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Abstract—Cloud computing model separates usage from own-
ership in terms of control on resource provisioning. Resources
in the cloud are projected as a service and are realized using
various service models like IaaS, PaaS and SaaS. In IaaS model,
end users get to use a VM whose capacity they can specify but not
the placement on a specific host or with which other VMs it can
be co-hosted. Typically, the placement decisions happen based on
the goals like minimizing the number of physical hosts to support
a given set of VMs by satisfying each VMs capacity requirement.
However, the role of the VMM usage to support I/O specific
workloads inside a VM can make this capacity requirement
incomplete. I/O workloads inside VMs require substantial VMM
CPU cycles to support their performance. As a result placement
algorithms need to include the VMM’s usage on a per VM basis.
Secondly, cloud centers encounter situations wherein change in
existing VM’s capacity or launching of new VMs need to be
considered during different placement intervals. Usually, this
change is handled by migrating existing VMs to meet the goal of
optimal placement. We argue that VM migration is not a trivial
task and does include loss of performance during migration. We
quantify this migration overhead based on the VM’s workload
type and include the same in placement problem. One of the
goals of the placement algorithm is to reduce the VM’s migration
prospects, thereby reducing chances of performance loss during
migration. This paper evaluates the existing ILP and First Fit
Decreasing (FFD) algorithms to consider these constraints to
arrive at placement decisions. We observe that ILP algorithm
yields optimal results but needs long computing time even with
parallel version. However, FFD heuristics are much faster and
scalable algorithms that generate a sub-optimal solution, as
compared to ILP, but in time-scales that are useful in real-time
decision making. We also observe that including VM migration
overheads in the placement algorithm results in a marginal
increase in the number of physical hosts but a significant, of
about 84 percent reduction in VM migration.
Keywords—Virtual machine Placement,Service Level Agreements,
Vector Packing problem, Virtual Machine Migration

I. INTRODUCTION

Today, most of the enterprise workloads are either dynamic
where resource requirements vary continuously over time of
the day or are resource centric which utilise one resource
more than the other resources (CPU intensive v/s I/O intensive
applications). In such scenarios, there is overall low utilization
of physical resources if applications are hosted on dedicated
servers. So, most of the enterprises are shifting towards cloud
based solutions [1] where these applications are hosted in
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Virtual Machines(VMs). Virtualization is a key enabler of
cloud computing where a number of VMs share a physical
resource. It not only provides software isolation to these
applications but also leads to overall better utilization of server
resources.

One of the important characteristics of this Cloud Com-
puting model is abstraction of resources at the user level. This
abstraction leads to separation of usage of resources from
ownership, management and control of resources. While an
end user can demand a fixed capacity of resources for a VM, he
has no control on which specific host this VM would be located
or what kind of co-resident VMs would be with this VM.
A typical aim in undertaking resource provisioning at cloud
provider’s end is to maximize resource utilization by placing
all VMs over a minimal set of physical hosts while meeting
capacity requirement for a VM. The capacity requirement for
a particular VM is specified by a user in terms of CPU cycles,
memory, disk and network bandwidth used by application. But
as discussed by Menon et. al. [2] and others [3] and [4], when
applications are executing in virtualized scenarios, virtualiza-
tion overheads manifest as extra CPU usage by hypervisor
(or virtual machine monitor [5]) and this extra usage depends
on virtualization technology used (paravirtualization or full
virtualization). This extra CPU requirement by hypervisor,
which is substantial in case of I/O applications, makes the
actual capacity requirement incomplete. Not considering this
overhead in placement decisions leads to bottleneck situations
that are currently resolved using VM migration which further
contribute to loss in application performance. Hence, to honour
performance Service Level Agreements (SLAs), there is a need
to capture this VMM or hypervisor CPU overhead explicitly
along-with the VM’s resource requirements in the placement
problem.

