
Resource usage monitoring for KVM based virtual
machines

Ankit Anand, Mohit Dhingra, J. Lakshmi, S. K. Nandy
CAD Lab, Supercomputer Education and Research Centre

Indian Institute of Science, Bangalore, India
ankit@ssl.serc.iisc.in, mohit@cadl.iisc.ernet.in, {jlakshmi, nandy}@serc.iisc.in

Abstract—Realization of cloud computing has been possible
due to availability of virtualization technologies on commodity
platforms. Measuring resource usage on the virtualized servers
is difficult because of the fact that the performance counters used
for resource accounting are not virtualized. Hence, many of the
prevalent virtualization technologies like Xen, VMware, KVM
etc., use host specific CPU usage monitoring, which is coarse
grained. In this paper, we present a performance monitoring
tool for KVM based virtualized machines, which measures the
CPU overhead incurred by the hypervisor on behalf of the virtual
machine along-with the CPU usage of virtual machine itself. This
fine-grained resource usage information, provided by the above
tool, can be used for diverse situations like resource provisioning
to support performance associated QoS requirements, identifica-
tion of bottlenecks during VM placements, resource profiling of
applications in cloud environments, etc. We demonstrate a use
case of this tool by measuring the performance of web-servers
hosted on a KVM based virtualized server.
Keywords—Monitoring, Performance Analysis, Virtual machine
monitors, System performance, Clouds.

I. INTRODUCTION

Most of the enterprises, today, have applications that have
resource centric usage like I/O specific or CPU specific. Above
this, the application workload also exhibits dynamic behavior
based on time of the day or geographic locality. In such
situations, to improve resource utilization, many enterprises
are shifting towards cloud computing solutions where elastic
resources can be availed on a pay-by-use mode. Virtualization
is a key enabler in these cloud based solutions where multiple
applications are co-hosted on a single machine. On such vir-
tualized servers, physical hardware is shared among multiple
virtual machines by a layer called hypervisor or virtual ma-
chine monitor(VMM). Applications in turn, are hosted in the
virtual machines and access the underlying shared hardware
through hypervisor.

Virtualization helps provide software isolation to applica-
tions in such shared environments as well as ensures better
utilization of server resources. On cloud systems, I/O intensive
applications are good candidates for virtualization because they
have sufficient spare CPU cycles which can potentially be used
by some other co-hosted application.

Many virtual machine monitors have emerged in such a
scenario, varying from VMware ESX to Xen paravirtualized
hypervisor. In recent years, to make development of virtual
machine monitors easy, hardware vendors like AMD and Intel
have added virtualization extensions to x86 processors which
were initially difficult to virtualize and were not in tune with
Popek and Goldberg virtualization requirements [1].

The Kernel based Virtual Machine (KVM) is a relatively
new VMM which utilizes these hardware extensions and has
found its way in Linux kernel. It is a full virtualization solution,
which requires no changes in guest operating system[2].

While virtualization provides a simple mechanism to share
resources by isolating the application’s software environment,
most of the applications incur some kind of virtualization
overhead. This overhead varies depending upon the type of
application, type of virtualization and virtual machine monitor
used. Particularly, for I/O applications, the overhead of CPU
used by VMM on behalf of VMs is considerable and affects
performance characteristics of applications [3][4].

To account for such overhead, it is necessary to monitor re-
sources used by the hypervisor on behalf of the VM. Resource
monitoring in virtualized scenario is not straight-forward since
the hardware performance counters are not virtualized and
hence cannot be visible to the GuestOS in the VM[5].However,
these performance counters can be accessed from inside the
hypervisor where details of VM specific usage is not visible.
What is required is a correlation of the usage within the VM
to that of the hypervisor to support this usage. Currently, there
are many tools available in Xen, KVM, VMware etc. which
gives host specific resource usage. This is coarse grained since
it depicts which host is saturating or has idle resources but
not how a VM is using those resources. To overcome this
deficiency, the xenmon [6] tool was developed for the Xen
hypervisor. In Xen [4], the hypervisor usage on behalf of all
virtual machines is monitored based on the VM-labeling of the
activity from within the Dom 0, the privileged VM in Xen. But
in the case of KVM, the same is not possible since hypervisor
is a part of VM process and not a separate virtual domain in
itself. The key to monitoring VM-specific usage in KVM is by
tracing these VM-processes and accounting for their resource
usage. In this paper, we present a simple resource monitoring
tool for measuring CPU resource usage of hypervisor on behalf
of each VM and CPU usage of VMs separately in the case of
KVM process.

