
OpenCL API Extensions to achieve Multi-level
Parallelism for Efficient Implementation of Strassen’s

Matrix Multiplication on GPUs

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology

IN

Computational Science

by

Sivaramakrishnan Kasiviswanathan

Supercomputer Education and Research Centre

Indian Institute of Science

BANGALORE – 560 012

JULY 2013

1

c©Sivaramakrishnan Kasiviswanathan

JULY 2013
All rights reserved

Acknowledgements

I would like to thank Dr. J. Lakshmi for sharing her valuable knowledge. The life experiences

she shares are always inspirational. I am greatly thankful to Prof. S. K. Nandy, for his kind

attention to all those lengthy lab presentations and for giving inputs to lead my project into right

direction. I want to thank Dr. Ranjani Narayan, Mrs. Mitsu Mehta and Mr. Ganesh Garga

for listening to my work, observing even the smallest things that need to be corrected and for

giving ideas to shape my work. I would like to extend my sincere thanks to the Supercomputer

Education and Research Centre for all the facilities provided and also I would like to thank Dr.

Uday Kumar Reddy for his kind help in providing exclusive access to the machines in his lab

when I was in need.

I would like to thank my batchmates Vivek, Shila, Ankit, Mohit, Hari, Sanjeevmachan, Sayee,

Nilesh, Anurag, Calvin, JP, Kalyan, Abbey and all the friends in SERC for their support and

empathy. I would like to thank my friends in Instruementation and Applied Physics for their

company. I would like to thank my friends Tamizhanban, Tamilarasan Sabapathy, Tamilarasan

Subbramani and Sivakumar Dhandapani for their intense support in research. I would like to

thank Gouman J Archer, Balamuralidharan, Tamilselvan Velusamy, Immanuel Raja and Brij

Kishore for their frequent visits to my room to make sure that I go to bed late and wake up early.

I would also like to thank Rashmi, Sowmiya, Leo, Sriram, Punya, Sreejith, Rakesh, Sanith

and Pooja for the everlasting memories. I am very thankful to my friends Hero, Nithiyaraj,

Krishnaraj, Syam, Ashokanna, Saami, Sanil and Mani for their critisism, birthday bumps and

kicks. I would like to thank Anilanna, Rajeshanna, Javed, Sharath, Arun, Srini, Venki and

Phani for the joyful moments. I thank everyone who has spent their precious time with me in

these two years. Without your empathy and support this would have not been possible.

i

ii

Abstract

Strassen’s matrix multiplication algorithm is an efficient and widely used practical algorithm

for matrix multiplication. In its basic form, the algorithm is a series of recursive steps to de-

compose the matrices, multiply intermediate matrices and another set of recursive steps to re-

compose the product matrix. Implementing the algorithm on a GPU requires it to be converted

into an iterative algorithm and choosing the right mode of execution to achieve maximum par-

allelism. The iterative algorithm has aspects of both task and data parallelism. Modern GPUs

and OpenCL constructs help to program and execute algorithms in either data parallel mode

or task parallel mode. Exploiting hybrid parallelism that handles both data as well as task

parallelism will be beneficial. However, the onus is on the programmer to understand the un-

derlying device architecture and APIs to extract maximum parallelism in either data parallel

mode or task parallel mode. We present some results of such platform aware implementations

of Strassen’s algorithm. We also present results of implementation of hybrid parallelism by

programmatic tweaking of the features of a device that supports simultaneous execution of

multiple independent kernels. In our implementation each kernel is a light-weight kernel that

does a single-task and within each kernel data parallelism is achieved. We have evaluated the

scope for efficient implementation of the iterative Strassen’s algorithm in different program-

ming modes and based on the results we propose a hybrid task-and-data-parallel OpenCL API

extension that reduces the burden on the programmer as well as the run-time synchronization

overhead to execute multiple kernels. This proposed API extension will provide native support

for hybrid parallelism which is the best among all programming modes.