Also, the Virtual Machine Placement Problem (VMPP) is
dynamic in nature i.e after the initial placement, not only new
VMs with varying resource requirements arrive and existing
VMs leave but also the resource requirements for VMs change
continuously. So, after doing initial placement, scheduling de-
cisions need to be taken periodically at each scheduling cycle.
And VMPP algorithms need to be invoked at each scheduling
cycle catering to these varying requirements of workloads. The
existing technologies handle these elastic needs by migration
of VMs from one host to other. Also, the VM migration is
proposed as a solution to meet SLAs in case of changing
resource requirements [6]. However, migration in itself is a
costly operation. It not only degrades the performance of



applications for a certain time (during migration) but also intro-
duces additional network and other overheads while migrating
[7]. This migration overhead depends on type of application
and resources used by it, for example, applications having
more memory and I/O footprint would have higher migration
overheads compared to pure CPU intensive applications. To
minimize the number of migrations and loss in performance
due to the same, the provisioning algorithms must be made
migration aware by considering the previous placement of
VMs and aim for reducing both the number of migrations and
the number of hosts used.

There have been attempts in the past to include this migra-
tion overhead in placement decisions but how this migration
overhead should be quantified in terms of all resources still
needs to be explored. This paper attempts to address that
problem by weighted summation of resource requirements.
Also, most of papers consider placement by considering CPU
and memory as resources while ignoring disk and network
requirements which can be significant in I/O applications.
Here, we discuss algorithms in general framework where all
resources are considered.

We propose that these two factors of extra CPU overhead
and migration overhead (quantified in terms of resource re-
quirements) should be included in VM placement problem
so that scheduling decisions have minimum effect on perfor-
mance of applications along with main aim of minimizing the
number of hosts. We evaluate the above modifications in both
traditional Integer Linear Programming (ILP) approach and
FFD heuristics. We observe that ILP solvers yield optimal
solution but need long computing time even with a parallel
shared memory version. However, FFD heuristics are much
faster and scalable which yield sub-optimal solutions which
are good enough to be used in practice and in time scales so
as to aid real time decision making. Also, we compare different
FFD heuristics and provide reasoning, why one yields better
results than others. We observe that, making the placement
algorithms migration aware in all these heuristics leads to less
than 2 percent increase in number of hosts but reduces the
number of migrations by more than 84 percent.

The rest of the paper is organized as follows: Section II
presents the related work. Section III presents performance
SLAs and VM placement issues with typical use-case results
for I/O workloads. Section IV gives the integer programming
formulation with virtualization and migration overhead consid-
ered and section V compares the different heuristics. Section
VI shows the experimental setup and results. Finally, in section
VII, we conclude with a discussion on future work.

II. RELATED WORK

The problem of server consolidation is well explored in
literature. It is a classical problem of bin packing where
different sized items are to be packed in bins of fixed capacity
and one aims to minimize the number of bins used. Here,
the problem translates into a vector packing problem where
VMs are items to be inserted, physical machines are bins and
resources like CPU, memory, bandwidth etc. form different
dimensions of vector.

The problem is posed classically as an Integer Linear
Programming problem where objective function is to reduce

the number of physical hosts used and hosts’ capacities and
other restrictions are posed as constraints for the same. In [8],
Gupta et. al. have given a two stage heuristic algorithm for
solving the server consolidation problem with item-item (two
conflicting VMs cannot be placed together) and bin-item (a
VM cannot be placed on a particular host) incompatibility
constraints. Agarwal et. al. in [9] deal with the same problem
by an approach of group genetic algorithm and shows how a
genetic algorithm can prove to be better than other approaches.
But it has been observed that beyond a few hundred VMs,
genetic algorithms and ILP based approaches have very high
time complexity in worst cases even with parallel versions.
Hence, these are not seen as potential solutions in real world
scenarios affecting scheduling decisions.