The rest of the paper is organized as follows. Section II
describes the KVM architecture with a focus on monitoring.
Section III describes the existing monitoring tools available
and how the same can be leveraged to achieve the desired
objective. Section IV describes the design model of tool and
section V presents a use case of the tool designed. Finally,
Section VI concludes by discussing the potential applications
of information so obtained and future work.



II. KVM ARCHITECTURE

KVM is a more recent hypervisor which embeds virtual-
ization capabilities in Linux kernel using x86 hardware vir-
tualization extensions[2][7]. It is a full virtualization solution,
where guests are run unmodified in VMs. It consists of two
modules, namely, kvm.ko and an architecture dependent kvm-
amd.ko or kvm-intel.ko module. Under KVM, each VM is
spawned as a regular linux process named KVM and scheduled
by the default linux scheduler. For KVM the hardware has to
support three processor modes, namely user, kernel and guest
mode. The guest mode is added to support hardware assisted
virtualization. The virtual machine executes in this guest mode
which in turn has user and kernel mode in itself [8][9].

For using shared I/O hardware, these VMs interact with
Qemu emulator in host user space which provides emulated I/O
devices for virtual machines. For instance, in the case of net-
work related applications, Qemu provides emulated Network
Interface Card (NIC) to VMs and interacts with tun-tap device
on the other side. The tap device is connected to physical NIC
through a software bridge.

Fig 1 shows the typical KVM architecture, with reference
to a network related application. A typical network packet
flows through the KVM virtualized host in the following way.
As depicted in picture, when a packet arrives at physical
NIC, interrupts generated by NIC are handled by the physical
device driver. The device driver forwards the packet to software
bridge. The bridge, then pushes the packet to the tap device
of the corresponding VM. The tap device is a virtual network
device that sends a signal to KVM module. KVM module in
turn, generates a virtual interrupt to the user space Qemu of the
target VM. Qemu then copies the packet from tap device and
generates the interrupt for the guest OS emulating the virtual
NIC. Again, the physical device driver in the guest OS handles
the packet transfer to the VM’s address space.

Fig. 1. KVM Architecture (Source [8])

Consequently, for a VM process in KVM virtualized server,
guest mode execution (both kernel or usermode) corresponds
to execution within a VM while other modules in user

mode (Qemu) and kernel mode (KVM module, tun-tap mod-
ule, bridge module, etc.) correspond to hypervisor execution.
Among these, Qemu I/O module runs separately for each VM
but is co-ordinated by a single KVM module which manages
VMs by signal and virtual interrupts. Hence, it is easy to
understand that the KVM module can potentially become a
bottleneck when it tries to execute on behalf of many VMs.

III. RELATED WORK AND MONITORING TOOLS
AVAILABLE

Many resource and performance monitoring tools are avail-
able for non-virtualized systems. The type of tool to be used
depends on the granularity of information to be extracted
and frequency of profiling. Since, here, we are concerned
with resource monitoring in KVM based VMs, we will be
discussing available Linux based monitoring tools and that too,
in open source domain since KVM itself is an open source
software.

Most of the commonly used tools include software profilers
like OProfile, gprof, top etc.. Some of these use underlying
hardware performance counters to profile the system. Such per-
formance monitoring tools are available in almost all operating
systems, some (like top) perform coarse grained monitoring
while others like OProfile collect fine grained information.

In virtualized systems, the task of profiling and resource
monitoring is not straight-forward because Performance Mon-
itoring Unit (PMU) is not virtualized [10] [5]. Especially, with
hardware assisted virtualization, CPU can enter in another
mode called guest mode which has to be taken separately into
account.