iii

Contents

Acknowledgements i

Abstract iii

1 Introduction 1

1.1 Execution environments for parallel programming on

GPUs . 2

1.1.1 Data-parallel execution on modern GPUs 2

1.1.2 Data parallelism and task parallelism implementations in OpenCL . . 4

1.2 Related Work . 5

1.3 Need for extending the OpenCL API to support multi-level parallelism 6

1.4 Organization of the thesis . 8

2 Strassen’s Matrix Multiplication Algorithm 9

2.1 Implementation of Strassen’s algorithm on GPUs - recursive to iterative for

maximum parallelization . 9

2.1.1 Recursive Strassen’s Algorithm . 10

2.1.2 Iterative Strassen’s Algorithm . 13

2.2 Summary . 13

3 Classification of Parallel Modes of Execution 15

3.1 Classification of parallel implementation modes using The K-G-I model . . . 16

iv

CONTENTS v

3.1.1 Single-kernel, Homogeneous Groups, Heterogeneous Items (S-M-T)

mode . 16

3.1.2 Single-kernel, Heterogeneous Group, Homogeneous Items (S-T-M)

mode . 17

3.1.3 Single-kernel, Homogeneous Groups, Homogeneous Items (S-M-M)

mode . 19

3.2 Summary . 23

4 Theoretical Cost Model 24

4.1 Cost model for different modes in K-G-I classification 25

4.2 Pilot Programs for finding the behavior of the runtime system (finding out

value for Iprac) . 26

4.2.1 Pilot program for homogeneous work-items 26

4.2.2 Pilot Program to find the number of heterogeneous work-items launched

at a time . 28

4.3 The theoretical execution time calculated based on the analytical model for the

algorithm . 28

4.3.1 Single-kernel, Homogeneous Group, Heterogeneous Items (S-M-T)

mode . 29

4.3.2 Single-kernel, Heterogeneous Group, Homogeneous Items (S-T-M)

mode . 29

4.3.3 Single-kernel, Homogeneous Group, Homogeneous Items (S-M-M)

mode . 30

4.4 Summary . 31

5 API Extension 32

5.1 Extracting maximum parallelism by leveraging on the knowledge of device

architecture . 32

5.1.1 Multiple-kernel, Homogeneous Group, Homogeneous Items (M-M-

M) mode . 32

CONTENTS vi

5.1.2 The theoretical execution time calculated based on the analytical model

for the algorithm . 34

5.1.3 Comparison of the Theoretical and Experimental execution times . . 35

5.2 API extension to support hybrid parallelism 37

5.2.1 OpenCL’s current kernel execution API call 37

5.2.2 Proposed kernel execution API . 38

5.3 Summary . 39

6 Conclusion and Future Work 40

Bibliography 41

List of Figures

1.1 Hardware Architecture of a GPU. 3

1.2 NDRange index space . 7

2.1 Strassen’s Matrix Multiplication Algorithm 12

3.1 S-M-T mode of execution . 17

3.2 S-T-M mode of execution . 19

3.3 S-M-M mode of execution when there is no limitation on the number of work-

items launched . 21

3.4 Work distribution in Ideal case . 22

3.5 S-M-M mode of execution with practically possible number of work-items

launched . 22

4.1 Pilot program for homogeneous work-items 27

4.2 Pilot program for heterogeneous work-items 27

5.1 M-M-M mode of execution on Kepler K20 33

5.2 Work distribution for M-M-M mode on Kepler K20 34

5.3 Theoretical results . 36

5.4 Practical results . 36

vii

List of Tables

4.1 Architecture Parameters . 25

4.2 Theoretical parameters for S-M-T mode’s Decompose step on Kepler K20 . . 29

4.3 Theoretical parameters for S-T-M mode’s Decompose step on Kepler K20 . . 30

4.4 Theoretical parameters for S-M-M mode’s Decompose step on Kepler K20 . 31

5.1 Theoretical parameters for M-M-M mode’s Decompose step on Kepler K20 . 35

viii

Chapter 1

Introduction

Matrix multiplication is an elementary operation in a large class of computational problems.

There are a number of algorithms for matrix-matrix multiplication that try to improve the run-

ning time from the naı́ve value of O(n3). Strassen’s matrix multiplication algorithm is one

such algorithm that uses the divide and conquer approach. In its basic form, it has three op-

erations. First, a number of recursive steps to decompose the input matrices, the second to

multiply intermediate matrices and a third operation again with a number of recursive steps to

recompose the product matrix.