To reduce time complexity, algorithms based on greedy
heuristics like First Fit, Best Fit etc. have been implemented.
These give close to optimal solutions in one dimensional case
[10]. Here, items are arranged according to sizes and then,
packed into bins based on algorithm used. In case of multi-
dimensional problems, it is not clear what combination of
vector should be used to generate a scalar(size) so that one-
dimensional algorithms can be used. Panigrahy et. al. [11]
in their report on heuristics for vector bin packing explore
different combinations of vectors to generate the scalar(size)
and propose the new concept of geometric heuristics. But it
does not justify why one heuristic outperforms others and given
a workload, which heuristic should be applied.

Another way of transforming a vector to scalar was pro-
posed by Woods et. al. in automated monitoring and provi-
sioning system - Sandpiper [12]. They primarily use a volume
metric for detecting hotspots and enable VM migration. The
shortcomings of the same are shown in a recent work by
Mishra et. al. [13]. This work explains shortcomings in existing
technologies and also presents a new approach based on
vector algebra for VM placement. We evaluated their approach
of resource imbalance vectors and observe that the same is
outperformed by Euclidean distance/Norm-2 approach in many
cases, giving specific counter examples for the same.

Recently, Wu et al. in [14] have given a simulated annealing
based algorithm to tackle this problem where initial solution
is obtained by applying FFD based heuristics and then with
some compromise over time, significant improvements can
be obtained. A recent paper by Lee et. al. of Topology
Aware Resource Allocation (TARA) [15], brings out a new
dimension where by network topology related information and
application’s requirements are used to allocate data intensive
workloads. They do so by a naive genetic approach that is
different than discussed in [9].

A few recent works have also explored the migration over-
head problem. The problem of migration control is described
in [16]. They put a constraint where a static workload would
be never migrated. In this case, one may end up getting less
packing efficiency. We point out that such a migration control
should be dependent on type of workload and migration cost
involved for migrating that VM.

Another paper by Schaffrath et. al. [17] deals with the
migration problem in CloudNets and deals with migration
overhead for ILP settings specifically for migration of Virtual
Networks. We deal with the same problem in general in Clouds



and propose a quantification of migration overhead along with
hypervisor CPU usage included in the VM’s resource vector,
in both FFD heuristics and ILP.

A paper by Hermenier et. al. [18] uses a concept of entropy
for minimizing the number of hosts used. It first chooses all
solutions with minimum number of hosts and then selects
the one with minimum migration overhead. Also, it focuses
on only two resources CPU and memory using a constraint
propagation model, how the same has to be extended to other
resources and in FFD heuristics is not clear from the same.

Also, Verma et. al. have discussed a tool pMapper [19]
where they do consider migration overhead while doing place-
ment. They model and base migration cost based on decrease
in throughput of application and hence loss of revenue due to
migration is considered for migration cost. We quantify the
migration overhead as weighted sum of resource requirements
of application which are more closely related to VM placement
decisions. Also, our approach does not require migration
experiments repeatedly to calculate migration cost which may
change with changing resource requirements of applications.

There are many prevalent datacenter management tools like
OpenNebula, Eucalyptus etc.. They have diverse strategies for
VM placement. For instance, the OpenNebula ' implements a
rank scheduling policy for VMs where by hosts are ranked
using a formula on available monitoring information. The
pre-defined policies exist for both Packing(Minimum number
of hosts)and load balancing. The metrics used by these are
number of running VMs or Free CPU available on that host.
These are coarse grained and high level metrics because the
type and resource requirements are more important than merely
the number of running VMs. Also, a decision should not be
taken on a single resource like Free CPU. OpenNebula also
provides an option to user to define its own ranking policy.
But it is not possible to obtain SLA performance guarantees
for the applications without using complete resource vector.
On the other hand, Eucalyptus follows first fit or next fit based
algorithms for VM provisioning on hosts.