The existing tools like OProfile [11], top etc. give the total
CPU usage of a particular KVM VM which includes the CPU
usage of both the hypervisor as well as VM. Similarly, tools
like XenMon which are specific to Xen VMM gives total
CPU usage of Xen hypervisor i.e Dom 0 but don’t separate it
into hypervisor usage per VM. In our previous work [4], we
developed a generic monitoring framework, and illustrated the
same for Xen hypervisor. This monitoring framework extracts
hypervisor CPU usage on behalf of each VM by counting the
number of page flips between Dom 0 (hypervisor) and Dom U
(virtual machine) using OProfile. The same mechanism does
not work for KVM due to difference in architecture of two
VMMs.

Apart from this, certain tools exist in cloud computing
frameworks like OpenNebula[12] which only provides coarse
grained information of percentage of Virtual CPU used by a
VM. Also, dedicated monitoring systems like Ganglia [13], a
performance monitoring system for high performance appli-
cations is used in clouds to extract information inside VMs.
Other industry standards like Nagios [14] provides VM process
level details but does not again account for the hypervisor’s
overheads for a VM.

One of the tool which is in close match with KVM in this
context is Linux Perf [15]. Perf is a profiling tool for linux
based systems and hence makes a good integration with KVM
which is also embedded in Linux kernel itself. Perf internally
uses hardware performance counters for profiling. Initially,
certain events like instruction execution, cache misses etc. are



selected based on which profiling needs to be done. A counter
is incremented whenever such an event occurs and when the
counter reaches a predefined value, an interrupt is generated
and the program counter value at that time is recorded, with
counter being reset again. The interpretation of recorded events
gives the percentage CPU used by different programs at a finer
granularity of function level.

Perf, apart from profiling like OProfile, has a special com-
mand “perf kvm” which can be used to profile the guest kernel
much like the host kernel. Also, it gives a clear percentage of
CPU used in guest mode, host user and host kernel mode. In
addition, we can get the CPU profile of guest kernel as well.

Using the architectural details of KVM and the above
information provided by Perf KVM, we extract the CPU usage
of hypervisor in each module on behalf of a particular VM.
The next section describes system model for the same.

IV. SYSTEM MODEL FOR RESOURCE MONITORING

The basic system model is shown in Fig. 2. As described
in Section II, each VM under KVM hypervisor is a Linux
process. Initially, we extract the PIDs of VM linux processes
named KVM.

Then, for a given monitoring period, resource profiles are
generated across all CPUs by a profile recorder (like “perf
kvm record”) and fed into the system along with PIDs. Using
these PIDs, we segregate the process wise CPU usage using
the corresponding interpreter of the profile recorder used in
initial phase. In our case, we have used perf kvm report for
the same. The important point to note is that profiler must be
enabled in virtualization mode. For example, we have to use
suffix “kvm” to record profiles for guest mode separately in
case of perf.

Fig. 2. System Model for Resource Monitoring

Then, resource usage profiles obtained for VMs are used to
obtain CPU usage in the guest and host user and kernel modes.

The guest mode usage (including both guest kernel and guest
user mode) accounts for total CPU used by VM where as
CPU usage of hypervisor consists of Qemu (host user mode)
and multiple kernel modules like KVM core modules(kvm.ko
and kvm amd.ko/kvm intel.ko), , TUN or TAP device module,
etc. specific to application. The only issue is with regard to
the resource accounting for the physical device driver and the
bridge module. This usage can be distributed in proportion to
the network bandwidth used by each of the VMs. Adding total
CPU usage of all modules in a VM, we get total hypervisor
effort on behalf of that VM.

The important point to note in case of KVM hypervisor
is that even if we pin VMs to specific cores, guest mode
usage(VM) is tied to that core only but hypervisor keeps on
switching across multiple CPUs present on host machines and
so profiling must be done across all working CPUs on the host
machine so as to achieve correct hypervisor usage.

The overhead to record profiling information is just the
overhead of running perf in the system which has less than
1 percent overhead on the host system which is negligible.
Subsequent resource accounting that is done by shell scripts
is also a very light operation which can be neglected for
considerable monitoring time. So, our tool as a whole does
not cause any specific overhead which can change the profiling
information.

The above system design is not specific to perf but suited
for any general profiler provided it supports granularity at
module level and takes into account guest mode usage sep-
arately. The components of perf can be replaced with the
corresponding components in such a case. The following
section illustrates a use case of tool that is described above.

