing overheads due to

additional layers of software that provide abstraction of hardware resources such as disks. In

order to achieve fine-grained control for concurrent disk access scenarios, software mechanisms

for allocation of resources such as disk scheduling are commonly employed. In most Cloud

storage setups, allocation of disk bandwidth to concurrently running I/O applications is usu-

ally done on fair sharing basis with best effort mechanisms. The role of intelligent scheduling

techniques for allocation of disk resources, therefore, becomes very important for providing per-

formance guarantees for I/O applications with diverse requirements. The present work proposes

novel scheduling schemes that can derive optimal application performance along with maximum

resource utilization without requiring any changes to existing hardware architectures.

This chapter introduces the problem statement through illustration of the performance is-

sues that are common for Cloud storage and discusses the approach taken by this work to solve

these issues. Section 1.1 discusses the scenario of multiple heterogeneous I/O intensive applica-

tions sharing disk resources and techniques for satisfying performance requirements. The role

of scheduling techniques for allocation of resources to the applications has been emphasized.

Section 1.2 discusses the trade-off between application performance and workload consolidation

in typical Cloud setups. The need for differentiated services for I/O applications having differ-

ent latency requirements has been motivated through experimental validations in Section 1.3.

Section 1.4 describes the objectives of this thesis in terms of proposing novel scheduling frame-

works for achieving an optimal application performance while maximizing resource utilization.

The organization of the thesis is presented in Section 1.5 and the chapter is concluded with a

summary in Section 1.6.

1.1 QoS for I/O Applications in Cloud

Cloud computing caters to a diverse range of applications with different functionality and re-

source requirements such as social networking, enterprise workloads and research computations
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[9]. Most applications executing on the Cloud essentially have some disk read or write opera-

tions and there are many common applications that need extensive I/O for their functionality.

Typical examples are file server workloads, multimedia streaming applications [10], database

management systems [11] as well as scientific jobs running for long duration of time [12, 13].

Considering the large number of I/O applications being hosted on the Cloud platform, it may

be the case that applications having different kinds of disk I/O workload patterns (e.g. random

or sequential read/write requests) and varied performance requirements in terms of response

time and throughput are executing in VMs that are co-located on the same host. Typical

I/O intensive applications have different latency requirements, request-response workloads [14]

and applications like database transactions are interactive and it is imperative for them to

complete within desired time limit in order to get useful output [15]. On the other hand,

I/O applications like logging activities, research jobs are delay tolerant and do not have strict

deadlines for completion.

In order to satisfy the QoS of such I/O applications running concurrently, it is important

to capture the latency characteristics of all the applications in terms of the users’ expectations.

Subsequently, the latency metrics are translated in terms of the desired resource allocation

metrics like disk bandwidth to satisfy the performance requirements of multiple contending

I/O requests. Since current architectures are not designed for facilitating shared bandwidth

access in an isolated manner, disk scheduling is the most widely used method to assign resources

for achieving varied I/O performance expectations.

However, the common disk scheduling policies employed in practice are unable to distinguish

among the requests from various applications and are oblivious to their performance expecta-

tions. If the resource allocation is fair and equal for all the concurrent applications irrespective

of their I/O performance requirements, it may cause undesirable delays for latency sensitive

applications. Therefore, the disk scheduling policies must be made cognizant of the latency re-

quirements of the applications while allocating bandwidth resources. The difference in latency

sensitivity of the various I/O applications can be utilized for achieving desired performance

for the set of applications placed on the same server by providing differentiated service alloca-

tion. The scheduling and resource allocation policies of the host servers, therefore, assume an

important role in ensuring QoS guarantees for the applications running in virtualized environ-

ments [16]. For satisfying QoS, differentiated services must be provided to various applications

hosted on the physical servers based on their latency characteristics translated into correspond-

ing bandwidth requirements. This thesis proposes the design of a latency aware disk scheduler

PriDyn which enables the same for the Cloud servers. The details of PriDyn scheduler will be

discussed in Chapter 3.
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1.2 Performance and Consolidation Issues

Cloud computing offers better utilization of physical resources through a shared usage model

that can enable substantial energy savings [17]. The underlying hardware resources such as

CPU, memory, disk, network bandwidth and others are multiplexed between all the concurrent

applications that are hosted on the same server in this model using virtualization methods. For

I/O intensive applications, large variations in performance may be observed due to the shared

usage, primarily depending upon the type of storage [18] and the degree of multi-tenancy on

the server i.e. the number of VMs co-located on the same host, sharing the hardware [13]. An

end user running applications on the Cloud may expect to get dedicated access to the physical

resources like disk and network in an ideal scenario, but due to sharing the applications only

get a proportional share of the bandwidth. This may adversely affect the performance of the

applications causing SLA violations, which in turn might lead to undesirable penalties for the

Cloud provider. On the other hand, if resources are over allocated to the applications in order

to minimize interference and ensure performance, Cloud provider may not be able to achieve

good workload consolidation for the servers leading to poor utilization and thereby energy

inefficiency. Large scale data-centers need substantial power resources for their continuous

operation incurring large energy costs as well increasing carbon emissions. Reports [19] indicate

that data-centers and servers in the United States consumed 61 billion kilowatt-hours (kWh) in

2006 (1.5 percent of total U.S. electricity consumption) for a total electricity cost of about 4.5

billion dollars. In 2013, U.S. data-centers consumption was estimated at 91 billion kWh which

is projected to increase to roughly 140 billion kWh annually by 2020, causing the emission

of nearly 150 million metric tons of carbon pollution annually [20]. Given the ecological and

economic impact, it is important to focus on developing energy efficient paradigms for cloud

computing. Efficient VM scheduling techniques that place the active VMs on minimum number

of physical servers while transforming others to low-power state can enable significant power

savings through server consolidation [21].

The dichotomy between application performance and server consolidation becomes highly

relevant in setups with high degree of multi-tenancy where multiple VMs accessing the shared

resources at the same time may result in highly unpredictable performance [22, 23]. It is

pertinent that such issues are addressed so that users get guaranteed performance for their

services hosted on the Cloud and at the same time good resource utilization of the system is

also maintained.

Usually, in Cloud data-centers, a generic placement policy decides the allocation of physical

hosts to different VMs based on system boundary conditions (i.e. hardware capacity) and
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resource requirements of the VMs [24, 25]. However, there is a need for intelligent meta-

scheduling techniques for VM placement to obtain optimal workload combinations on the servers

that can achieve the desired balance between application performance and server consolidation.

For example, if there is an optimum combination of latency sensitive and other delay tolerant

I/O applications, it is possible to attain good performance for all applications while maximizing

the utilization of disk resources at the same time. On the other hand, if all the I/O applications

co-located on a server are latency sensitive, there will essentially be degradation of performance.

To tackle these issues, we have proposed the design of meta-scheduling framework PCOS to

achieve application performance while ensuring workload consolidation for the Cloud data-

centers. The details of PCOS are discussed in Chapter 5.

1.3 Multi-tenancy Issues for Disk I/O Performance

This section motivates the need for smarter scheduling techniques by discussing the most per-

tinent issues in shared Cloud storage environments. Detailed experimental analysis was per-

formed to demonstrate the degradation of disk performance in multi-tenancy environments.

The experiments were conducted on a private cloud running OpenNebula3.4.1 cloud framework

with KVM [26, 27] as the hypervisor to set up VMs. The host server has 12-core AMD Opteron

2.4 GHz Processor, 16GB RAM and 1TB SATA2 disk(7200 rpm,16MB cache). A dedicated

partition on the disk was used for all the I/O experiments to minimize interference. All the

VMs were configured identically with 20GB virtual disk space, 1GB RAM and 1 vCPU pinned

to an exclusive core so as to avoid the effect of CPU scheduling policies.

To model the I/O patterns of real world applications, the IOzone file system benchmark

tool [28] was used. IOzone is a popular and versatile tool for file and I/O benchmarking offering

a wide variety of I/O access patterns. We configured our tests to eliminate cache and buffer

effects to get native read/write performance for the disk. The Linux dd command was used to

model simple block read and write operations.

Several case studies were performed to study the disk I/O behavior for Cloud setups and

factors affecting the performance. We analysed the functionality of the hypervisor in terms of

facilitating I/O access to the virtual machines running on a single host with help of various

experiments. The hypervisor causes a performance overhead for disk I/O which was found to

increase with increasing number of VMs as shown in Section 1.3.1. In Section 1.3.2, we examine

the relation between disk I/O performance and the degree of multi-tenancy on a single host.

In addition, several tests were conducted to understand and illustrate the role of host disk

scheduler for achieving desired performance for multiple concurrent applications as discussed

in Section 1.3.3.
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1.3.1 Role of Hypervisor

The hypervisor or virtual machine manager is a software that enables virtualization by the

abstraction of hardware resources to the guest operating system. It performs the essential task

of managing device access for the virtual machines. For multiple VMs demanding concurrent

disk access, the hypervisor is the single point of resource control and conflict resolution for

all the requests. For this reason, the hypervisor becomes a bottleneck and induces substantial

overheads for the I/O operations. In our setup, we have employed KVM or Kernel-based Virtual

Machine which is a full virtualization hypervisor based on hardware-assisted virtualization

wherein the Linux kernel is provided hypervisor capabilities by addition of new modules. KVM

is comprised of a set of loadable kernel modules, kvm.ko that provides the core virtualization

infrastructure and a processor specific module, kvm intel.ko or kvm amd.ko, and also a user

space qemu-kvm process. Qemu-kvm is a modified version of qemu [29] which is used for

hardware emulation for the virtual machines. There is one such qemu-kvm process associated

with every VM. A separate qemu thread is assigned to each virtual CPU (vCPU) allocated to

a particular VM. The qemu-kvm process is responsible for handling all the I/O requests from

the VMs through a separate iothread. Each VM is a process on the host and it is scheduled as

usual by the host CPU scheduler.

In KVM, a third operating system mode called the guest mode is introduced apart from the

traditional user and kernel mode. The VMs run in guest mode until a privileged operation like

an I/O request is issued. To handle this, a trap is generated and there is a switch to the kernel

mode from the guest mode. It is examined if the reason of the switch is an impending I/O

operation in which case the control is passed to the corresponding qemu-kvm process in user

space to perform I/O on behalf of the VM. Then the I/O request is completed in the same way

using the system calls as done for other normal processes running within the Linux operating

system.

Due to the mode switches associated with every I/O request, there is an inherent virtual-

ization overhead associated with the I/O operations executed from inside a VM. Further, this

overhead increases with increasing number of VMs deployed on a single virtualized host. To

illustrate this, we executed a simple IOzone block write command simultaneously on multiple

VMs and tested with increasing number of VMs. For each test, we measured the percentage of

various KVM components i.e. kvm amd and kvm modules and the qemu-kvm process, out of

total samples collected with help of OProfile tool [30] and the results are shown in Figure 1.1.

It is observed that the percentage contribution of the KVM components increases as the num-

ber of VMs running I/O operations increases. The percentage component of kvm amd module
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Figure 1.1: Increase in hypervisor overhead with multi-tenancy

almost doubles when moving from a single VM to two concurrently running VMs. Similar

increases are noticed for other KVM components as well with increasing number of VMs, thus

confirming that the hypervisor overheads depend on the degree of multi-tenancy. It is to be

noted that such overheads are not present when I/O requests are executed on a non-virtualized

setup. This study clearly indicates that the total device bandwidth capacity for Cloud servers

is restricted due to virtualization overheads. Therefore, consolidation of virtual machines on

a physical host in virtualized environments must necessarily take into account these overheads

and closely match the VM requirements with actual total capacity before attempting to spawn

new VMs on the server.

1.3.2 Effect of Multi-tenancy on Disk Performance

To characterize and understand the effect of multi-tenancy on application performance, we

examine the variation in disk throughput with different number of concurrent VMs against

varying record sizes for write operations. I/O record sizes affect the net throughput achievable

as indicated in Figure 1.2 and Figure 1.3. Figure 1.2 indicates the average disk throughput

obtained for I/O operations in case of different number of VMs in MB/sec. Disk throughput

is higher for larger record sizes in all cases. It is observed that there is a considerable drop
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in disk throughput (from 90 MB/s to 60 MB/s) in a virtualized environment as compared

to the non-virtualized case where the I/O operation is executed directly on the host, without

hypervisor intervention and competing tenants. This clearly indicates that the hypervisor

causes an overhead for the I/O applications running inside VMs. This overhead increases with

increasing number of VMs deployed on a single virtualized host. Further, it can be observed

from Figure 1.2 that the average throughput value per I/O operation decreases as we increase

the number of VMs on which file write operations were concurrently running. Such a trend

is observed for I/O requests of all record sizes with sharper decrease in throughput for larger

record sizes.