To the best of authors’ knowledge, none of these solutions
consider the virtualization overhead and workload specific
migration awareness in a general framework of VMPP. The
contributions of this paper in this context are as follows:

1. Including architecture specific virtualization overhead in
problem definition to honour performance SLAs.

2. Considering previous placements of VMs and quantification
of migration overhead based on type of workload.

3. Placement using resource vector including VMM CPU
cycles along-with the VM’s resource requirement, rather than
just CPU or Memory.

III. PERFORMANCE SLAS AND VM PLACEMENT ISSUES

In this section, firstly, we present a case study showing
the impact of virtualization overhead on performance SLAs
of applications. As discussed in [20] and [3], in case of I/O
applications virtualization overhead is manifested as extra CPU
usage by the hypervisor apart from usual guest usage. We show
that not considering this overhead in problem domain leads to

severe degradation of applications’ performance and therefore
SLA violations.

We present two different scenarios, in Case-1 virtualization
overhead is considered in resource provisioning while in Case-
2, no overhead is considered. We use KVM 2 as a hypervisor
for our experiments. Since in KVM each VM is treated as a
separate process, we take sum of CPU used by guest and CPU
usage of hypervisor as total CPU requirement in Case 1. Only
the guest CPU is considered in Case-2 where no virtualization
overhead is considered. The other resources considered are
memory, disk I/O bandwidth and network bandwidth.

In order to validate above scenarios, we first show
the difference in resource requirements in two cases by
analysing resources used in case of web-server application.
We hosted apache web-server application in virtualized and
non-virtualized environments. The machine specifications for
the two cases are shown in Table I. To simulate workloads,
we used httperf which is commonly used benchmarking tool
for generating representative workloads. Figure 1 plots the total
CPU used for different request rates for the two cases discussed
above. We analyze that the CPU requirement in virtualized
case is significantly high compared to non-virtualized scenario.
Further breaking down the CPU requirement in different
modules in figure 2, we observe that extra CPU requirement
is due to CPU used by different modules in hypervisor in case
of virtualized environment.

TABLE I: Machine Specifications

[ Hw-Sw | Physical Machine | Virtual Machine |
Processor AMD 2.4 Ghz 12 | AMD 2.4GHz
cores (Req. based)
Memory 16GB Req. based
oS OpenSuse 12.1 Opensuse 11.4
Network B/W 1Gbps Best Effort
Disk I/O B/W 7000 KB/s Best Effort
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Fig. 1: CPU Usage in Virtualized and Non-Virtualized Settings

Next, we analyze the impact of not considering this CPU
overhead in scheduling decisions. For our experiments, we
hosted 5 VMs with four different applications as shown in
Table II. The table also shows the metric for performance
evaluation, how the workload is generated and the CPU
requirement for each application. The other resources like
memory, Network I/O and Disk I/O do not effect the schedul-
ing decision in this case and their actual requirements are

Uhttp://opennebula.org/documentation:archives:rel3.2:schg

Zhttp://www.linux-kvm.org/



TABLE II: Types of applications

Type of appl. (Workload intensity) Guest CPU | Hypervisor | Performance Metric Load generation method
(core) CPU (core)

web-server (3000 rq/s) 1 CPU 2 CPUs response time (ms) httperf [21]

smtp mail-server(6000 req/s) 0.5 CPU 0.5 CPU delivery time of mail(s) smtp-source >

Prime numbers (Till 100000) 8 CPUs 0 CPU Task completion time(s) sysbench

Matrix Multiplication-1(1024*1024) 1 CPU 0 CPU Task completion time(s) size of matrix