Inherently the algorithm shows parallelism in all the three steps. The amount and type of par-

allelism that can be exploited vary based on the level of recursion. A significant improvement

in performance can be obtained by parallel execution of Strassen’s algorithm on multi-core or

many-core architectures. GPUs are the most common many-core devices in use today. Many-

core architectures have cores that are designed for multithread support unlike single-thread

cores in multi-core architectures. Numerically intensive algorithms optimized to harness the

processing power of GPUs and designed to exploit the parallelism available show significantly

better performance as compared to naı́ve implementations on CPUs. Optimizing code for

CPUs typically requires a greater effort and even with heavily optimized code, the perfor-

mance cannot match that of a GPU [19].

1

CHAPTER 1. INTRODUCTION 2

1.1 Execution environments for parallel programming on

GPUs

The highly parallel structure of modern GPUs makes them more effective than general-purpose

CPUs for algorithms where processing of large blocks of data can be done in parallel. It is be-

coming increasingly common to use a general purpose Graphics Processing Units (GPUs) for

such algorithms.

There are two main vendors in the GPU market, namely, NVIDIA and AMD. Their GPU cards

support parallel programming using parallel programming libraries such as CUDA (”Compute

Unified Device Architecture”) and OpenCL (Open Computing Language). CUDA is specifi-

cally for NVIDIA GPUs whilst OpenCL is designed to work across a multitude of architectures

including GPU, CPU and DSP (using vendor specific SDKs). These technologies allow speci-

fied functions (kernels) from a normal C program to run on the GPU’s Functional Units (FUs).

This makes C programs capable of taking advantage of a GPU’s ability to operate on large

matrices in parallel.

1.1.1 Data-parallel execution on modern GPUs

GPUs are generally suited to high-throughput type computations that exhibit data-parallelism

to exploit the wide vector width SIMD architecture of the GPU. The following sections de-

scribe the architecture, global scheduling, SIMD execution model and memory hierarchy in

GPUs and how these allow for data parallelism on the GPU.

GPU Architecture

In the CUDA environment, processing cores are located in a unified processor pool and grouped

into clusters called Streaming Multiprocessors (SMs). Each SM contains an instruction cache,

an instruction queue, a warp-scheduler, registers and FUs as shown in Figure. 1.1 [9].

AMD GPUs have a similar architecture where they have SIMD engines instead of SMs, pro-

cessing elements (PEs) instead of FUs, sequencers instead of warp schedulers, wavefronts

instead of warps etc [1]. Even though the layout of these elements is different for AMD;

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Hardware Architecture of a GPU.

the overall execution model is the same. In the rest of the paper, we have elected to use the

NVIDIA architecture and OpenCL terminology for explanation.

Global Scheduling

A parallel program executing on a GPU is called a kernel. To exploit the processing power of

the GPU, the kernel is spawned as several thousand parallel threads called work-items. Work-

items are grouped into predefined size blocks called work-groups. The global scheduler of the

GPU issues the work-groups to SMs to be executed. The global scheduler then launches one

work-group on a single SM. A work-group cannot be split across multiple SMs. The global

scheduler has to take into account hardware limitations such as the maximum number of work-

groups that can be accommodated by the device and the maximum number of work-items that

can be accommodated on a single SM.

Execution Model

The SMs in GPUs follow the Single Instruction Multiple Data (SIMD) model of execution.

A predefined number of threads or work-items form an SIMD unit and all the work-items in

CHAPTER 1. INTRODUCTION 4

the same unit are executed together on a single SM. The work-items are homogeneous in the

sense that they all execute the same instruction or set of instructions. A work-group can be

split into a number of such SIMD units (warps). A scheduler present in each SM called the

warp scheduler chooses one among the available warps to be executed.

Memory

NVIDIA GPUs typically have a three tier memory hierarchy. Global memory is in the form

of off chip DRAM modules and is shared across SMs. Within an SM, there are two kinds of

memory a register file and shared memory. The registers in the register file are divided among

all the work-items scheduled on an SM. The shared memory area facilitates communication

among the work-items in a work-group.

1.1.2 Data parallelism and task parallelism implementations in OpenCL

To code a parallel application in OpenCL, the programmer is allowed to choose between im-

plementations that exploit either data-parallelism or task-parallelism.