Figure 1.3 shows the cumulative disk throughput obtained for all the I/O operations that are

executing concurrently inside different VMs on the host. For all the block sizes, it is observed

that total disk throughput value deceases with increase in number of VMs (40 MB/s for 3

VMs) indicating loss of total disk bandwidth in case of multiple concurrent I/O processes. This

behavior is attributed to the interference at disk level where I/O requests from different VMs

contend with each other for disk access. The marked non-linear decrease in disk performance

observed with increase in number of VMs poses scalability issues putting a limit on the degree

of multi-tenancy for I/O.

The variation in disk throughput and the associated latency values for concurrent I/O

applications having different characteristics is further discussed next with reference to disk

scheduling of the I/O requests.

1.3.3 Role of Disk Scheduler

In virtualization setups, every virtual machine is assigned physical disk space on the host

which is exposed as a virtual disk inside the VM. Since all virtual machines are represented as

normal user level processes on the host, all I/O requests from the virtual machines (handled

by qemu) are dispatched to the actual disk by the disk scheduler of the host. The host disk

scheduler cannot distinguish between the I/O requests coming simultaneously from different

VMs or from the host itself. Due to limited information about the I/O latency requirements

of the requests, the disk scheduler is unable to provide differentiated performance to the I/O

applications of the VMs and all the applications suffer delays due to multi-tenancy regardless

of their latency requirements. In order to model the I/O workloads that are typically hosted

on cloud environments, concurrent bulk read and write operations were executed on different

VMs in various combinations.

Figure 1.4 shows the average disk throughput values obtained for various cases. It was

observed that a single read or write operation having exclusive disk access achieved the highest
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Figure 1.2: Average disk throughput with varying record sizes for different number of VMs.

Figure 1.3: Cumulative disk throughput with varying record sizes for different number of VMs.
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disk throughput value. If a read process is executed simultaneously with an ongoing write

process on another VM, there is a significant drop in disk bandwidth for both the processes.

Similar observations were made for other combinations of read and write operations as indi-

cated in the figure. It is clearly seen that the throughput value decreases equally for all the

applications irrespective of their workload pattern or service requirements.

The latency or the response time for an I/O operation is closely linked with the disk through-

put value. Higher disk throughput for an operation implies lower latency value. Figure 1.5

indicates the latency values that were observed for the same combinations of read and write

operations. It is observed that the latency value for all the I/O operations increases as the

number of concurrent I/O operations increases independent of their type. Thus, we can con-

clude that it is essential to make the disk scheduler in the host aware of the I/O characteristics

of applications running in the VMs so that desired performance can be achieved.

To summarize, following are some of the pertinent issues regarding disk I/O performance

that were illustrated through our experiments :

• The hypervisor causes an overhead for all I/O operations from the VMs which increases

with rise in the number of VMs. (Section 1.3.1)

• The cumulative disk throughput decreases as the number of I/O operations running con-

currently inside VMs that share the physical disk increases. (Section 1.3.2)

• All concurrent I/O applications suffer from performance degradation as the host disk

scheduler does not consider variations in performance requirements. (Section 1.3.3)

1.4 Objectives of the Thesis

The previous section has discussed the most crucial issues for disk I/O performance for Cloud

storage setups. It has been shown with various experiments that the disk I/O schedulers by

default can only achieve best effort services to all the I/O applications irrespective of their ur-

gency of operation. In order to satisfy the QoS requirements of a wide ranging I/O applications

typically running concurrently on the Cloud hosts, we need to provide differentiated services to

the applications based on their latency requirements.

In this work, we discuss our proposed novel disk scheduling framework PriDyn (DYNamic

PRIority) which provides differentiated services to various I/O applications co-located on a

single host based on their latency attributes and desired performance. It is assumed that

Cloud users specify the performance requirements of the I/O applications in terms of the data

size (for bulk reads/writes) or request size (for transactional applications) and the desired
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Figure 1.4: Disk throughput for different combinations of I/O operations

Figure 1.5: Service latency for different combinations of I/O operations.
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deadline i.e. the maximum time by which the application is required to finish execution. To

achieve differentiation in I/O performance, the framework employs a scheduling algorithm which

dynamically computes latency estimates for all concurrent I/O applications for a given system

state. Based on these, an appropriate priority assignment for the applications is determined

which will be taken into consideration by the underlying disk scheduler at the host while

scheduling the I/O applications on the physical disk. This will essentially address the concerns

about the scheduler being indifferent to the varied performance requirements of the applications

as identified in Section 1.3.3. Thus, this framework describes a performance-driven latency-

aware application scheduler on top of the actual disk scheduler on the host in a virtualization

environment. It ensures that critical applications do not suffer latency in shared environments,

enabling significant improvement in I/O performance and give QoS guarantees.

Moreover, it is essential to follow optimal application scheduling strategies for the servers

at the data-center level working in conjunction with the disk I/O schedulers at all individual

servers. The effects of different scheduling approaches for I/O workloads with diverse latency

requirements on the same server have been illustrated and analyzed later in Chapter 5 . Desired

performance for all the I/O applications executing on a single server can be enabled by intelligent

meta-scheduling techniques and admission control mechanisms. With the correct combination

of I/O applications on a server having varied latency requirements, the PriDyn scheduler can

achieve desired performance objectives for all the applications.

Therefore, the PriDyn framework was extended and a novel admission control and meta-

scheduling framework named Prescient C loud I/O Scheduler (PCOS ) was designed for ob-

taining good I/O workload combinations for Cloud systems. PCOS aims to maximize the

utilization of disk resources without adversely affecting the performance of the applications

scheduled on the systems. This scheduler follows a conservative methodology in which migra-

tions of I/O applications among the systems is strictly avoided. By anticipating the performance

of the systems running multiple I/O applications, PCOS can prevent the scheduling of undesir-

able workloads on them. The PCOS framework includes the PriDyn scheduler as an important

component and utilizes the dynamic disk resource allocation capabilities of PriDyn for meeting

its goals. With this framework, we can achieve an improvement in disk I/O performance even

after taking into consideration various hypervisor and disk overheads as discussed in Section

1.3.2 and 1.3.3. Therefore, PriDyn disk scheduler and PCOS meta-scheduling framework to-

gether are capable of addressing the issues identified for disk I/O performance in Cloud storage

setups. We prove through modeling and validations on real I/O workload traces that with our

approach, storage resources can be allocated in an optimal manner based on the performance

requirements of the applications in Cloud data-centers.
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1.5 Organization of the Thesis

The remainder of the thesis is organized as follows.

Chapter 2 discusses the background and related work previously done that is relevant in the

current context. We state the existing scheduling techniques and emphasize how the proposed

framework better addresses present concerns.

Chapter 3 introduces the design and functionality of the PriDyn disk scheduling framework.

The implementation details of the framework which enables it to take into consideration varied

performance requirements of the applications have been discussed. This scheduler achieves

service differentiation for allocation of disk resources to concurrent applications on a single

host.

Chapter 4 provides the proof of concept of the proposed PriDyn framework with help of

various experiments. Real world traces were used for validating the functionality and utility

of PriDyn for actual Cloud storage scenarios. Results show that PriDyn achieves significant

performance enhancements.

Chapter 5 illustrates the need for meta-scheduling of workloads in Cloud data-center through

various case studies. It describes the PCOS meta-scheduling framework which intelligently

selects an optimal combination of workloads for the Cloud servers to enable good server con-

solidation while maintaining desired QoS. This chapter presents design and implementation

details along with the experimental validation for PCOS framework indicating that PCOS

achieves better workload consolidation for servers and maximizing disk utilization without any

performance degradation.

Finally, Chapter 6 concludes the thesis and discusses future work.

1.6 Summary

This chapter provides the necessary background for understanding the rest of the thesis. The

most pertinent issues for the optimal performance of I/O applications on Cloud storage setups

were discussed and illustrated with the help of experimental results. The chapter motivates the

need for differentiated services and proper meta-scheduling strategies for Cloud data-centers,

thus giving an overview of the approach that has been adopted by this thesis to tackle the multi-

tenancy issues and ensure guaranteed services for Cloud applications. In the next chapter, we

discuss the background and explore available literature related to our work in detail in order

to elicit the advantages of our approach and place our contributions in the correct context in

the field of virtualization and Cloud systems.
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Chapter 2

Background and Related Work

Performance issues associated with virtualization techniques have been studied previously [31].

These challenges become more relevant for I/O operations as the limited I/O resources become

a bottleneck while trying to attain application level QoS. I/O performance bottlenecks for data

intensive workloads with commercial publicly available as well private Cloud setups have been

demonstrated in [32], motivating the need for continued efforts for better systems and practices

in I/O virtualization.

In this work, we emphasize that QoS guarantees can be provided for the applications running

on every server through novel disk scheduling methods. The characteristics of various co-

hosted applications must be identified and disk resources should be allocated to the them

dynamically according to their requirements. In addition, smart meta-scheduling techniques

should accompany server-level scheduling to ensure proper scheduling of VMs on the server at

the data-center level. Through efficient scheduling practices, better consolidation of workloads

can be attained which can reduce power consumption of the data-centers.

We discuss existing literature related to both of these aspects separately.

2.1 QoS for co-tenant VMs on a Server

Efforts to provide QoS for disk I/O have been made in earlier works such as [33, 34] but these

attempts were based on classical operating systems and they do not consider the complexities

of resource allocation involved in virtualized Cloud storage environments. In [35], authors have

studied such complexities associated with virtualized Cloud setups due to the abstraction by

the hypervisor layer and proposed a new disk I/O model HypeGear for the coordination and

management of multiple guests on the hypervisor. For concurrent I/O requests from multiple

virtual machines, which lead to the disk becoming a point of contention, the proposed model
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aims to achieve disk I/O optimization with help of system-wide and device-specific information.

However, this model uses caching in host OS to improve disk I/O bottleneck and does not focus

on scheduling techniques to alleviate multi-tenancy issues.

The effect of disk scheduling on the performance of I/O applications in virtual setups has

been studied by Boutcher et al. in [36]. By comparing the fairness and throughput metrics

achieved with different Linux I/O schedulers on a virtualized system, the paper shows that for

obtaining better overall performance, the choice of scheduler should be based on the application

workload on a virtual machine. In [37], Kesavan et al. have discussed in detail the role of

hypervisor level scheduler in ensuring good performance for the I/O application executing on

the VMs. Similar studies on performance impact of the VMM scheduler on I/O intensive

applications had been undertaken by Ongaro et al. [38] and Cherkasova et al. [39] for the Xen

virtualization platform [40]. In [38], the authors have examined optimizations to Xen’s Credit

scheduler for improved I/O performance and emphasised the need for further enhancements.

[39] examines the effect of the choice of scheduler and its parameters on application performance

and identifies the challenges in allocation of CPU resources to applications as per requirements.

The current work focuses on achieving performance improvement through scheduling of disk

I/O applications particularly with regard to their latency characteristics.

Much literature is available for providing fairness and performance isolation to I/O appli-

cations in virtual environments. In [41], Lin et al. have analyzed performance interference

issues when different types of random and sequential I/O workloads are co-located on single

host and proposed a fair sharing framework which uses replication for reducing the interference.

Similarly, in [42], Kim et al. have studied the reasons for fairness-violation and I/O perfor-

mance degradation in virtual machines. The paper proposes a virtualization-aware fine-grained

I/O analysis framework which keeps track of scheduling information and devises techniques for

enforcing fairness. In [43], the authors have proposed a virtual I/O scheduler which claims to

ensure fair and isolated performance by fair allocation of disk time to the applications. [44, 45]

proposed similar ideas for ensuring performance isolation for the I/O workloads of different

virtual machines sharing storage. Works like [46, 47, 48, 49, 50] have focused primarily on pro-

viding proportional resource allocation with the goal of achieving fairness in I/O performance.

In [51], the authors have proposed a proportional share scheduler which used separate I/O

queues for each VM to provide QoS.

Recently, in [52], Sfakianakis et al. have identified that fairness is not an appropriate

optimization metric for shared servers catering to different workloads. They have proposed

Vanguard which enforces I/O path isolation for interfering workloads on consolidated servers

to achieve higher server utilization. In DVT [53], latency smoothing techniques were used to
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reduce the rate of change of service latency and get proportionality and isolation across VMs.