Matrix Multiplication-11(1024*1024) -do- -do- -do- -do-
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Fig. 2: CPU Usage Breakdown for Saturation Points

shown in Table IV and Table V . We observe from figure 1
that each web-server VM requires only 1 CPU (less than 100
percent, assuming 1 Core per 100 percent) if no overhead is
considered while there is requirement of 3 CPUs in virtualized
environment. The scheduler aims on consolidating workloads
to minimum number of physical machines and packs all VMs
on a single host in no overhead case, while it needs two hosts
in other case. We analyze the effect on performance of web-
server application in two Cases. Figure 3, plots request rate
with response time which is most common metric for defining
SLAs in case of web-servers. Since only 1 CPU is given to
web-server VM while not considering virtualization overhead,
we observe that response time begins to rise sharply at around
1000 requests/second. This is in contrast to other scenario
where we can achieve reasonable response time even at 3000
requests per second. Hence, if SLA is such that there should
be less than 100 ms response time for request rates till 3000
req/s, we would be achieving the SLAs for only 30 percent of
requested rate.
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Fig. 3: Virtualization impact on application performance

Hence, this study clearly points out that while moving
applications, particularly I/O workloads, to the cloud, we
must consider the resource requirements in virtualized settings
which are significantly high compared to host usage and effect

performance SLAs of application drastically. This extra CPU
is CPU used by hypervisor and can be monitored only through
host.

Quantification of Migration Overhead: On the other
hand, owing to dynamic nature of problem and to cater to
elastic workloads, VMPP algorithm needs to be invoked at
every scheduling cycle. The new solution in order to minimize
the number of hosts may lead to migration of VMs from one
host to another which itself is expensive process and incurs
additional overheads.

We propose the quantification of this migration overhead
based on the type of workload in terms of its resource require-
ments. We argue that this overhead is more for applications
having high I/O (network and Disk) and memory footprint
compared to pure CPU intensive applications. For instance a
web server (Network B/W Intensive) or Disk I/O application
would have more effect on performance during migration. This
argument stems from the fact that in case of applications
that have network or disk associated accesses, apart from
transfer of memory, the connections causing changes to the
memory content need to be quiesced before migration can
complete. Apart from this, since most of these applications are
live and communicating directly with user, these should have
minimum downtime [7] and given least priority in migration.
Secondly, the applications having high memory footprint need
to transfer whole memory stack from one machine to another
and have high migration time and effect on network resources
compared to ones having low memory footprint. Therefore,
we give high weights to Network and Disk requiremnts of
applications compared to CPU resources. We quantify the
total migration overhead(«) by weighted addition of different
resource requirements (r;) for each VM as shown in equation
1. The relative weights(w;) used are 0.8 for network bandwidth
resources, 0.6 for disk I/O resources, 0.4 for memory and 0.1
for CPU resource. Also, resource requirements are normalized
to 1 with respect to physical machine’s capacity.

i=d
o= E T ¥ W; (1)
i=1
where, d is number of resources to be considered.

The actual values of these weights have to be arrived
experimentally by undertaking extensive migration tests, which
is left for future work but the relative ratio for the same should
remain the same as discussed above. We modify the VMPP
by including this migration overhead and then, minimizing
both the number of hosts and the migration overhead. The
actual problem definition and algorithms to solve the same are
described in next two sections.



TABLE III: Notations

Vi binary variable,1 if VM j is placed on host i
m No of Hosts

P; binary Variable,1 if host i is used for any VM
n No of Previously hosted VMs

a; Migration Coefficient of VM j

t No of new VMs to be allocated

R; Capacity of R resource in Host i

T Requirement of r resource for VM j

VI values of V; ; according to previous allocations
cpuf ypervisor| CPU used by hypervisor for VM j

cpuy ™ CPU used by VM j

IV. INTEGER PROGRAMMING FORMULATION

The problem of VM placement is formulated traditionally
in the form of an ILP. Here, in this section, we give an ILP
formulation of VMPP along with modifications to address
issues of migration and virtualization overhead discussed in
previous sections. The problem definition is shown below
along with description of notations in Table III.