V. USE CASE

In this section, we present a use case of tool described in
previous section in a KVM virtualized host. Here, we aim to
study the behavior of web-servers hosted inside virtual ma-
chines residing on a cloud system. We choose this application
because web servers being I/O intensive workloads are one of
the most commonly hosted applications in clouds and present
a good case scenario in terms of different resource usage.

For experimentation, httperf [16] is used as a tool for gen-
erating representative workload requests for the web servers.
It runs on client machines and generates specified number of
requests for web-servers in the form of requests per second.
The performance characteristics of servers are measured in
the form of statistics associated with average response time to
a request, throughput as number of replies generated against
the given workload, no. of errors etc.. By varying the gen-
erated workloads, we analyze the server physical resource
usage, response time and throughput. Response time gives
a performance metric of the application. Infact, it is one
of the most important metric governing performance Service
Level Agreements(SLAs). So, we intend to co-relate fine
grained physical resource usage information with performance
characteristics of the application.

A. Experimental Setup

The table I shows the characteristics of physical machine
and virtual machine in our set-up. OpenNebula Cloud environ-



TABLE I. MACHINE SPECIFICATIONS

Hw-Sw Physical Machine Virtual Machine
Processor AMD 2.4 Ghz 12

cores
AMD 2.4GHz 1
core

Memory 16GB 3GB
OS OpenSuse 12.1 Opensuse 11.4
Network
Bandwidth

1Gbps Best Effort

ment is used, with KVM full virtualization as hypervisor, to
create virtual machines [12]. Also, for the experiment, we have
pinned each of VMs to a single core. But in this case,since
hypervisor is a part of VM process, we can’t pin the hypervisor
separately to a particular core. Also, CPU frequency scaling
is switched off to capture correct hypervisor usage across all
cores.

We ran the test by varying request rates and number
of virtual machines on the host. In the next subsection, we
analyze the results of performance and resource monitoring of
application.

B. Results

We conduct the experiment for non-virtualized case, vir-
tualized cases with 1 VM, 2 VMs and 3 VMs and gather in-
formation on different application characteristics like response
time and throughput. And, for these metrics we also measure
the ensuing resource usage by the VM and the hypervisor on
behalf of the VM.

Fig. 3. Response time characteristics

Figure 3 shows the response time for different cases when
we vary request rate from 100 req/s to 1000 req/s. There is not
much difference in case of non-virtualized to virtualized case
but response time begins to increase sharply in case of 2 VMs
at request rates of around 400 and even early in case of 3 VMs.
Similar trends were observed in throughput characteristics
(figure 4). Here, we observe that although each virtual machine
was provided with a separate CPU, the performance metric
drops to 40 percent of single VM case. This must happen due
to some resource exhaustion in the system.

Fig. 4. Throughput characteristics

Fig. 5. CPU Usage -3 VMs

To explain the performance degradation, we analyzed usage
of different resources in the system. To analyze CPU usage,
we ran the KVM-Perf tool explained in previous section
and obtained CPU percentage used by different modules of
hypervisor on behalf of all VMs. Figure 5 shows the output
of tool for 3 VMs case. Here, we are showing the guest space
usage for each VM and hypervisor usage on behalf of each
VM in different modules. The hypervisor usage per module
on behalf of each VM is stacked together for all VMs and is
shown with the corresponding color of guest space usage. Here
we observe, the total hypervisor usage exceeds more than 100
percent where as VM CPU usage is less than 50-60 percent.
Analyzing module by module, we see that the kvm module
(kvm.ko and kvm-amd.ko), which executes in a serial fashion,
consumes more than 80 percent CPU at around 300 req/s in
3 VM case. Also, at corresponding rates, response time starts
to increase sharply. We infer that, hypervisor CPU usage is a
different resource from CPU allocated to VMs and it can prove
to be a critical resource in certain cases, thereby affecting the
performance drastically.



Also, this information of CPU usage of hypervisor on per
VM basis as provided by tool helps us to analyze an overloaded
VM which may be causing bottleneck in the whole system. The
same will help to take better resource provisioning decisions
for associated Quality-of-Service (QoS) requirements.