Our work is different from aforementioned approaches as we have focused on providing

differentiated services to I/O applications taking into consideration the variability in service

requirements for different applications in shared Cloud storage. Unlike previous work, the

PriDyn framework proposed in this paper aims to meet service time deadlines by dynamically

allocating disk resources to I/O applications based on their latency requirements. It manages

the distribution of disk resources to the applications at high granularity to efficiently allocate

disk bandwidth among applications according to fluctuating needs. Thus, PriDyn has been

designed as a latency aware disk scheduler to achieve QoS guarantees for the applications.

2.2 VM Placement and Scheduling in Data-centers

In order to realize the full benefits of disk scheduling at the servers through the framework,

complementary VM placement strategies are necessary at the data-center level to ensure the

scheduling of optimal workloads on the servers. In [31], Koh et al. have attempted to analyse the

performance interference for virtualized workloads and make predictions for the performance

of different combination of workloads based on their characteristics. We have taken similar

approach in this work and taken it a step further by aiming to achieve server consolidation

through efficient resource utilization along with application performance.

Attempts to provide guaranteed services to application running inside co-hosted VMs by

assigning excess resources leads to resource wastage for the providers in a Cloud setup. As

such, there have been many attempts to optimize resource utilization through efficient VM

management and scheduling techniques for data-centers. The available work in literature on

scheduling of I/O applications in virtualized storage setups can be discussed in two categories -

those that aim to achieve good performance for I/O applications through scheduling strategies

and others where the primary goal is consolidation of data-center with the help of load balancing

techniques. The framework proposed in this work is unique as it aims to combine the techniques

for I/O application scheduling with server consolidation objectives to achieve good resource

utlization but without making any compromises on application performance at the same time.

2.2.1 VM Scheduling for Application Performance

In this category, Casale et al. [54] discuss the impact of sharing of virtual disk resources by

predicting performance in multi-tenant environments. [55, 56, 22] have performed I/O workload

characterizations to anticipate performance and enable better I/O scheduling. We have taken

a similar approach but unlike previous work we have focused on optimal workload scheduling

based on differentiated I/O service requirements. We have employed admission control tech-
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niques to obtain suitable workload combinations that ensure application performance along

with maximum resource utilization. Such techniques have been previously used in other works

like [57, 58] which enable dynamic provisioning and scheduling of tasks but they do not consider

the complexities involved with handling I/O resources.

In [59], Delimitrou et al. propose Paragon, an interference aware scheduler which classifies

workloads as per their requirements to find a suitable server for scheduling. Similar to our

work, they aim to achieve both application performance and efficient resource utilization by

finding the least interfering placement of VMs on hosts. But this work also discusses computing

resources and is not relevant to I/O intensive workloads.

2.2.2 VM Placement for Consolidation

Consolidation of resources through load balancing and placement strategies has been extensively

discussed by Gulati et al. [60, 61, 62]. Earlier studies like [63, 64, 65] were concerned primarily

with storage configuration and optimization techniques. In [60], authors have proposed an

automated tool for storage management through I/O load balancing techniques.

DeepDive [66] aims to ensure performance for IaaS Cloud environments by identifying and

managing interference among VMs on a server and suggesting suitable migrations to alleviate

the issue. Closer to our work, [61] discusses the need for workload characterization and de-

vice modeling for automated I/O placement with help of VM migrations. The aforementioned

works achieve consolidation mainly through migrations whereas we have designed our frame-

work to minimize the costly task of I/O application migrations while realizing good workload

combinations for data-center consolidation.

Q-Cloud [67] has similar motivation as that of our work, it attempts to achieve performance

isolation for co-hosted VMs as well as increase resource utilization. According to user defined

service levels, excess resources are set aside with each server to handle dynamic surges in

resource demand by the applications and meet QoS. The decision regarding excess resources and

placement of VMs on the servers are made with help of predictions. However, the framework is

unable to perform in the absence of sufficient extra resources which causes resource wastage. In

contrast, in our work we try to achieve guaranteed services through the dynamic allocation and

reallocation of available limited I/O resources. Also, PCOS meta-scheduler performs intelligent

placement of VMs without requiring the need for any extra resources on the servers unlike Q-

Cloud.
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2.3 Summary

This chapter discussed previous literature related to the domain of I/O performance consider-

ations in virtual Cloud setups. Through the proposed framework in this thesis, we have tried

to address the concerns regarding latency aware differentiated I/O performance QoS for virtu-

alized applications which has not been explored till date to the best of our knowledge. Also,

unlike previous works, we have attempted to enable better utilization of hardware resources in

Cloud data-centers while also ensuring performance guarantees at the same time. In the next

chapter, we discuss in detail the PriDyn scheduling framework for providing latency specific

I/O services to the applications.
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Chapter 3

PriDyn Scheduler

Cloud systems host a wide range of heterogeneous I/O intensive applications as discussed in

Chapter 1. According to the functional use cases of the applications hosted inside VMs, there

may be varied latency bounds which result in different bandwidth requirements for differ-

ent applications. For instance, an online video streaming application like Netflix, which uses

Amazon cloud services extensively for its operations [10], will have strict I/O latency bounds

for acceptable performance. Similarly, an interactive transaction-based application, such as a

database system will have a desired response time limit for each user query. On the other hand,

high-throughput computing tasks or large scientific applications such as n-body simulations,

molecular dynamics problems have long execution periods and do not have strict deadlines for

completion.

The disk scheduling techniques commonly employed for I/O applications in prevalent tech-

nologies are not suitable for such dynamic environments as they are unaware of the character-

istics of the various I/O applications generating disk I/O requests. This is especially true for

Cloud setups since on multi-tenanted hosts, the local storage allocated and visible to a VM is

a software abstraction of the physical disk of the host. Due to this, the I/O request charac-

teristics that are visible to the VM are opaque to the actual disk scheduler that resides inside

the hypervisor at the host. Therefore, most of the popular mechanisms for sharing disk storage

are designed for weighted fair-sharing that typically uses I/O demand from each VM. However,

such mechanisms are unable to ensure performance guarantees since the resource availability

depends on the degree of multi-tenancy. For guaranteed performance, the application would

require exclusive access to the disk resources. But such a policy would affect the consolidation

ratios for I/O workloads on Cloud setups and impose limitations for both users as well as the

providers. In order to alleviate this issue, we have proposed the PriDyn scheduler which is a

novel disk scheduling framework to achieve performance-specific QoS for Cloud storage. By
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taking cognizance of the functional characteristics of the I/O applications, PriDyn aims to

fulfill application performance goals specified as QoS requirement without unduly loosing out

on the host’s resource utilization efficiency. It translates user-level requirements to system level

specifications such that the allocation of disk resources to the applications can be fine-grained

and dynamically managed as per the requirement.

This chapter presents the proposed PriDyn framework and discusses its features and func-

tionality for enabling QoS based I/O performance in Cloud environments. Section 3.1 gives

an overview of the PriDyn framework discussing the assumptions and main features. Section

3.2 presents the design considerations and the functionality of the main components Latency

Predictor (Section 3.2.1) and Priority Manager (Section 3.2.2). The role of the disk scheduler

in the PriDyn framework has been explained in Section 3.3. This chapter also presents the

algorithm and discusses the implementation details of the PriDyn framework in Section 3.4.

3.1 Overview

In Cloud setups, a VM running I/O applications may have the same workload pattern over its

lifetime or it may cater to different kinds of I/O workloads at different times depending upon

the different types of services offered by the user application. We assume that the placement

policies of a data-center take into consideration the configuration of the host machines and

decide the placement of VMs on physical hosts according to the system boundary conditions.

For instance, a VM is assigned to a host only if the maximum virtualized bandwidth that can

be offered by the host satisfies the bandwidth requirement of the VM. Similarly, the number

of VMs co-located on the same host will also depend upon the underlying hardware capacity.

In addition, multiple VMs running applications with strict latency requirements are not placed

on the same host so as to avoid the resulting degradation of performance. Therefore, it is

desirable to place VMs having a combination of applications with varying latency requirements

on a single host. But in such a scenario, a latency-sensitive application may suffer delays due

to interference by other applications contending for disk at the same time. For instance, if a

streaming application is executing simultaneously with a long running scientific application, its

performance may be adversely affected and it may suffer delayed service time. The proposed

PriDyn scheduler is a latency aware application scheduler that has been designed to resolve this

issue by leveraging the difference in service requirements to satisfy QoS of multiple concurrent

applications on a single host.

Figure 3.1 shows the structure and relative placement of the PriDyn scheduling framework

with respect to the whole setup under consideration. The framework functions as a part of the

hypervisor which manages the allocation of physical disk resources of the host to the multiple
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virtual machines that are being simultaneously executed on it.PriDyn is composed of Latency

Predictor and Priority Manager components whose functionality is explained in detail sub-

sequently through Figure 3.2. The proposed framework simultaneously considers system disk

utilization as well as application performance in terms of user level agreements to effectively

partition the available resources among these VMs. It aims to provide prioritized services to

time bound applications in order to meet their performance SLAs while also maintaining ac-

ceptable QoS for less critical applications. PriDyn achieves this by computing suitable priority

values for disk access for I/O applications on the basis of their latency requirements. In this

work, we are assuming that though VMs may execute different I/O applications over a period

of time, but at any given time, each VM runs a single I/O application on the host. Work-

load characterization is performed by the user for their I/O applications and attributes such

as the total size of the data and the value of deadline associated with each I/O application are

provided to the framework as inputs. We assume that these attributes remain same over the

period of execution of the application. As an example, for a video streaming application, the

user can specify the data size of an I/O request (corresponding to the size of a video file) and the

required streaming rate (which can be used to derive the request deadline). Based on this data

and the current system state, PriDyn computes the latency estimates and the corresponding

priority values for all applications after a particular scheduling interval. It uses a feedback-

based mechanism to adaptively determine the current application performance on the system

in terms of allocated disk bandwidth and recomputes latency estimates at every interval. This

scheduling interval can be varied according to the rate of change in the system state such that

the framework necessarily recalculates the priorities for all the running applications whenever

any new I/O application begins execution or an existing application completes I/O. For e.g., if

the applications have short execution times, then the scheduling interval should be small. In

our experiments that are demonstrated in Chapter 4, the duration of scheduling interval is 3

seconds. This scheduling interval is distinct from the scheduling interval of the actual disk level

scheduler at the host.

A distinguishing feature of the current work is that the priority values are not statically

assigned to the applications but are dynamically updated based upon the system state. Static

priority assignment policy for I/O applications in a Cloud environment can lead to sub-optimal

resource allocation as well as performance limitations. The arrival of critical applications cannot

be known in advance in a dynamic Cloud storage setup. Moreover, there may be applications

having variable I/O workloads. A static priority scheme cannot modify the priorities of already

running applications for reallocation of resources and therefore such a system may not be able

to accommodate new applications with higher performance demands on the host. With the
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Figure 3.1: PriDyn Framework

dynamic scheduling framework, resource allocation can be optimized and higher performance

for critical applications can be achieved. Another key advantage of our framework is that it does

not require any changes to the host or guest OS and can be easily integrated into virtualized

setups as a hypervisor extension to support QoS.

3.2 Design

Broadly, PriDyn consists of two main components- the Latency Predictor and the Priority

Manager. The design of the framework is illustrated in Figure 3.2. The values of deadlines

and data sizes belonging to the I/O applications are given to the framework as inputs and

the priority values of all the applications are the output of our framework which are passed

on to the disk scheduler of the host for assignment to the applications. The functionality and

components of the framework is described in detail below.
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Figure 3.2: Design of PriDyn

3.2.1 Latency Predictor

In order to provide differentiated services to I/O applications, it is essential that the stated

application requirements are compared with the actual performance of the application on the

system. If a specified deadline for an application is to be met, it is required to obtain an estimate

of the finish time for the application (based on present performance parameters i.e. allocated

disk bandwidth) so as to decide whether the application needs higher priority services. This is

the responsibility of the Latency Predictor. It receives as input the total data size (read/write)

corresponding to each active I/O application on the host. It obtains the disk bandwidth and

calculates the size of the data remaining to be processed for every application. In our setup, the

iotop tool available in Linux [68] has been employed to obtain the I/O statistics corresponding
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to the applications running on the system in terms of the disk priority, read and write disk

bandwidth available to the processes, as well as a measure of the data read/written by the

processes. The framework will record disk statistics using iotop at every scheduling cycle.

Based on bandwidth value, the Latency Predictor calculates an estimated time of completion

(latency value) for every application under present system conditions. For each application, the

prediction is optimistic in the sense that arrival of a higher priority application can increase the

service time and is pessimistic because it does not take into consideration that one or more of

the currently executing applications will finish and free up bandwidth which can be allocated

to the current application. The expected latency values are computed at the beginning of every

scheduling cycle and the set of latency estimates corresponding to all applications are provided

to the Priority Manager.