OpenCL Terminology

Parallelizable code to be executed on GPU devices is called a kernel. A kernel can be called

by a multitude of data-parallel execution instances called work-items.

Data parallelism and task parallelism

Kernels are typically designed to be either data parallel or task parallel. In OpenCL termi-

nology, the difference between the two is whether the same kernel or different kernels are

executed in parallel.

A data parallel programming model defines a computation as a sequence of instructions ap-

plied to multiple data elements. Each work-item executes the same set of instructions but on

different data elements. In the strictly data parallel model, there is a one-to-one mapping be-

tween work-items and data elements during kernel execution.

CHAPTER 1. INTRODUCTION 5

In the task-parallel mode, we can only launch a kernel that spawns a single work-group with

a single work-item. For maximum parallelism, multiple such task-parallel kernels should be

launched for execution on the device at the same time. However, at present, though most

GPUs contain multiple FUs called Stream Processors (SPs) per SM, hardware such as instruc-

tion fetch and program counters are shared across them. So a single SM can execute only

a work-group at a time. In this case each work-group contains a single work-item. For this

reason, GPUs are inefficient in running different tasks in parallel. The task parallel mode is

emulated by a relaxed data parallel model within a single kernel where different work-items

are allowed to choose different execution paths. Since this is achieved by branching on the

basis of the work-item id, it is essentially a serialized execution and hence inefficient.

1.2 Related Work

The paper by Cohen et. al. [4] gives time-formula for the overhead of recursion for the

Strassens algorithm. It describes a memory access pattern implementation for the matrices that

reduces the memory access time. In the paper by West et. al. [20], the Mentat Programming

Language (MPL) has been used to integrate task and data-parallelism. It shows that the invo-

cation of both task-and-data-parallel elements at the same time would be beneficial. The paper

by Bikshandi et. al. [3] implements hierarchically tiled arrays in Object Oriented programming

languages for the development of high-performance parallel code. In that work a significant

amount of data-parallelism and only a limited amount of task-parallelism is achieved. The pa-

per by Subhlok et. al. [17] discusses about the task and data parallelism on a multi-computer

and it discusses ideas on how to expose these tradeoffs to the compiler. Another paper by

them [18] tries to achieve nested task and data-parallelism in High Performance FORTRAN

(HPF). It also proposes extension implementations using directives which has later been ap-

proved in HPF 2.0.

A paper by BenHassen et. al. [2] proposes a task-and-data-parallel programming language

CHAPTER 1. INTRODUCTION 6

called Orca that uses a concept of shared objects which are stored in one or multiple of the pro-

cessors. Task-parallelism is achieved using remote process forking and having them to com-

municate through these shared objects. Data-parallelism is achieved by making partitioned

objects work in parallel. The work by Dhagat et. al. [5] achieves as much as 75% of efficiency

with the combined task-and-data-parallel execution as compared to the pure data-parallel ex-

ecution in UC language - a parallel programming extension to the C language. Combined

task-and-data parallelism is achieved by asynchronous send and receive calls. The program-

mer needs to be aware of deadlocks that might occur in this implementation.

Kambadur et. al. [10] introduce PFunc a library for task-parallelism to efficiently par-

allelize HPC applications using SPMD model of parallel programming. A paper by Chao-

Tung et. al. [21] achieves hybrid parallel programming on Multi-GPU clusters by using a

combination of Message Passing Interface (MPI) and CUDA where task parallel work is dis-

tributed among different GPU cards and within each GPU card fine grained data-parallelism

is achieved. Since they share the work among them, the GPU utilization is low. Vejarano

et. al. [19] derive an analytical cost-model for mapping an application to different computing

resources in CPU-GPU based co-design environment. And a paper by Elangovan et. al. [6]

facilitates ease of programming in OpenCL using OmpSs - a language extending the OpenMP

language inspired from the StarSs programming model and Nanos run-time system but their

focus is only on data-parallel programming execution.

1.3 Need for extending the OpenCL API to support multi-

level parallelism

The work-items and work-groups can be easily depicted using an index space called as an

’NDRange’ (N-Dimensional Range). This index space can be of 1, 2 or 3 dimensions. The

execution instance of a kernel in an NDRange space is called an NDRangeKernel.