Minimize:
i=m i=m j=n
Foj =3 Fim3 D a=Vi"«Vij @
i=1 i=1 j=1
Constraints: )
=m
> Vi =1Vj 3)
i=1
j=n+t .
PixCPU; 2 37 Vigs (epuf™P77 o cpuy™) Wi (4)
j=1
j=n-+t
Pix Ri> > Vi Vi ®)
j=1

Here, the objective function (eqn. 2) of problem consists of
two parts, the first part focuses on minimizing the number of
hosts while the second part relates to minimum migration over-
head. Here, «; is calculated by weighted addition of resource
requirements as described in previous section. So, eqn. 2 would
minimize the objective function if both V7 and V; ; are
one. Hence, objective function evaluates the trade off between
using minimum number of hosts and migration overhead. If
two allocations have same number of hosts used, the objective
function would choose an allocation with minimum migration
overhead. Here, one may point out that how good is to compare
the number of hosts with our proposed migration overhead
but the point to note is that weights for each resource is user
defined parameter and can be adjusted maintaining the relative
ratio between different resource requirements same. This trade
off between extra host used and migration overhead can be
adjusted by varying weights parameters to suit cloud provider
needs.

In constraint set, eqn. (3) describes the fact that a VM
is allocated to only one host. Eqn. (4) shows the second
modification to the problem, where virtualization overhead is
considered. We have added CPU used by hypervisor separately

and CPU used by VM in this case. This CPU used by hypervi-
sor can be monitored in the host by using Linux Perf. Finally,
eqns. (5) puts the capacity constraints on different resources.
Also, it is assumed that maximum disk I/O bandwidth and
other resource capacities are not effected much in virtualized
settings and if they differ significantly, the values should be
considered in virtualized settings as well. We used Ipsolve *
package for solving the exact ILP in serial form which uses
branch and bound method for solving the same. To further
reduce time in big instances, we used scip multi-threaded
package > and ran the algorithm upto 12 pthreads. According
to a classical result by Lensra [22], any ILP with n variables
and m constraints can be decided in O(c™’ — m<) time. In
our case, for p virtual machines and q physical hosts, we have
(p * g + q) variables and (p + 4q) constraints which gives a
highly exponential time. The results for the ILP formulation
for small problem instances is shown in section VI . The next
section captures the same problem definition in different FFD
heuristics to reduce the exponential time.

V. FFD VECTOR HEURISTICS

The above Integer Linear Program provides an easy formu-
lation of the problem and all the constraints and requirements
are expressed directly capturing the problem domain naturally.
But solving ILP is an NP hard problem and so can’t be used
in practice for real time solutions. However, we can do some
modifications to the same by having a linear programming
relaxation of the original ILP. These may give some early
results for small cases but as problem size grows, these
algorithms are not suitable for obtaining near optimal solutions
within the scheduling cycle [11]. Therefore, FFD heuristics
might be a better trade off.

The theoretical bounds of 11/9 of optimal number of bins
are shown for one dimensional case in [10] for these heuristics.
In average cases, FFD performs reasonably well and that too
in small duration of time such that solving a new problem with
large number of VMs in every scheduling cycle is feasible.

The first problem in this case is how to incorporate the no-
tion of a vector in FFD. Different heuristics for the same were
suggested in [11] and [13]. We choose 3 different FFD based
methods viz. Dot Product, Euclidean Distance and Resource
Imbalance Vector method as suggested in the literature and
then modify those to our problem settings. Firstly, we analyse
these methods and explain what these methods are capturing in
different scenarios. The three strategies differ in the ordering
of VM placement in each case. Before proceeding to strategies,
we define some acronyms, RRV is Resource Requirement
Vector defined for all VMs, RUV is Resource Utilization
Vector defining currently used resources of a host and RCV is
Residual Capacity Vector defining remaining capacity for all
used hosts.

In Dot Product approach, we take the unit vector cor-
responding to RCV of currently used host and take its dot
product with unit vector of all unallocated valid VMs (VMs
which satisfy resource capacity constraints) and the VM having
maximum dot product is chosen for allocation. The intuition
behind the same is that a large Dot product value means small

“http://Ipsolve.sourceforge.net/5.5/
Shttp://scip.zib.de/



angle between the RCV of host and RRV of VM. This in turn
means better alignment of VM vector with the host vector,
thus, making VM a good choice to be placed on that host.
The issue with this approach is that although it captures the
direction sense pretty well, it does not capture the remaining
capacity in absolute sense.