3.2.2 Priority Manager

This module enables service differentiation for the I/O applications according to their require-

ment. In every scheduling cycle, having received an estimate of the latency for every application,

the Priority Manager compares it with the I/O requirements of the application to determine if

the desired deadline is being violated for the current system state. In the event of any violations,

the disk priorities for the active applications are dynamically adjusted such that the resultant

disk bandwidth allocation for the critical applications satisfies the performance requirement.

The priority values will be conveyed to the underlying disk scheduler of the host which will

allocate disk resources accordingly. The bandwidth values corresponding to the applications

that are obtained after priority assignment are again sent to the Latency Predictor as feedback

which recomputes the latencies based on them. This procedure is repeated in every scheduling

cycle. Since an I/O application running inside a VM is a process on the host, we will refer to

the I/O applications as processes when discussing priority assignment at the disk scheduler in

later sections of this paper.

The Priority Manager guarantees a locally optimal solution in terms of resource allocation

and application performance within the system configuration bounds and hardware limitations.

In addition to providing service guarantees to critical applications, it also ensures acceptable

services for the non-critical applications such that they incur marginal increase in latency

values (as shown later in this paper). Also, it identifies the critical applications for which the

desired deadline cannot be satisfied under the present system conditions and ensures that other

applications do not suffer any performance degradation on the expense of a critical application

that is certain to miss its deadline. This will be discussed further while describing the PriDyn

algorithm in Section 3.4. The IaaS provider can choose to clone or migrate such an application
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to a different host to satisfy the SLAs. In present work, we focus on the scheduling options for

a single host only.

3.3 Disk Scheduler

As discussed earlier, the disk scheduler at host level is oblivious to the I/O characteristics of

the applications running inside the VMs. The efficacy of our framework is realized in such a

scenario as it calculates the desired priority values for different applications and provides this

information to the underlying disk scheduler at the host. To implement prioritized services, we

have employed the Completely Fair Queuing (CFQ)[69] scheduler at the host in our framework.

The CFQ scheduler aims to provide fairness in allocation of disk I/O bandwidth to all processes.

It maintains per process queues and dispatches requests to the disk based on the priority values

associated with the processes. CFQ has 3 broad priority classes – real-time, best-effort and

idle in decreasing order of priorities. All incoming I/O requests are put in per-process queues

having designated priorities according to which they are given time slices for disk access. The

length of the time slice and the number of requests dispatched per process will depend upon

this priority value. Processes with real-time priority are given longer time slices during which

they have exclusive disk access and therefore get higher disk bandwidth values followed by best-

effort and lastly idle. As long as there are requests in real-time queue, requests in best-effort

and idle queues are not given disk time and they might starve. By default, all new processes

are assigned best-effort priority; however this can be modified with help of ionice command

or ioprio set system call in Linux. At every scheduling interval, all the I/O applications are

re-assigned priority values (which may be same or different from previous scheduling cycle)

with the ionice command based on the required priority values calculated by PriDyn frame-

work. The performance of the applications will depend upon these priority values. Although

other schedulers like deadline are also available in Linux but they are not designed to provide

prioritized services with the kind of usage that is discussed in this paper.

3.4 Implementation

The algorithm for implementation of the PriDyn scheduler is shown in Figure 3.3. Table 3.1

summarizes the notations used in the algorithm. This algorithm executes at every scheduling

cycle of PriDyn scheduler and considers all actively running I/O processes. It takes the set of

deadline and data size values for all the processes as inputs and provides as output a set of

priority values for all the processes. This algorithm is feedback based, it calculates the priorities

of the processes at every scheduling cycle based on the disk bandwidth currently allocated to the

processes. This disk bandwidth allocated to each process in turn depends on the priority values
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Table 3.1: Terminology for PriDyn Algorithm

Attribute Notation Description
Process P =< P1, P2 . . . PN > The processes currently active on the

system, total N.
Deadline D =< D1, D2 . . . DN > Di is the time by which the process Pi is

required to finish execution (Measured in
seconds).

Total Data
Size

R =< R1, R2 . . . RN > Ri is the total size of the data to be
read/written for process Pi (Measured in

KB).
Disk

Bandwidth
B =< B1, B2 . . . BN > Bi is the current value of disk bandwidth

available to process Pi (Measured in
KB/sec).

Latency L =< L1, L2 . . . LN > Li is the estimated time that process Pi

requires to finish execution based on current
bandwidth allocated to it. (Measured in

seconds)
Priority Pr =< Pr1, P r2 . . . P rN > Pri is the priority value out of {1, 2, 3}

assigned to process Pi where 1:
real-time(highest), 2: best effort(default)

and 3: idle(lowest).
Time

Elapsed
T =< T1, T2 . . . TN > Ti is the time elapsed since the process Pi

began execution (Measured in seconds).

that had been assigned to the process in the previous scheduling cycle. For a given system state,

this algorithm computes the set of priority values which enables optimum resource allocation

with respect to performance requirements.

In Figure 3.3, the first part of the algorithm corresponds to the Latency Predictor which

computes the estimated latency value for every active process based on the current disk band-

width B and the value of DataProcessed (measured with the help of iotop tool). For every new

process, DataProcessed has an initial value of zero and default priority assigned to the process

is best-effort. The second part of the algorithm corresponds to the Priority Manager which

tracks all active processes and finds a process, if any, whose deadline is likely to be violated

based on the latency estimates and the desired deadline values (Step 6). If all processes are

estimated to meet their respective deadlines, the processes continue execution with the default

priorities. In case of multiple processes violating deadlines, the process Pi with the earliest

deadline is chosen for consideration in the present scheduling cycle. Next, for process Pi, the

algorithm finds whether there is any such process Pj whose deadline is later than deadline of

26



process Pi and this deadline is not likely to be violated (Step 8). If there are multiple such

processes, the chosen process will be the one for which the difference between deadline and

latency value is largest and whose priority is not already the lowest (Step 9). This process is

most suitable for being assigned lower priority in the current system state. The following three

cases will be considered by the algorithm:

• Case 1 : There exists a process Pj (Step 10) : In this case, the priority of process Pj is

decremented (Step 11).

• Case 2: Process Pj is not found, process Pi does not have the highest priority (Step 13) :

Here, since there is no suitable process Pj whose priority can be decremented, the priority

of the process Pi (whose deadline is required to be met) is incremented to improve the

disk bandwidth allocated to it.

• Case 3 : Process Pj is not found, process Pi has the highest priority (Step 15) : In this case

it is not possible to achieve the desired deadline of process Pi for any priority assignment

scheme under the current system conditions (due to system limitations). Therefore, the

algorithm assigns the lowest priority to Pi (Step 16) and restores the priorities of the other

active processes to their previous values in case they were changed while attempting to

meet deadline for process Pi (Step 17).

This is done to ensure that other processes do not suffer performance degradation at the expense

of one latency sensitive process whose deadline cannot be met for current system state. In such

a case, when the other concurrent processes finish execution, process Pi will get dedicated disk

access and higher disk bandwidth such that it will finish execution earlier than the latency

value estimated by the algorithm.

Figure 3.4a illustrates such a scenario. Two write operations represented by the red and blue

lines are running concurrently with a latency sensitive read operation depicted as the yellow

line. The read operation has a deadline value which is not achievable for current system state

and therefore, PriDyn algorithm assigns low priority to read operation as discussed above. It

can be seen from the figure that the yellow line stays close to zero value of disk bandwidth

while the other two write operations are executing with best-effort disk priority values. After

the write operations finish execution, the read operation gets exclusive access to disk and thus

obtains higher disk bandwidth. This is clearly shown in the figure as the sudden increase in

the disk bandwidth value corresponding to the yellow line which represents the read operation.

Due to allocation of higher bandwidth value, the read process finishes earlier than the estimated

time and is expected to suffer minor degradation in performance.
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Require: Deadline D, TotalDataSize R
Ensure: Priority Pr

LATENCY PREDICTOR(R,B)
1: for every process Pi do
2: RemainingDatai = Ri −DataProcessedi
3: Li = RemainingDatai/Bi

4: end for
5: return Latency L
PRIORITY MANAGER(L,D)

6: Find Pi s.t. (Li > (Di − Ti)) & Di is minimum
7: if (exists Pi) then
8: Find all Pj,(j!=i) s.t. (Dj > Di) & (Lj < (Dj − Tj))
9: Select Pj s.t. (Prj > lowest) &((Dj − Tj)− Lj) is maximum
10: if (exists Pj) then
11: Decrease Prj
12: else . If no such Pj exists
13: if (Pri < highest) then
14: Increase Pri
15: else
16: Set Pri to lowest
17: Restore Prj
18: end if
19: end if
20: end if
21: return Priority Pr

Figure 3.3: PriDyn Algorithm

In every iteration of the algorithm, only one out of the three cases that have been discussed

is valid. The algorithm considers all non-critical processes Pj and decreases their priority one

at a time till the desired performance for a critical process Pi is achieved. The time and space

complexity of this algorithm is proportional to N i.e. the number of I/O processes active on

the system and it incurs negligible overhead in terms of implementation and execution time at

every scheduling interval. As discussed in Section 1.3.2, the degree of multi-tenancy for I/O

is limited by the disk bandwidth. Thus, even though a single system may cater to a large

number of VMs in typical data-centers, the number of VMs contending for the disk resources

cannot be arbitrarily large and N is expected to be a potentially small number. An important

feature of our approach is that even though lower priority values are assigned to non-critical

processes to get higher disk performance for critical processes, the overall execution time for

those processes experiences a small increase in value in comparison with the default case. This
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(a)

(b)

Figure 3.4: Disk bandwidth allocation depending upon priorities of processes
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is because the critical processes having being assigned higher priority for disk access, get high

disk bandwidth and thus finish earlier than the default case. Since the number of processes

contending for disk access decreases, the remaining process receive higher disk bandwidth than

before and incur less latency. This scenario is illustrated by Figure 3.4b. The latency sensitive

read process is depicted by the yellow line and is shown to be using higher disk bandwidth

having been assigned higher priority value. The other two write processes represented by the

blue and red lines were assigned very low bandwidth while the high priority read operation

was running. After the read operation finishes execution, the write operations could get access

to higher disk bandwidth which was equally shared among them. This enabled the write

processes to finish earlier than the estimated time. Thus, it is observed that even though the

PriDyn framework provides guaranteed performance to critical applications, it degrades the

performance of concurrent applications by merely a small acceptable margin.

3.5 Summary

This chapter presented the detailed design of the PriDyn scheduling framework while high-

lighting its main features and advantages. PriDyn considers the latency characteristics of the

I/O applications running on a server with the help of the Latency Predictor component and

ensures that disk resources are appropriately allocated to the applications so as to satisfy the

minimum performance requirements. The resources partitioning is achieved with the help of

Priority Manager component which dynamically adjusts the values as per the feedback from

latency predictor. The features of the components has been discussed in this chapter with ac-

companying figures. The algorithm for the implementation of the scheduler was presented and

discussed in detail to explain the functionality. The PriDyn scheduler can ensure guaranteed

services for I/O applications by efficient management of the disk resources at a fine-grained

level. In the next chapter, we present the experimental evaluation of the PriDyn scheduler and

validation on real world traces.
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Chapter 4

Evaluation of PriDyn Scheduler

In the previous chapter, we introduced the design and discussed the implementation details of

the PriDyn scheduler. In this chapter, we present the performance analysis and experimental

validation for PriDyn to prove its utility. First, we perform several tests in our experimental

setup and present preliminary proof for the functionality of the proposed framework in Section

4.1. However, to analyze the performance of PriDyn for actual Cloud storage setups being

currently employed for data storage and computations, we use real-world I/O workload traces

available from on-line repositories (Section 4.2). Using these traces we perform several exper-

iments which validate that PriDyn can achieve better performance for I/O workloads having

different functionality by enabling differentiated services on Cloud servers as shown in Section

4.2.3.

4.1 Proof of Concept by Modeling

The functionality of PriDyn framework has been validated through extensive experimental

analysis. In this section, different use-cases modeling common real world I/O workloads have

been employed to evaluate the performance. Typical workloads in a Cloud setup are expected

to consist of applications having different functionality and varied service requirements. The

applications can be broadly classified on the basis of their latency sensitivity. We have con-

sidered two use cases having different number and combinations of latency sensitive as well as

other read or write applications such that other Cloud workload combinations could be easily

generalized to one of these two scenarios.