VI. CONCLUSION AND FUTURE WORK

In this work, we have come up with a resource usage moni-
toring tool for KVM, which can provide hypervisor CPU usage
per VM. The above fine grained monitoring information can
be put to use in diverse situations varying from resource provi-
sioning to support performance associated QoS requirements,
identifying bottlenecks in the system, as illustrated above, and
performance profiling of VMs etc.. As per authors’ knowledge,
no existing cloud computing frameworks like OpenNebula,
Eucalyptus etc. extract such fine grained resource monitoring
information which proves to be critical and valuable in making
certain decisions. In future, we intend to integrate this tool with
cloud computing frameworks like OpenNebula, Eucalyptus etc.
so that, information extracted from monitoring unit could be
used for better resource provisioning decisions and improving
the efficiency of system as a whole.

REFERENCES

[1] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable
third generation architectures,” Commun. ACM, vol. 17, no. 7, pp.
412–421, Jul. 1974. [Online]. Available: http://doi.acm.org/10.1145/
361011.361073

[2] (2012) Main page-kvm. [Online]. Available: http://www.linux-kvm.
org/page/Main Page

[3] J. Lakshmi, “System virtualization in the multi-core era, a qos per-
spective,” Dissertation, Supercomputer Education and Research Centre,
Indian Institute of Science, Bangalore, 2010.

[4] M. Dhingra, J. Lakshmi, and S. Nandy, “Resource usage monitoring
in clouds,” in Grid Computing (GRID), 2012 ACM/IEEE 13th Interna-
tional Conference on, sept. 2012, pp. 184 –191.

[5] J. Du, N. Sehrawat, and W. Zwaenepoel, “Performance profiling of
virtual machines,” in Proceedings of the 7th ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments, ser. VEE
’11. New York, NY, USA: ACM, 2011, pp. 3–14. [Online]. Available:
http://doi.acm.org/10.1145/1952682.1952686

[6] D. Gupta, R. Gardner, and L. Cherkasova, “Xenmon: Qos monitoring
and performance profiling tool,” Tech. Rep., 2005.

[7] A. Kivity, “kvm: the Linux virtual machine monitor,” in OLS ’07: The
2007 Ottawa Linux Symposium, Jul. 2007, pp. 225–230.

[8] S. Zeng and Q. Hao, “Network i/o path analysis in the kernel-based
virtual machine environment through tracing,” in Information Science
and Engineering (ICISE), 2009 1st International Conference on, dec.
2009, pp. 2658 –2661.

[9] J. Zhang, K. Chen, B. Zuo, R. Ma, Y. Dong, and H. Guan, “Perfor-
mance analysis towards a kvm-based embedded real-time virtualization
architecture,” in Computer Sciences and Convergence Information Tech-
nology (ICCIT), 2010 5th International Conference on, 30 2010-dec. 2
2010, pp. 421 –426.

[10] A. Khandual, “Performance monitoring in linux kvm cloud environ-
ment,” in Cloud Computing in Emerging Markets (CCEM), 2012 IEEE
International Conference on, oct. 2012, pp. 1 –6.

[11] (2012) Oprofile - a system wide profiler for linux. [Online]. Available:
http://oprofile.sourceforge.net/news/

[12] (2012) Opennebula- the open source solution for data center
virtualization. [Online]. Available: http://opennebula.org/

[13] (2012) Ganglia monitoring system. [Online]. Available: http://ganglia.
sourceforge.net/

[14] (2012) Nagios. [Online]. Available: http://www.nagios.org/

[15] (2012) Main page-perf. [Online]. Available: http://www.linux-kvm.org/
page/Main Page

[16] D. Mosberger and T. Jin, “httperf-a tool for measuring web server
performance,” SIGMETRICS Perform. Eval. Rev., vol. 26, no. 3, pp.
31–37, Dec. 1998. [Online]. Available: http://doi.acm.org/10.1145/
306225.306235

http://doi.acm.org/10.1145/361011.361073
http://doi.acm.org/10.1145/361011.361073
http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
http://doi.acm.org/10.1145/1952682.1952686
http://oprofile.sourceforge.net/news/
http://opennebula.org/
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
http://www.nagios.org/
http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
http://doi.acm.org/10.1145/306225.306235
http://doi.acm.org/10.1145/306225.306235

	Introduction
	KVM Architecture
	Related Work and Monitoring Tools available
	System Model for Resource Monitoring
	Use Case
	Experimental Setup
	Results

	Conclusion and Future Work
	References