The second approach of Resource Imbalance Vector (RIV)
was suggested by Mishra et. al. in [13]. They take the pro-
jection of RUV on normalized resource diagonal i.e (1,1,1..1)
vector and subtract it from RUV to get RIV of that physical
machine(fig 4). Similarly, we get RIV for every VM. Then,
by adding these two RIVs, we choose the one with minimum
magnitude. The intuition behind this is that complementary
workloads across diagonal will be placed on same machine.
This leads to better host utilization. We argue that in a number
of cases, there would be many such vectors which would
balance the RIVs exactly but not all are good candidates for
placement. As shown in figure 4, all the vectors a,b,c,d of the
VMs give the same total RIV but only c is the candidate which
actually captures the remaining capacity exactly and should be
chosen for placement.

Res 1

Normalized
Resource Vector

1 (1.1)

O 1 Res 2
Fig. 4: Resource vectors in 2-D plane

Thirdly, we look at the euclidean distance strategy where
we will calculate euclidean distance between RCV of PM and
RRV of VMs and choose the VM having minimum Euclidean
distance with the host. Euclidean distance method inspite
of its simplicity captures both the direction and magnitude
aspects correctly. It is able to capture the direction sense of a
vector because with increase in angle between two vectors, the
euclidean distance also increases. Also, most of the workloads
in real world are specific resource centric i.e they use one
resource more than the others. So, the solution should not
only capture its alignment with host capacity as done in
previous two approaches but a good fit overall (across most
of dimensions).

Our basic strategy is underlined in Algorithm 1. First,
we normalize all capacities and resource requirements in all
dimensions to 1. We initialize a host and to place the next
VM, we consider all the valid VMs (which meet resource
requirements) and find the most appropriate VM according to
different heuristics based on what we call ’the score’. The key
contribution of our algorithm is that we change (increase in
Dot product or decrease in RIV/Euclidean distance) the score
of a VM if the VM is getting placed on the previously allocated
host. This increases the chances of a VM being placed on the
same host again compared to other VMs. This change of score
is quantified in terms of migration overhead «; as described
in previous section. The issue of meeting performance SLAs
is dealt in this case, by adding CPU usage of hypervisor as
described in section III . Analysing our algorithm’s complexity,
in the worst case, we select 1 VM in every pass and in total,
we make number of passes equal to number of VMs, so to

for All dimensions do
Normalize all capacities and requirements to 1;
end
Initialize a host;
while All VMs Not Placed do
Initialize pointer to start of VM list;
while Pointer not At the end of VM list do
if VM can be packed into current Host then
calculate score by RIV or Dot product or
Euclidean distance ;
if VM placed on same host in Previous
Mapping then
Update score of each VM by adding
migration overhead based on heuristic,;
end
end

Goto next VM in the list ;
end

if No VM can be placed but remaining unplaced
VMs then
Initialize and add a new host;

Goto statement 4 ;
end

Find VM with minimum score in RIV and
Euclidean distance and maximum score in Dot
product;
Place that VM over host and remove it from VM
list;
Update host’s current capacity;

end

Algorithm 1: FFD previous mapping aware heuristic

place n VMs ,we will take O(n?) time which is significantly
less compared to exponential time of ILP. The calculation of
score is a constant in all algorithms whose value depends on
heuristic used.

Also, since all of these are heuristic solutions for the
problem, the counter examples for all of these can be found.
But the choice of heuristic should depend on the nature of
workload and problem context. In the next section, we state
our experimental setup and results.