4.1.1 Use Case 1: Two write applications, one latency sensitive

We consider a common case where two applications A and B are running on different VMs co-

located on the same host. Both the applications are simple write operations with the same data
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size but different latency requirements. Application A is latency sensitive while application B

does not have any strict deadline and is assigned an arbitrarily large value of deadline. When

these applications are run on their respective VMs simultaneously, by default they are assigned

best-effort priority for the disk on the host. Table 4.1a shows the latency values for the default

case. Also shown are the latency values for the best case scenario i.e. when the latency sensitive

application is given highest priority and the other application is given lowest priority. This is

the lower bound of latency value for any application that is running on the system with another

application contending for the disk at the same time. With this information, we run the two

applications on the VMs, setting different values of deadline for application A in decreasing order

in successive experiments. Figure 4.1a shows the latency values achieved for the processes. The

latencies for the latency-sensitive application A are depicted in yellow and the other application

B is shown by the green line. The x-axis represents the successive experiments performed with

decreasing values for the deadline desired for application A as denoted by the blue line. The

average value of latency for application A is also depicted in the figure by the red line for the

purpose of comparison. The corresponding values for latency obtained for the applications by

the PriDyn algorithm for different experiments are shown. To understand the results, we can

consider three distinct cases here.

In the first case, the value of deadline specified for A is greater than the latency value that

it achieves in the default case. Here, the deadline will be easily met with the default priorities

as shown in experiments 1-3. The second case is when the deadline value specified for A is less

than the latency value achieved in default case. Experiments 4-6 in the figure represent this

case. Here, it is clearly seen that PriDyn reduces the latency value of application A such that it

is less than the deadline value. This is achieved by assigning lower priority value to application

B (Case 1 of algorithm). In the third case, the deadline value specified for A is lower than

the best-case latency value achievable on the system (experiments 7-9). In this case, it is not

possible to meet the desired deadline for application A on this system. The algorithm assigns

it the lowest priority value for disk access (Case 3 of algorithm) and the latency for application

exceeds the specified deadline. As observed in Figure 4.1a, the framework is able to meet the

desired deadlines for the latency sensitive application for all values within the performance

bounds of the system.

4.1.2 Use Case 2: One latency sensitive read and two write appli-

cations

This scenario models a typical use case in a Cloud setup where we consider one read intensive,

time bound, video streaming application and two other bulk write applications (such as scientific
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Table 4.1: Latency Values

Latency (Time in seconds) Application A Application B
Default case 88.76 88.10

Best case 55.07 89.08

(a) Use Case 1

Latency (Time in seconds) Read Write 1 Write 2
Default case 155.97 133.94 138.73

Best case 57.95 150.34 147.93

(b) Use Case 2

applications) having long execution times. Table 4.1b shows the latency values achieved for the

applications in default and best case scenarios (with respect to the read application). Figure

4.1b shows the latency values achieved by the applications for the experiments. The deadlines

for write applications were assigned arbitrary high values and the deadline for read application

was varied from a higher to lower value as shown by the blue line in the figure. The latency values

obtained for the latency-sensitive read application are depicted in yellow while the average

latency is represented by the red line. Experiments 1-4 depict the case where the deadline

specified for the read application is more than the latency achieved in default case and thus

deadline is easily met. Experiments 5-13 represent the case where the deadline value is lower

than the default latency but higher than the minimum achievable value according to system

bounds. As can be seen from figure, the latency for read application is lowered by the algorithm

and deadline is satisfied in these cases. In experiments 14-16, the specified deadline values are

lower than the minimum achievable value on the system. The read application is assigned

lowest priority in this case and its deadline is violated. It can be observed from Figure 4.1b

that a wide range of deadline values is being satisfied for the read application with the help of

PriDyn algorithm, which was not possible in the default case.

These experimental results show that PriDyn framework efficiently manages allocation of

disk I/O resources in such a way as to provide differentiated services to various applications

according to their performance requirements. In our experimental setup, we realized a decrease

of 35% in latency value on an average for the write application in Use Case 1 and 62% average

decrease in latency of the read application in Use Case 2. The performance of PriDyn has been

illustrated with the help of two generic scenarios, other variations with more number of VMs

and different kinds of application requirements can be modeled as one of the three cases of our

algorithm and are expected to show similar results. We perform experiments on some of the

33



(a) Use Case 1

(b) Use Case 2

Figure 4.1: PriDyn performance on benchmarks
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possible different combinations of actual real world I/O traces in the next section.

4.2 Validation with Real I/O Traces

In previous section, the functionality of PriDyn Framework was demonstrated with the help

of two use cases modeling real life applications. In order to prove the practical utility of the

proposed framework for actual Cloud setups, it is important to validate its performance on real

I/O workloads. To enable this, actual I/O traces were considered to test the performance for

different types of I/O workloads. We have modeled the I/O requests based on traces available

at SNIA IOTTA Repository [70]. These are block I/O traces from the servers at Microsoft

Cambridge [71] handling various enterprise workloads like web service, email, file service etc.

and thus these can be considered as a good representation of the varied I/O workloads in a

typical Cloud data-center. The information about the timestamps and sizes of I/O requests

available in these traces was used to replay the trace requests with the help of IOzone benchmark

on the experimental setup.

For the experiments in this section, the I/O traces from 2 servers having different function-

ality have been chosen - Web server used for handling common web applications and Research

server that is used to serve batch operations typical of research workloads. The web server

traces have strict deadlines for their requests as they are latency sensitive whereas the research

server I/O requests usually have larger deadlines and can tolerate some deviation from the

assigned deadline values. The trace data was analyzed to derive the characteristics of the I/O

workloads. Figure 4.2a and 4.2b show the frequency distribution for the size of I/O requests for

the web and research traces under consideration. It can be seen that there is wide variation in

the request size frequency for the web traces since the workloads they handle are very dynamic

in nature. On the other hand, for the research server traces, most of the requests are small in

size except for a few cases of outliers. Figure 4.3a and 4.3b show the variation of I/O request

size with time for the web server and research server traces respectively.

For performing the experiments we have considered the following scenario - Multiple I/O

applications with diverse requirements (as represented by the different traces) execute simulta-

neously on different VMs on the same physical server. Each application is modeled as a stream

of I/O requests contained in the corresponding trace file, which are consecutively scheduled on

the VM on a continuous basis. As soon as any I/O request finishes on any of the VMs, the

next request is read from the trace file corresponding to that VM and it is scheduled on the

system. Since the size of I/O requests is very small and the response time is too short to be

noticeable on our setup, the request I/O sizes have been scaled up by a factor of 100 so as to

enable correct measurements for response times during experiments. Since the traces did not
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Figure 4.2: Frequency distribution of size of I/O requests
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Figure 4.3: Time distribution of size of I/O requests
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contain any information regarding the deadlines, all the I/O requests are assigned deadline val-

ues according to a deadline assignment scheme as described in Section 4.2.1. The simultaneous

execution of multiple I/O streams on different VMs is achieved remotely by a scheduling script

running continuously on the server machine. This enables modeling of real world scenarios

where several users may concurrently run applications on VMs oblivious to the presence of

other co-located tenants. The response time for each request is logged in a separate file for each

virtual machine along with the start time of the request and the assigned deadline values in

our setup. This log file is used to then calculate the percentage of missed deadlines for each of

the I/O stream corresponding to the VMs. Details about the configuration and features of the

setup for running real I/O traces including the techniques for deadline assignment and avoiding

starvation of I/O requests are discussed further in Section 4.2.1 and 4.2.2. The results obtained

from executing the PriDyn framework on real I/O traces are described in Section 4.2.3 with

discussions on the performance improvements achieved.

4.2.1 Deadline Assignment

In order to assign deadlines to the I/O requests obtained from the traces, we have employed

the techniques commonly used in literature [72, 73, 57, 74, 75]. For every request, the minimum

time required to finish the I/O request on the system, if it was assigned the full disk bandwidth

is denoted by Makespan and this is used for calculating the deadline. In case of a multi-tenant

system such as the experimental setup under consideration, the bandwidth that will be allocated

to an application will depend on the number of applications co-located with it i.e. the degree of

multi-tenancy. As we have shown in Section 1.3.2 (Figure 1.3), in a multi-tenant environment

there is loss of disk bandwidth due to contention for resources and this bandwidth loss is

represented by a parameter BWloss. The parameter BWloss is proportional to the number

of co-tenant applications (VMs) denoted by N such that the value of BWloss increases as N

increases. This can be seen from Figure 4.4, where the stacked bars denote the average disk

bandwidth values for the VMs co-located on the same host for varying number of VMs and the

total bandwidth achieved in each case is denoted by the cross marks. For a given value of N ,

the value of BWloss is obtained as the loss in the total bandwidth value as compared to the

case of a single VM i.e N = 1. Based on these parameters, the expected completion time or

Makespan of any I/O request on the system will be calculated as follows:

Makespan = IOSize/(MaxBW −BWloss)/N (4.1)

where MaxBW is the maximum disk bandwidth that can be allocated to a VM on the sys-
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tem, IOSize is the data size of the I/O request under consideration and BWloss is determined

by the number of co-tenant VMs.

Now, different I/O requests may have different requirements of time sensitivity or urgency

depending upon their characteristics. This feature is assumed to be specified by the users

requesting for disk resource for their I/O applications. We can model these user requirements

in terms of the delay tolerance of the application by another parameter δ while assigning

deadlines as :

Deadline = Makespan+ (Makespan× δ) (4.2)

Equation 4.2 assigns deadlines to the requests as per their latency sensitivity characteristics

such that requests with higher delay tolerance are assigned larger deadline values. In this

way our deadline assignment scheme is taking into account both system constraints as well

as application features while assigning deadlines to I/O requests. The system constraints and

overheads due to multi-tenancy are being considered by the BWloss parameter while the delay

tolerance of the I/O request as per the application characteristics is being taken care of by the

δ parameter.

To decide appropriate values of δ for a given setup, the effect of different δ values on the

performance of the scheduled applications (i.e. constant value of BWloss) was explored through

experiments. For a set of δ values, measurements were made for the number of application

requests whose deadlines were not met. Figure 4.5 shows the percentage of deadlines that were

violated for different values of δ when two streaming applications represented by web server

traces are scheduled to run concurrently on the system. Here, the value of N is 2 and BWloss

is set to 17 (corresponding to loss in bandwidth from 54 MB/s in case of 1 VM to 37 MB/s

in case of 2 VMs). It can be seen clearly from the figure that if the value of δ is small, the

deadlines are stricter and therefore there are more deadline violations. On the other hand, if

the δ value is large, then the deadlines are lenient and the percentage of deadline violations

has a lower value. According to the figure, for the value of δ as 0.2, all the deadlines are being

violated and for δ as 1.0, all the deadlines are comfortably satisfied. The experiments in this

analysis were therefore conducted within this range of δ with increments of 0.1 in value.

4.2.2 Avoiding Starvation of Large I/O Requests

According to our deadline assignment scheme, the deadlines for requests are approximately

proportional to their I/O sizes, which is appropriate since larger I/O requests will usually take

longer time to complete. However, in some cases this can lead to starvation of large I/O requests

in the current setup. Given a set of requests running on the system, the PriDyn algorithm will
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Figure 4.4: Calculation of BWloss parameter for different N
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Figure 4.5: Variation in deadline violations with delay tolerance parameter δ
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give higher priority to the request whose deadline is closer, such that the request does not miss

its deadline value. In such a scenario, if there is a large I/O request having higher deadline

value, it will be given lower priority as compared to a smaller I/O request running concurrently

with it. With multiple applications running in parallel if there arises such a case where one

of the I/O streams has larger I/O request sizes while the others have small I/O request sizes,

then it is possible that the larger I/O request is not given high priority for a long time while

the smaller requests are being swiftly handled and executed on the system by the scheduling

algorithm. This may lead to starvation of the requests of the applications having larger sizes.

In order to avoid such an undesirable situation, the scheduling algorithm for PriDyn has been

enhanced to include a time check for possible application starvation. If an I/O request does not

complete execution by the time of its assigned deadline value (as measured from the moment

when it is scheduled on the system), then it is temporarily given the highest priority such that

it gets higher disk bandwidth and completes with minimum possible delay from the time of its

original deadline value. This approach successfully prevents the starvation of larger requests

and also ensures that even though large requests may miss their deadline value, but the value

of lag between the deadline and the actual response time is minimized.