All the work-items in an NDRangeKernel are grouped into fixed size work-groups and exe-

cute the same set of instructions. These work-items can be indexed using three indices namely

CHAPTER 1. INTRODUCTION 7

Work-group(0,0) Work-group(1,0)

Work-group(0,1) Work-group(1,1)

Work-group(0,2) Work-group(1,2)

Global-work-item-id = (5,5)
Local-work-item-id = (1,2)

 0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
4
5
6
7
8
9
10
11

Offset = (3,2)

Figure 1.2: NDRange index space

work-group-id, global-work-item-id and local-work-item-id as shown in Figure. 1.2. They

operate on different data based on these indices so that they can process a large number of

data-elements at the same time. All these work-items are orchestrated as warps or wavefronts

and are scheduled to run on an SM concurrently [12] [15]. This is essentially a data parallel

mode of execution.

To achieve task parallelism, the work-items need to be heterogeneous. For this, there needs to

be a branch in the NDRangeKernel code, based on the work-item-id inside a warp. But in this

case, the work-items are essentially serialized due to the inherent SIMD nature of GPUs. A

smart programmer can put these task-parallel work-items in different warps to achieve a par-

ticular amount of parallelism. But experiments done in section 3.3.2 suggest that this is also

limited by the number of warp-schedulers available. Therefore achieving task-parallelism in

an NDRangeKernel is a tedious job.

Due to the SIMD execution model and the number of warp-schedulers being far less than

the Load-Store units, GPUs more easily lend themselves to achieve data-parallelism. How-

ever there needs to be a support in OpenCL to facilitate execution of hybrid kernels that are

CHAPTER 1. INTRODUCTION 8

both task-and-data-parallel. Only two levels of hierarchical grouping of the work-items are

supported by NDRangeKernel for now. Whereas, in principle, it should support any number

of levels or dimensions of hierarchical grouping. In this work, we introduce a third level of

hierarchical grouping at the kernel level, that facilitates hybrid parallel execution of task-and-

data-parallel modes at the same time.

1.4 Organization of the thesis

On devices like GPUs, Strassen’s recursive algorithm is rather inefficient if not impossible.

There are iterative implementations of Strassen’s algorithm that are proven to be more efficient

than the recursive one [4] . Efficiently implementing the iterative version of this algorithm in-

volves making a choice between the type and the amount of parallelism that can be exploited

in each step of the algorithm. In order to make appropriate choices, the programmer needs to

be aware of details of the underlying architecture and run time system as well as the limitations

of the programming language used to program the device.

OpenCL is a multi-vendor open standard programming language for general-purpose, cross-

platform parallel programming of heterogeneous systems that include CPUs, GPUs and other

processors [16]. We propose API extensions in OpenCL which will automatically make im-

plementation mode choices and make it easy for the programmer to specify the parallelism.

This thesis is divided into following chapters. Chapter 2 is about the formulation and types of

implementation of the Strassen’s algorithm. Chapter 3 explains the classification of different

parallel modes of execution. Chapter 4 derives a theoretical cost model for calculating the ex-

ecution time based on the device parameters and the execution mode. Chapter 5 describes how

knowledge of underlying device architecture can be leveraged to extract maximum parallelism

and presents an API extension to achieve the same. Followed by the conclusion in Chapter 6.

Chapter 2

Strassen’s Matrix Multiplication

Algorithm

Strassen’s matrix multiplication algorithm is one of the widely used algorithms used in prac-

tice which has broken the execution-time barrier of O(n3) for the first time. Most of the

modern and more efficient algorithms for matrix multiplication are also based on the principle

of Strassen’s algorithm. The variable amount of parallelism that can be exploited in each stage

of the algorithm makes it the right candidate for exploring hybrid-parallelism.

2.1 Implementation of Strassen’s algorithm on GPUs - re-

cursive to iterative for maximum parallelization

There are two implementations of Strassen’s algorithm used in practice. The recursive algo-

rithm appeals to programmers because it encapsulates neatly the application of the algorithm

in reducing data sets. However, to implement recursion on machines there is a practical limi-

tation in terms of how much memory of the process can be used in stack. This limitation can

sometimes be prohibitive and does not allow the algorithm to scale beyond certain data sizes.