VI. EXPERIMENTAL SETUP AND RESULTS

In this section, we evaluate different heuristics and ILP
in a setup consisting of four different types of workloads as
described in Table II. In our work, we consider four dimensions
of resources, Total CPU usage of VM and hypervisor, memory
requirements, disk I/O bandwidth and network bandwidth.
We assume sufficient storage (30 GB) for all applications
although same can be added as an extra dimension without
any modification.

Simulation Strategy To select a good mix of workloads,
we choose a uniform random distribution across these four
types of workloads means expectedly we will get equal number
of VMs of each type. Then for each type of application
(VM) i.e webserver, mail-server etc., we generate different
request rates and monitor resource requirements (shown in
Table IV and Table V) for the same by experiments such
that performance SLAs are met. For instance, the performance
SLA for webserver VMs is response time less than 100ms.



For our experiments, we choose ten different request rates for
web-servers and ten different delivery rates for mail servers
and use a normal distribution over the same to emulate real
world scenario. Similarly, five different CPU workloads and
four different memory intensive workloads are chosen. The
request rates for each type of VM are normally distributed and
we refer Table IV and V to get actual resource requirements
corresponding to a particular request rate. The same resource
requirement would be given by Resource Monitoring Unit for
a running VM in each scheduling cycle in real world scenario.
The normal distribution ensures that we have less number of
VMs having very high or very low request rate but a significant
number having moderate request rates in each and every case
of web-server , mail-server, CPU based load etc.

The reason for choosing these kind of workloads is these
are most commonly used in clouds and each of them uses a
different resource, thus providing a good mix of workloads.
Also, these are similar to SPECvirt ® workloads for bench-
marking virtual servers.

Comparison of Different Algos for Number of Hosts Used
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We tested the above three algorithms, varying the total
number of VMs from 10 to 200. The results presented here, are
simulation results. This is due to lack of access to a large cloud
data center. However, the resource requirements of each VM
are derived experimentally for individual instance. In figure
5, the number of hosts needed to place all VMs is plotted

Ohttp://www.spec.org/

against number of VMs. Due to exponential running time, ILP
based optimal solutions are available till only 60 VMs beyond
which it was taking many hours even with twelve parallel
threads. As we see, all the heuristics are near optimal for
small instances, but for bigger problem instances Euclidean
distance strategy starts to outperform others by around 10
percent. Also, we show number of hosts used both with and
without migration overheads (for euclidean distance) in figure
6. We observe less than 2 percent increase in number of hosts
when migration overheads are considered. This points out that
multiple solutions are available in most of the cases and by
making our algorithm migration aware, we are able to choose
those solutions which take minimum migration overhead. In
figure 7, we plot number of migrated VMs against number of
VMs with and without consideration of migration overheads
for euclidean distance strategy. We observe that our strategy
reduces the migrations by more than 84 percent in almost all
cases.

From above results, we clearly observe that we are able
to meet SLA performance guarantees by including overhead
aspect in problem definition. Also, by modifying problem
statement, we are making problem aware of previous assign-
ments. Hence, we get a mapping with minimum migration
overhead without increasing the number of hosts used. This
approach ensures performance SLAs are met where actual
requirements are taken care of by considering virtualization
overhead and there is minimal loss in performance due to
migrations. In the next section, we conclude the discussion
along with directions of our future work.

VII. CONCLUSION AND FUTURE WORK

In this work, we enumerate modifications to VMPP to
include VM specific virtualization overhead and VM migration
overheads based on resource requirement vector so as to ensure
performance SLA guarantees for the applications hosted inside
the VM. We show that this approach significantly reduces
the number of migrations along with obtaining a solution
near to optimal number of hosts. We also compare various
heuristics and show that Euclidean distance approach captures
the resource vector quite well. In future, we would like to test
these algorithms in real world elastic scenarios and compare
the same with existing algorithms. We would also like to
evaluate effect of other architectural considerations like cache
interference while taking placement decisions. Also, we would
like to explore and define a formal Packing metric in this multi-
dimensional resource case to evaluate fragmentation effects in
different algorithms.  REFERENCES
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