4.2.3 Results

In order to illustrate PriDyn functionality, we consider a scenario where the execution of a

web server workload having strict deadlines was modeled on a system along with a research

workload which is assumed to have no deadlines for its requests. The selection of such a

workload combination on a physical server is essential in order to leverage the difference in

latency sensitivity of I/O requests to ensure performance and this is assumed to be taken care

of by an intelligent admission control mechanism in the Cloud data-center. The I/O requests

were assigned deadline values as per the deadline assignment scheme described earlier. The

research I/O requests were assigned high value of delay tolerance parameter δ since they are

not latency sensitive whereas web server requests were assigned smaller δ value (0.3 here).

Since the I/O request streams were executed concurrently on the same server, contention for

the disk bandwidth caused performance degradation for both the request streams. Figure 4.6

shows the deadline values and the response times for the I/O requests of the latency sensitive

application i.e. the web server requests executing on the system both without and with the

PriDyn algorithm. The blue bars denote the deadline values while the red and green bars

show the response times that were obtained for the I/O request without and with the use of

PriDyn scheduling respectively. It is clearly seen that the response times have lower values

with PriDyn algorithm since it performs dynamic priority adjustments for the requests based
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Figure 4.6: Improvement in response time for latency sensitive application

on deadlines. At every scheduling interval, the PriDyn algorithm considers the set of I/O

requests being executed at that instant, calculates their expected latency values based on their

disk throughput and adjusts the priorities of the I/O processes depending upon the deadline

values that have been assigned to the requests. As soon as a new request is started, the new set

of requests is again considered for disk bandwidth allocation. In the case under consideration,

higher disk priority values were assigned to the web server requests (having strict deadlines)

in order to achieve the desired service requirements. The number of deadline violations was

reduced from 85% to 35% for web server requests with the help of PriDyn framework.

In another scenario, two web server I/O workloads represented by different web server traces

were modeled to execute simultaneously on the same setup. The delay tolerance parameter δ

was set to the same value (0.3) for both the I/O streams for simplicity since the workloads

have similar characteristics, although it could be varied for representing different degrees of

latency sensitivity based on the application requirements. The PriDyn algorithm was executed

continuously along with the I/O requests on the server to assign the disk bandwidth to the two

contending application workloads based on the deadlines of the set of requests under consid-

eration at a given scheduling instance. Dynamically readjusting and balancing the allocation

of disk bandwidth by PriDyn enabled better utilization of disk resources leading to an overall

improvement of performance for the concurrent I/O applications even when both of them were

latency sensitive. This can be seen from the Figure 4.7a where the percentage of deadline

violations for workload 1 are shown with black lines and those for workload 2 are depicted by

the blue lines. The deadline violations have been reduced for both the I/O workloads running

on different VMs with the help of PriDyn (shown by the dotted lines) as compared to the
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Figure 4.7: PriDyn Performance on I/O traces
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case where the requests were executed without PriDyn framework. Similarly, the percentage

of deadline violations for the overall system is brought down considerably by scheduling the

requests with PriDyn as shown in Figure 4.7b. The experiments were conducted for a number

of δ values and lower deadline violations were observed for all the values of δ in range. We note

that PriDyn can lower the number of deadline violations considerably even for the δ values

where all the deadlines were being missed earlier. This shows that better performance can

be obtained for the workloads even in the presence of strict deadlines through assignment of

dynamic disk priorities by our framework.

We conclude this section by observing that the PriDyn framework has been broadly vali-

dated for a wide spectrum of I/O workload combinations using both I/O benchmarks as well

as modeling of real I/O workload traces. It has been shown to be performing consistently well

for all scenarios considered thus proving its efficacy for practical Cloud environments.

4.3 Summary

This chapter presented the analysis and experimental evaluation of the proposed PriDyn al-

gorithm. The framework was validated by modeling on simple test cases to show the proof of

concept. Real-world I/O workload traces were also used to illustrate the feasibility and perfor-

mance benefits derived from the framework for practical Cloud storage setups. Results from

the experiments performed with real workload traces show that PriDyn achieves substantial

decrease in the percentage of deadline violations for concurrent workloads, proving its utility

for real world environments. However, PriDyn has made the assumption that the workloads

executing on the same host differ in their latency characteristics. PriDyn could then leverage

this disparity in service requirements to promise QoS guarantees for all the applications running

concurrently through dynamic allocation of disk resources. For ensuring a proper combination

of workload on the host, it is essential to have a meta-scheduling framework for deciding the

placement of applications at the data-center level. In the next chapter, we will illustrate the

need for extending the PriDyn scheduling for data-center level and propose the design of PCOS

framework that performs meta-scheduling for the new application requests in Cloud systems.
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Chapter 5

PCOS Framework

Consolidation of I/O workloads on physical servers in virtualized environments needs due con-

sideration of the impact of virtualization on the performance of the applications. It is clear

from the observations made in the previous chapters, that merely matching the I/O capacity

of a server to the requirements of the applications does not necessarily ensure fulfillment of

performance guarantees. This is attributed to the overheads of virtualization on consolidated

servers and also to the fact that most I/O workloads have different characteristics and exhibit

variability in their resource requirements during a transaction session.

As described in the previous chapter, PriDyn leverages on this aspect of I/O workload be-

havior to provide differentiated services to a given set of applications executing concurrently

on a server. However, PriDyn can only attempt to provide performance guarantees for appli-

cations that were already scheduled on the system. In the worst case, if the deadline of an

application cannot be satisfied by any possible rearrangement of disk priorities due to system

resource constraints, then it is recommended to migrate that application to a different server.

This reactive approach is not preferable for large scale data-centers due to the high overheads

associated with the migration of VMs, especially for I/O applications [76]. It is essential that a

proactive approach for scheduling I/O applications is adopted wherein the combination of appli-

cations scheduled on a system should be chosen intelligently by the data-center meta-scheduler.

Experimental results have indicated that scheduling the correct mix of workloads can ensure

good resource utilization without faulting on the performance guarantees of the consolidated

applications. Hence, before placing the VM on to a host, it is important to assess if the host

can provide the desired SLAs dictated by all the VMs destined for it. A new application should

be accepted for execution on a host only after ensuring that performance of the system will not

be compromised due to the new application.

Cloud data-center policies in current practice consider new application for scheduling in
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terms of their average requirements over the entire execution period. For a new I/O request

being considered for scheduling on a server catering to already running applications, the meta-

scheduler should not only match the available resources with the average requirement but also

ensure that the peak workload requirements for the new application does not cause interference

and performance degradation for the previously scheduled applications. Therefore, a Cloud

scheduler needs to adopt a multi-dimensional scheduling approach for the applications where the

performance aspects of the previously running applications should be simultaneously considered

along with the requirements of the new applications. In addition, the Cloud scheduler should

be able to obtain good workload consolidation on the servers for ensuring optimal utilization

of the resources and achieve energy efficiency for the data-center.

In this chapter, we introduce a novel admission control and scheduling framework named

Prescient C loud I/O Scheduler (PCOS ) for obtaining better mix of workloads to achieve

consolidation for Cloud systems. PCOS aims to maximize the utilization of disk resources

without adversely affecting the performance of the applications scheduled on the systems. This

scheduler follows a conservative methodology in which migrations of I/O applications among

the systems is strictly avoided. By anticipating the performance of the systems running multiple

I/O applications, PCOS can prevent the scheduling of undesirable workloads on them. The

PCOS framework includes the PriDyn scheduler as an important component and utilizes the

dynamic disk resource allocation capabilities of PriDyn for meeting its goals.

Section 5.1 discusses the performance of different combinations of I/O workloads to motivate

the need for scheduling applications in an optimal manner. The PCOS framework has been

introduced in Section 5.2 and its design and functionality is discussed in detail in Section 5.2.1.

Section 5.3 discusses the algorithms for implementation of the framework in detail to understand

the features better. We also analyze the functionality of the framework by demonstrating

how PCOS selects the workload mix for a server such that the overall resource utilization is

maximized without any compromise on the application performance. When this scheduling

policy is replicated across the data-center, overall consolidation for the servers can be achieved

as discussed in Section 5.4.

5.1 Characteristics of I/O Traces

In this section, we analyze the performance of a system under different kinds of I/O workloads

and emphasize the need for a meta-scheduling framework that achieves proper placement of

multiple I/O applications on a single server. We perform experiments using the real world I/O

traces as described in the previous chapter. Figure 5.1a and 5.1b show the characteristics of

the I/O traces considered in terms of the frequency distribution for the size of I/O requests
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Table 5.1: I/O Workload Combinations

Features Application A Application B Application C
Case 1 Latency sensitive Yes Yes Yes

Disk Priority Default Default Default
Case 2 Latency sensitive Yes Yes No

Disk Priority Default Default Low

for media and research traces. It can be seen that there is wide variation in the request size

frequency for the media traces since they the application is very dynamic in nature. On the

other hand, for the research server traces, most of the requests have smaller size except for a

very small number of outliers. Based on the characteristics of the applications, the media server

traces were assigned strict deadlines for their requests whereas the research server I/O requests

were assigned large deadline values since they can handle delays in completion time. Since

the research server requests are small in size and can tolerate deviations from the deadlines,

they seem to be appropriate for scheduling along with applications such as media streaming

since the resource requirements for these applications may complement each other to enable

server consolidation by better utilization of disk bandwidth. This is illustrated with the help

of experiments in the next section.

5.1.1 Need for I/O Meta-scheduling

In order to illustrate the importance of ensuring an optimal mix of I/O workloads while deciding

the placement of applications on the servers, we demonstrate the performance characteristics

of different combinations of I/O applications on our setup with the help of various experiments

on real world traces. First, two latency sensitive I/O applications (represented by media server

traces) were executed simultaneously on the server such that they were able to achieve the

desired performance as per their latency requirements i.e. most of the I/O requests were able

to meet their deadlines. With the two I/O applications contending for disk bandwidth, an

additional application was scheduled on the system. Workload combinations having different

features as specified in Table 5.1 were analyzed.

In Case 1, a third I/O application (application C), also being latency sensitive, was scheduled

on the system to execute concurrently along with the two previously running applications (A

and B). The response time for the I/O requests of applications A and B was measured before and

after the scheduling of the new application. Figure 5.2a shows the pattern of response times for

application A for its I/O requests. The x-axis represents the I/O requests and the corresponding

response times are indicated with the blue line. Also, the deadlines have been shown by a
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Figure 5.1: Frequency distribution of size of I/O requests
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(a) Case 1

(b) Case 2

Figure 5.2: Response Times for Application A

dotted red line. The time of scheduling of application C is indicated in the figure with a dotted

vertical line. It can be seen that before scheduling Application C, when only application A and

application B were running on the system, the response times for I/O requests of application A

were below the deadline values. However, when application C started execution, the response

time started increasing to higher values thereby violating the deadlines. Application B also

showed similar results although they are not shown here to avoid repetition. The number of

deadline violations was very high for application C as well. Such application behavior was

observed since all the applications in Case 1 had strict latency requirements and required high

priority disk access at the same time thereby leading to performance degradation for all of

them.
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In Case 2, the third I/O application was chosen such that it was not latency sensitive

(represented by research server trace) and could be executed with low priority to disk access

without affecting its performance. It was observed that in such a situation, the response time of

the previously running applications was not affected to a great extent. Although some deadline

violations were observed, but the overall percentage was much less as compared to Case 1.

This can be seen from Figure 5.2b where the response times of the requests of application A

remain below the deadline values both before and after the start of execution of application C.

Similar pattern was observed for application B as well. Since application C did not have strict

deadlines, it also achieved good overall performance in this setup.

For further illustrating the effect of I/O workload scheduling in case of latency sensitive

applications, comparison between the values of response times for application A for both Case

1 and Case 2 is shown in Figure 5.3. It is clearly seen that the deadlines were largely violated

for the I/O requests in Case 1 (response times shown in blue are larger than the deadline values)

when all the latency sensitive applications were running at the same time. On the other hand,

in Case 2, majority of the deadlines were satisfied with the response times (shown in green)

being smaller than the deadlines since one of the applications was delay tolerant.

Finally, the overall comparison of performance of applications in the two cases in terms of

the percentage of deadline violations is shown in Figure 5.4. The bars show the percentage

of deadline violations corresponding to the applications for both Case 1 and Case 2. It is

evident that the deadline violations decrease considerably in Case 2 for all the applications as

compared to Case 1 (80% to 10% for application A). Also, in Case 2 no deadline violations

occur for the third application since it is not latency sensitive whereas it incurred around 40%

deadline misses in Case 1 when it had strict deadlines like the other two applications. Thus, it is

evident from the observations made with the experiments in this section that the combination

of I/O applications being executed on a system affects their performance to a great extent.