This is where iterative algorithms gain. They are scalable and render themselves easily to any

modes of task, data or hybrid parallelism. We explore both of them to find the one which is

9

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION ALGORITHM 10

better suited to be implemented on parallel architectures.

2.1.1 Recursive Strassen’s Algorithm

In the normal matrix-matrix multiplication, the resultant matrix is calculated using eqn. 2.1:

r s

t u

 =

a b

c d

e g

f h

 (2.1)

This involves 8 multiplications and 4 addition operations as in eqn. 2.2:

r = ae + bf

s = ag + bh

t = ce + df

u = cg + dh

(2.2)

For input matrices of bigger sizes, each of the elements (a-h) above can be a matrix block and

to calculate the overall product these elements can be further subdivided and solved in the same

manner. For a matrix of size N the multiplication involves O(N3) multiplication operations.

Strassen’s algorithm asymptotically reduces the running time to O(N2.807) by doing only 7

multiplication operations instead of 8. The steps involved in Recursive Strassen’s Algorithm

can be explained with the equations that follow [8].

Strassen’s algorithm consists of three steps.

i) Decompose step

In this step, the input matrix of size N×N is subdivided into 4 sub-matrices of size N
2
× N

2
. As

given by the Strassen’s formulae 7 basic operations (add, sub & copy) are done between these

four sub-matrices to produce 7 intermediate matrices. This is done in recursion until we obtain

intermediate blocks of size n × n. The threshold-block-size n is chosen by the programmer

based on some of the system parameters like cache sizes, maximum allocatable global memory

size, etc. It also specifies the base condition for stopping the recursion.

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION ALGORITHM 11

A1 = a

A2 = a+ b

A3 = c+ d

A4 = d

A5 = a+ d

A6 = b− d

A7 = a− c

(2.3)

B1 = g − h

B2 = h

B3 = e

B4 = f − e

B5 = e+ h

B6 = f + h

B7 = e+ g

(2.4)

ii) Multiplication step

The intermediate matrices obtained in equations 2.3 and 2.4 are multiplied using normal matrix

multiplication to obtain intermediate product matrices P1, P2, ..., P7 given by eqn. 2.5 .

P1 = A1.B1

P2 = A2.B2

P3 = A3.B3

P4 = A4.B4

P5 = A5.B5

P6 = A6.B6

P7 = A7.B7

(2.5)

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION ALGORITHM 12

iii) Recompose step

This step involves merging the intermediate product matrices P1, P2, ..., P7 to calculate the

final resultant matrix P.

r = P5 + P4 − P2 + P6

s = P1 + P2

t = P3 + P4

u = P5 + P1 − P3 − P7

(2.6)

The steps in equations 2.3, 2.4 and 2.6 should be recursively done. In each recursion, the

problem size differs from the previous recursion.

Matrix A (N x N)

Matrix B (N x N) Matrix P (N x N)

A_ret (array of matrices of size n x n)

B_ret (array of matrices of size n x n)

P_ret (n x n) = multiplication of A_ret & B_ret

(i)Decompose Step

(i)Decompose Step

(ii)Multiply Step

(iii)Merge Step

i
t
e
r

… …
…

… …
…

… …
…

7 iter-1 x n x n

n – Threshold block
 size

N – Row size of the
input matrix

Figure 2.1: Strassen’s Matrix Multiplication Algorithm

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION ALGORITHM 13

2.1.2 Iterative Strassen’s Algorithm

Strassen’s algorithm is originally a recursive one. There is a certain amount of overhead on

running time imposed by the recursion [J. Cohen 1976]. Converting it into an iterative one will

help in performance by improving the memory access patterns. Especially for GPUs recursion

overhead and memory access time are crucial.

The iterative algorithm starts with an input matrix A of size N × N to decompose. In the

first iteration, this matrix is decomposed into 7 matrices of size N
2
×N

2
namely A1, A2, ..., A7. In

the next iteration, each of these matrices is further subdivided into 49 matrices of size N
4
× N

4

namely A11, A12, ..., A17 , A21, A22, ..., A27 , ..., A71, A72, ..., A77. This continues till the size

n×n where we have intermediate matrices A11, A12, ..., A17 , A21, A22, ..., A27 , ..., Ax1, Ax2, ...