An intelligently chosen I/O workload combination can not only assist in obtaining the desired

performance but also attain a high degree of multi-tenancy through better utilization of disk

resources. In the next few sections, we describe the design and implementation of the proposed

framework PCOS which strives to achieve the above stated goals.
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Figure 5.3: Performance of Application A for Case 1 and Case 2

Figure 5.4: Deadline Violations for Applications
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5.2 Prescient Cloud I/O Scheduler

The details of the proposed framework are discussed in this section. Figure 5.5 shows the

overall design and placement of Prescient Cloud I/O Scheduler at the data-center level. There

are multiple physical servers with local storage disks and variable number of VMs executing

on them concurrently. I/O applications running in the VMs on each physical server are locally

managed by a hypervisor or a virtual machine monitor (VMM) in a typical Cloud environment.

The hypervisor is responsible for allocating the physical resources to the VMs and managing

their execution. In this setup, scheduling of the I/O applications on the servers is handled

by the PCOS framework. PCOS can be integrated with the global resource manager of the

data-center that centrally manages the allocation of physical resources to the applications. For

every new I/O request, the PCOS framework searches for a suitable server where the request

can be scheduled without performance degradation. There are two main components of PCOS -

Admission Controller (AdCon) and PriDyn disk scheduler which function in a collaborative

manner. They are assumed to be continuously executing on the servers having been imple-

mented as hypervisor extensions. The AdCon module for each server along with the PriDyn

scheduler decides if a new request is accepted or rejected for scheduling on the system. A

new application that is expected to cause performance degradation (for itself and/or for other

applications already scheduled) on the system is identified in advance and is not accepted for

execution on that system by AdCon. PCOS interacts with the AdCon modules on the servers

and depending upon the outputs received from the modules, selects a server for scheduling

every new request.

It is to be emphasized that the framework gives higher preference to the performance of

currently executing I/O applications on the system since we want to avoid the number of VM

migrations. As such, the PCOS framework will not schedule new requests on a system which

is running high priority I/O applications. Therefore, the scheduling of a new request largely

depends upon the state of the system apart from the latency sensitivity of the new request

itself. Also, the aim of PCOS is not to attain higher, but smarter workload consolidation on

the servers such that better utilization of disk resources can be achieved without compromising

on performance. This will be elaborated in later sections of the thesis.

5.2.1 Design

Figure 5.6 shows an overview of the structure of the proposed framework with regard to its

functionality on a single server that is replicated across multiple servers in the Cloud data-center.

As mentioned before, the Prescient Cloud I/O Scheduler comprises of two main components
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Figure 5.5: PCOS Framework

Figure 5.6: Structure of PCOS
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running on the servers : The Admission Controller (AdCon) module and the PriDyn disk

scheduler which work in conjunction with each other.

On each individual server, the AdCon module receives the information about the character-

istics of a new I/O application request in terms of its size and deadline. At that time, AdCon

collects information about the current state of resource allocation on the system in terms of

the number of applications already running on the system along with their disk priorities with

help of the PriDyn scheduler. It then anticipates the behavior of the system in the event of the

new request being scheduled on the system before actually scheduling it. This is achieved by

the Proactive Agent (part of AdCon) with the help of a Priority Database.

Priority Database : A local database stored on every individual server that stores in-

formation about the expected disk bandwidth allocation to applications depending upon the

number and priorities of the applications, based on previous application execution history on

that system. This is an iterative learning database that is continuously updated for different

set of I/O applications having varying priorities, as and when new application combinations

are scheduled on the system. If information about some specific combination is not present

in the database, the nearest matching entry is used for estimation of bandwidth values and a

new entry is added for future references. From this database, AdCon module gets an estimate

of the performance of the applications according to the disk bandwidth that is expected to be

allocated to them.

If the deadline of one or more applications is expected to be violated on assignment of de-

fault disk priority to the new request as per the estimate, AdCon takes the help of a modified

version of Priority Manager module of PriDyn scheduler to find a suitable combination of disk

priority values for the given set of applications that can satisfy the performance requirements

of all the applications. If there exists such a combination of priority values which will cause no

foreseeable deadline violations upon scheduling of the new request, the AdCon module accepts

the request and it is scheduled on the system, otherwise the request is rejected for the current

system state at that time. It is to be noted here that in PriDyn, if the priorities of the appli-

cations running on the system were changed by the Priority Manager, the modified priorities

were actually implemented by the disk scheduler each time in order to observe application per-

formance. However, in the current implementation, the priorities of the application are changed

only theoretically by the modified version of Priority Manager. The Priority Database is used

to predict application performance upon any proposed change in priorities without actual im-

plementation. Only in the event that a request is accepted on the system with a modified

priority set, the priority information is provided to the PriDyn scheduler which implements

them through the physical disk scheduler on the system.
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Require: DataSize Rnew, Deadline Dnew

Ensure: Server Sr for scheduling
1: for each server do
2: Call AdCon(Rnew, Dnew)
3: if Accept new then
4: Schedule new request
5: else
6: Continue
7: end if
8: end for

Figure 5.7: PCOS Algorithm

5.3 Implementation Details

In this section, we discuss the implementation details of the PCOS framework for a data-center

with multiple servers. The algorithm for the main module of PCOS framework is shown in

Figure 5.7. PCOS receives the information for every new I/O request in terms of its size Rnew

and deadline Dnew. The algorithm is straightforward and involves calling the AdCon module

for the servers for every new I/O request. The request is scheduled on a server SR if it is

accepted by the AdCon module on that server.

The implementation of the AdCon module on a server is explained in Figure 5.8. At a given

instance, the number of applications running on the system is denoted by N . Every new request

that is received from PCOS is denoted by N+1 . The algorithm takes as input its datasize RN+1

and the desired deadline DN+1 and outputs the decision regarding the rejection or acceptance

of N + 1 request along with its priority PrN+1. Firstly, information is collected about each of

the N running applications in terms of their data size R, deadline D, disk bandwidth B, start

time of execution S and the disk priority Pr. The priority of the new application PrN+1 is

set to the default value at this point and it may be modified by the algorithm in subsequent

steps if required. Next, it is assumed that the new application has already been scheduled

on the system with the default priority and the behavior of the applications is anticipated in

such a scenario. To foresee the expected latencies of the applications in the event that the

new application was indeed scheduled, the sub module Proactive Agent is called for execution

with the set of the priorities of all the applications (including the proposed new application) as

input.

The functionality of Proactive Agent is explained in Figure 5.9. Upon receiving the set of

application priorities, the algorithm accesses the Priority Database and searches for a potential

match for the given priority set. If exact match is not found, then the closest match of the
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Require: DataSize RN+1, Deadline DN+1

Ensure: Accept N + 1 (PrN+1) or Reject N + 1
1: Find Current State (N,< R,D,B, S, Pr >)
2: Set PrN+1 to Default
3: Call PROACTIV E AGENT (N + 1, P r<1...N+1>)
4: while (1) do
5: for i in < 1...N > do
6: Find i s.t. Li > (Di− (T − Si))
7: end for
8: if (exists i) then
9: if (LN+1 < (DN+1)) & (PrN+1 > lowest) then
10: Decrease PrN+1

11: Call PROACTIV E AGENT (N + 1,
P r<1...N+1>)

12: else
13: Reject N + 1
14: end if
15: else . deadlines met for all i in < 1...N >
16: if (LN+1 < (DN+1)) then
17: Accept N + 1, (PrN+1)
18: else
19: Call PRIORITY MANAGER(L<1...N+1>,

D<1...N+1>)
20: end if
21: end if
22: end while

Figure 5.8: AdCon Algorithm

priority set (the number of applications necessarily matching) is selected and the expected

values of disk bandwidth corresponding to the application priorities are recorded. The expected

latencies of all the applications are then calculated by the Latency Predictor function of PriDyn

scheduler with the help of disk bandwidth and total I/O size values. The implementation of

the Latency Predictor is identical to that in PriDyn but the functionality is different. In case

of PriDyn, the latencies of the applications were being calculated to provide differentiated I/O

service but in PCOS, estimation of latencies of the applications is required for making meta-

scheduling decisions. The set of latency values is returned to the main algorithm from the

Proactive Agent sub module.

In the main module, the following steps are performed in a loop until a decision regarding

the scheduling of the new request is made - for all N applications, the potential latency of

each application is compared with the updated deadline value (Step 6) based on the time for
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which the application has already been executed (difference between the current time T and

the start time S of the application). The algorithm also calculates whether the deadline of the

new application N + 1 is being violated (note here the deadline value is the same as received in

input since the application has not been actually scheduled yet). Depending upon the latency

and deadline values, four possible cases are considered by this algorithm as following:

Case 1 : Deadline violated for one or more applications in < 1 . . . N >, deadline satisfied

for N + 1.

The priority of the new request is decreased if possible i.e. if the priority is not the lowest.

The potential latencies of all applications are again calculated for new priority set with help of

Proactive Agent (Step 11) in this case and the algorithm starts over from Step 5.

Case 2 : Deadline violated for one or more applications in < 1 . . . N >, deadline violated

for N + 1.

If the deadline of new application is also being violated in addition to other applications,

the new request is rejected for the system at present state (Step 13). The state of the system

i.e. the number and priority of the I/O applications is continuously tracked for any changes

and the new request can again be considered for scheduling once the system state changes.

Case 3 : Deadline satisfied for all applications in < 1 . . . N >, deadline satisfied for N + 1.

In the event that the deadlines of all the previously running applications are being satisfied

after potentially scheduling the new request and the deadline of the new request is also being

met, then the new request is accepted on the system with the assigned priority (Step 17).

The priority of the new request will have the default value in case of the first iteration of the

algorithm.

Case 4 : Deadline satisfied for all applications in < 1 . . . N >, deadline violated for N + 1.

If the deadline of the new request is expected to be violated while all the other applications

are estimated to meet their respective deadlines, then the algorithm tries to adjust the priorities

of the applications in order to get a possible combination that suitably meets performance

expectations of all the applications. For this, the modified Priority Manager sub module of

the PriDyn framework module is called with the information about the latency and deadline

values of all applications (Step 19).

The Priority Manager sub module (shown in Figure 5.10) will search among the N appli-

cations if there is such an application whose priority can be decreased (Step 2). If there is

more than one such application, then the one having maximum gap between its expected la-

tency and deadline value is chosen and its priority value is decreased (Step 5, 6). The latencies

are recalculated by calling the Proactive Agent sub module (Step 7) and the algorithm begins

new iteration. In the case that it is not possible to decrease the disk priority of any of the N
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PROACTIV E AGENT (N + 1, P r<1...N+1>)
1: Search Priority Database
2: Update Bandwidth B<1...N+1>

3: Execute LATENCY PREDICTOR(R<1...N+1>,
B<1...N+1>)

4: for all i in < 1...N + 1 > do
5: RemainingDatai = Ri −DataProcessedi
6: Li = RemainingDatai/Bi

7: end for
8: return Latency L<1...N+1>

Figure 5.9: Proactive Agent

PRIORITY MANAGER(L<1...N+1>, D<1...N+1>)
1: for j in < 1...N > do
2: Find all j s.t. (Prj > lowest)
3: end for
4: if (exists j) then
5: Select j s.t. ((Dj − (T − Sj))− Lj) is maximum
6: Decrease Prj
7: Call PROACTIV E AGENT (N + 1, P r<1...N+1>)
8: else
9: if (PrN+1 < highest) then
10: Increase PrN+1

11: Call PROACTIV E AGENT (N + 1,
P r<1...N+1>)

12: else
13: Reject N + 1
14: end if
15: end if
16: return

Figure 5.10: Priority Manager
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applications, the priority of the new request is increased (Step 10) in an attempt to meet its

deadline value followed by the call to the Proactive Agent (Step 11). If all the above attempts

fail, then the new process is rejected for the system in the current state (Step 13) and it will

be checked again for scheduling once a new system state is obtained.

The AdCon algorithm is executed for every new I/O request that arrives on the given system.

Only the application requests that are not detrimental for the overall system performance are

admitted for execution on the system by the admission controller. The number of iterations

of the algorithm required to arrive at a decision for a request will depend upon which of the

above described cases holds true for the request. It has been made sure that the algorithm has

a well-defined exit condition such that it necessarily finishes execution with a decision for every

request within finite time. If a request is rejected for a given system state, it is tried again for

scheduling on the system by the framework. Instead of continuous polling, PCOS has been

optimized to keep track of the state of the systems such that the rejected request is reconsidered

for scheduling on the same system by PCOS only when the state of the system changes, i.e. if

the number or priority of the previously scheduled applications becomes different. This is done

until the time for which the request has been under consideration for scheduling (scheduling

delay) matches with its deadline value, at which point the request is considered as discarded and

the next request is taken into consideration. In this manner, new I/O requests for the system

can be continuously taken into consideration until they are either accepted for scheduling on the

system or discarded completely. In the event that the request is discarded for the system, PCOS

will iteratively consider other systems until the new I/O request is accepted for scheduling on

a suitable system.

The time complexity of the algorithm on a server running N applications is simply of the

order of N . In practical scenarios, the value of N cannot be arbitrarily large due to the

physical limitations of the servers, thus keeping the complexity of the algorithm low. In the

current study, we have analyzed the I/O behavior while operating on a local disk. In reality, the

storage can be connected across the storage network. However, in either case it can be assumed

that dedicated disk access is reasonable for workloads under consideration and the number of

VMs contending for access to disk will be limited to a small number.

In the following section, the performance of the PCOS framework for ensuring a good mix

of I/O applications for given systems is illustrated with the help of experiments on the real I/O

traces.
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5.4 Experimental Results

In this section, we explore the performance of PCOS as a meta-scheduler for Cloud data

center. Experiments were performed for a single server on our setup and the observations can

be generalized for multiple servers as well. Consider a server running two media applications

concurrently on two separate VMs co-located on it, sharing the disk bandwidth. The deadlines

for both the applications were assigned using the same value of delay tolerance factor δ for

simplicity. In order to illustrate the functionality of PCOS as an admission controller, different

kinds of new requests were considered for scheduling on the system. We consider the same

workload combinations that were analyzed in Section 5.1.1. In the first case, the requests

from a web server trace were given as input to the PCOS framework. Web applications are

latency-sensitive since they are interactive applications and require small response times. The

deadlines of these requests were therefore kept strict with small values of delay tolerance factor

δ. The I/O requests for the web applications were considered for scheduling along with the

two media applications on the system. The decision about accepting or rejecting a new I/O

request depends upon the previously running applications, new requests will not be admitted if

the applications executing on the system have strict deadlines. All experiments were performed

for the same time duration for different values of δ for media applications in order to show the

effect of strictness of deadlines of the previously scheduled applications on the number of new

requests scheduled. Figure 5.11 shows various metrics (all values have been normalized) for the

new application requests with different values of delay tolerance parameter δ. Measurements

were done for the number of new I/O requests that were accepted for scheduling on the system

by the PCOS framework as depicted by the green line. Also, the red line denotes the number

of requests that were discarded i.e. the number of requests for which their deadline was reached

while they were still under consideration for scheduling. As expected, the number of requests

accepted on the system was higher for larger delay tolerance values since the deadlines were

more lenient and more number of requests could be executed while still meeting the deadlines of

previous applications. Also, the percentage of deadlines that were discarded became smaller as

the value of delay tolerance parameter increased. Figure 5.11 also shows the values of Average

Delay by the blue bars, which denotes the average time duration for which an application

request had to wait from the time it was first considered for scheduling on the system till the

time the request was finally accepted by PCOS for scheduling on system. This metric is valid

only for the accepted requests that were actually scheduled on the system. It can be seen that

the average delay time was higher for smaller values of delay tolerance parameter signifying

that with stricter deadline values, new requests had to wait longer before being accepted on
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the system.

In the next set of experiments, the requests from a research server trace were scheduled

on the system along with two media streaming applications. Since the requests for research

application do not have strict deadlines, they have been assigned large value of delay tolerance

factor δ (set to 20). Figure 5.12 shows that the number of research requests scheduled on

the system increases with increasing values of delay tolerance parameter for media applications

similar to the previous case. Also, the average waiting time for scheduling the requests decreases

for higher delay tolerance parameter values as shown in the figure. Another observation is that

no requests were discarded in this case unlike the previous case of web requests since the requests

of research application were having smaller size and higher deadline values.

The most notable findings from these experiments are derived from the comparison between

the two cases. Figure 5.13 shows the normalized values for the number of new requests accepted

both for Case 1 and Case 2. The red bars denote the requests for the web application while the

requests for the research application are shown by the blue bars. It can be seen from the figure

that the number of requests scheduled for the web application requests is less than the number

of research application requests scheduled on the server, for all the values of delay tolerance

factor δ. Additionally, it was observed from the experimental results that the average waiting

time for research requests was generally lower than that for web requests.

From these observations, it is clear that unlike other schedulers, PCOS performs scheduling

of the application in a smart way such that new application requests are accepted on a server

only when the performance requirements for all the applications, especially the previously

running applications, are expected to be satisfied. If it is anticipated that the new requests will

cause a performance degradation for the applications, the Admission Controller module of the

PCOS framework does not accept the new requests to be scheduled on the server. Due to this

reason, the number of web application requests which were accepted for the server was much

lower than the number of research application requests as the web requests were expected to

cause delays and deadline violations because of their latency sensitive characteristics. These

findings clearly indicate that PCOS acts as an efficient admission controller for scheduling

of applications on the system and ensures a good I/O workload combination. It ensures the

scheduling of favorable combinations of I/O workloads on the servers and prohibits combinations

which might lead to performance degradation.

Additionally, PCOS also ensures maximum utilization of disk resources while maintaining

good application performance. Figure 5.14 shows the total disk utilization in terms of the disk

bandwidth allocated to each application measured at the time intervals of execution of the PCOS

algorithm when scheduling new research requests with media applications. The red and blue
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Figure 5.11: Performance of web requests with media applications (Case 1)

Figure 5.12: Performance of research requests with media applications (Case 2)
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Figure 5.13: Comparison of number of requests scheduled in Case 1 and Case 2

Figure 5.14: Total Disk Bandwidth Utilization
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components of the stacked bars denote the disk bandwidth utilization of the media applications

that were already executing on the server. It can be seen that the sum of the bandwidth

utilization from the two media applications is much less than the total disk bandwidth achievable

at any instance of time. The yellow bars indicate the bandwidth utilization of the new request

from the research application. It is clear from the figure that the overall disk bandwidth

utilization was increased by scheduling the research requests on the system signifying better

resource utilization. Thus, it can be concluded from the observations made in this section

that the PCOS framework can enable optimal placement of I/O workloads on a server for

maximization of disk resources while also ensuring performance of applications. With the

PCOS framework enabling optimum placement of applications for multiple servers, QoS based

placement along with resource consolidation can be achieved at the data-center level.

5.5 Summary

In this chapter, we have motivated the need for a meta-scheduling framework for Cloud data-

centers and proposed the design of the PCOS scheduling framework. By anticipating the

expected performance of the applications on a server in advance, the PCOS framework can

ensure that only those combinations of I/O workloads are scheduled on the server for which

performance can be guaranteed. The algorithms for the implementation of the PCOS frame-

work were described in detail to understand the functionality of the framework. Experimental

analysis on real I/O workloads has demonstrated the utility and performance benefits that can

be derived from the PCOS framework. Along with the PriDyn scheduler that dynamically

updates disk priorities for the scheduled applications, the PCOS framework can achieve better

server consolidation for I/O applications without compromising on application performance.

In the next chapter, we present the conclusions of the current work and discuss future work

planned in this direction.
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Chapter 6

Conclusions and Future Work

In this chapter, we conclude the thesis with a brief discussion of the overall work. We dis-

cuss the problem statement regarding the degradation in performance for disk I/O workloads

in virtualized data-centers. The encouraging results obtained with the help of our proposed

scheduling frameworks justify that our approach was successful in achieving desired goals. This

chapter also enlists the future work planned for enhancing the performance of the proposed

frameworks to derive additional benefits in terms of energy-efficiency.

6.1 Conclusion

Virtualization enables consolidation of multiple applications on a single system to enable higher

resource utilization. Being unaware of the degree of multi-tenancy, users running their appli-

cation in virtualized Cloud environments expect the same performance as they would get if

the application is run on a dedicated system. However, in the prevalent virtualization tech-

nologies, I/O workloads are affected due to sharing and this results in loss of performance for

the applications. Failure to provide desired performance leads to SLA penalties for the Cloud

provider. The current work explores the performance issues and the factors causing them in a

comprehensive manner.

The issue of interference among workloads in a virtual setup is more complex than among

normal user processes on a non-virtualized host due to the additional layer of abstraction that

is associated with virtualization. The workloads running on individual VMs are oblivious of the

requirements or characteristics of other workloads that are co-hosted with them and competing

for the host resources. Also, each VM has its own software stack and scheduling policies that

are independent of the actual physical resources and the scheduling policies of the host. Due

to these reasons, performance interference is a pertinent problem for co-hosted workloads in
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Cloud environments.

In this work, we have specially targeted I/O intensive workloads to bring into focus the I/O

bottlenecks that are present in existing virtualization architectures. Hardware solutions like fast

SSDs and SR-IOV architectures are available for high performance Cloud storage. But such

architectures are not required or even suitable for general enterprise workloads where local disks

on the host server are used for I/O purposes. In such scenarios, designing better scheduling

techniques is the most desirable option to attain higher performance. Our approach is focused

towards mitigating performance issues based upon existing hardware platform capabilities by

affecting minimal changes to the current architectures.

For providing assured performance to enterprise workloads hosted in Cloud data-centers, it

is essential to take into cognizance the characteristics of the workloads while deciding resource

allocation policies. Accordingly, differentiated services need to be provided to the applications

dynamically to meet QoS guarantees. For this purpose, we designed the PriDyn disk sched-

uler that is aware of the latency requirements of applications and dynamically allocates disk

resources to achieve desired performance. Detailed evaluation of the framework has demon-

strated that it can provide QoS guarantees to critical I/O applications by reducing latency to

meet desired deadlines for execution. The framework also showed promising results on real

I/O workloads where significant improvements were seen in overall system performance. This

proves the utility of the proposed framework for real Cloud environments.

For a given set of applications, performance can be guaranteed by over-allocation of re-

sources but such a technique will lead to wastage of resources. Server consolidation is an

important aim of virtualization and this can be handled by intelligent VM placement and meta-

scheduling strategies at the data-center level. This thesis proposed a novel admission controller

and scheduling framework PCOS, as an extension to the PriDyn disk scheduler, which strives to

achieve the balance between resource consolidation and application performance guarantees in

Cloud environments. Working in conjunction, PriDyn and PCOS have been shown to achieve

significant improvement in resource utilization enabling server consolidation without compro-

mising on the performance desired by the applications for their functionality. Results derived

from experiments performed on real world I/O traces have proved the efficacy of the proposed

framework in choosing an optimal I/O workload combination to achieve the desired goals.

6.2 Future Work

Most of the existing disk schedulers have focused on fair-sharing or providing best-effort services

to applications running in virtual setups. In this work, we have striven to achieve differenti-

ated services to offer SLA guarantees to the applications for existing platforms. However, fine
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grained performance control to provide QoS guarantees will need significant changes to the

architecture in terms of hardware support for virtualization. As observed in the results section,

the proposed framework can extract good disk resource utilization while reducing deadline fail-

ures but it cannot guarantee satisfaction of all the deadlines. For delivering guaranteed services,

participation of the physical device is necessary in resource allocation and placement strategies.

As future work, we aim to test the proposed framework on architectures with hardware virtual-

ization capabilities that are designed to support the features and benefits of the virtualization

stack fully.

There are several other directions in which this work could be improved for enhanced perfor-

mance. The PCOS framework was tested on a single system in this work, we plan to integrate

the framework along with the scheduling mechanisms of widely used public Clouds to enable

efficient data-center wide VM placement.

Further, the current framework does not take into account the energy requirements of the

applications as a quantitative metric. For designing energy efficient data-centers, we plan to

incorporate the power requirements of the applications in the PCOS framework in order to

achieve optimal workload combinations in terms of energy efficiency for the data-centers. Such

a scheduling framework will not only ensure application performance but also enable the design

of ‘green’ data-centers.

6.3 Summary

This chapter concludes the thesis giving an overview of the present work. Concerns regarding

the performance and QoS satisfaction of I/O intensive applications executing in virtualized

setups is the main motivation for this work. We attempted to address this issue locally for every

virtualized server through the PriDyn scheduler by providing differentiated services based on

latency requirements. Further, to ensure workload consolidation and energy savings for Cloud

data-centers, optimal workload placement and scheduling is achieved through the PCOS meta-

scheduler. Overall, application performance and guaranteed QoS along with efficient resource

utilization was demonstrated through the proposed frameworks. Related literature work and

finally, directions for future work were also discussed in this chapter.
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