, Ax7. (x = 7Iter−1 , Iter is the number of iterations needed to reach n×n) Similar calculations

are done for the other input matrix B in parallel to obtain B11, B12, ..., B17 , B21, B22, ..., B27

, ..., Bx1, Bx2, ..., Bx7 respectively.

In the multiplication step these 7Iter intermediate matrices of A are multiplied with the

7Iter intermediate matrices of B to get 7Iter intermediate product matrices P11, P12, ..., P17

, P21, P22, ..., P27 , ..., Px1, Px2, ..., Px7. Finally these intermediate product matrices are merged

in the recompose step to give the final resultant product P.

In first iteration of the recompose step, P11, P12 , ..., P17 , P21, P22, ..., P27 , ..., Px1, Px2, ..., Px7

are merged to give P11, P12, ..., P17 , P21, P22, ..., P27 , ..., Px
7
1, Px

7
2, ..., Px

7
7. The formulae for

recomposing are given by equation 2.6 [7]. This algorithm is pictorially explained in Figure.

2.1.

2.2 Summary

This chapter explained the Strassen’s algorithm, the various steps involved and the different

variants in the implementation of the algorithm. It also gives an insight of how much is the

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION ALGORITHM 14

type and amount of parallelism available in each step. The following chapters will explain the

different modes of execution of iterative implementation of the algorithm and techniques to

exploit maximum parallelism.

Chapter 3

Classification of Parallel Modes of

Execution

OpenCL offers two modes of parallelism namely, task parallelism and data parallelism [11].

The programmer must choose the appropriate mode of parallelism for the application. In chap-

ter 2 both modes of parallelism for Strassen’s algorithm have been explored as the algorithm

is task-parallel in nature and GPUs inherently support data-parallelism. Another mode of

parallelism that allows some amount of hybrid parallelism to be achieved is the relaxed data-

parallel mode where, task-parallel work-items take different execution paths. The following

subsections describe these various parallel modes of execution and performance results of the

implementations on NVIDIA Kepler K20 GPU. Also they describe the theoretical model for

optimal performance in each mode and compare the practical results with the results expected

using the theoretical model.

15

CHAPTER 3. CLASSIFICATION OF PARALLEL MODES OF EXECUTION 16

3.1 Classification of parallel implementation modes using The

K-G-I model

This thesis uses a 3-tuple Kernels, work-Groups, work-Items (K-G-I) for describing the paral-

lel implementation modes. The classification is based on how many kernels can be executed

at a time. It can be S = single kernel (as described in section 3) or M = multiple kernels (as

described in section 4). Work-groups and work-items can be hoMogeneous (M) or heTero-

geneous (T) depending on whether they take the same execution path or different execution

paths.

The programmer can make use of the relaxed data-parallel model to achieve some amount of

task-parallelism using the NDRangeKernel itself. The programming mode choice needs to be

made from one among the following modes. The classification is based on how many kernels

can be executed at a time (single or multiple) and how the kernel code has been written. The

kernel code can be written in such a way that the work-groups take the same (homogeneous

group) or different execution paths (heterogeneous groups) and the work-items inside a work-

group can take same (homogeneous items) or different (heterogeneous items) execution paths.

All these programming mode choices are explained for the second iteration in the decompose

step of the Strassen’s algorithm for the multiplication of 1024 x 1024 matrices in which we

decompose 49 blocks of size 256 x 256 to produce 343 blocks of size 128 x 128. In the follow-

ing diagrams, work-items or work-groups are colored based on the operation they do. If two

of the boxes are of same color and then it means they follow the same execution path. If an

output matrix is colored, then only one of the work-groups or work-items with the same color

have created it.

3.1.1 Single-kernel, Homogeneous Groups, Heterogeneous Items (S-M-

T) mode

This relaxed data parallel mode of execution has heterogeneous work-items inside a work-

group and all the work-groups execute same set of instructions.

CHAPTER 3. CLASSIFICATION OF PARALLEL MODES OF EXECUTION 17

1024

512

512

256
256

WG0 WG1 WG2 WG3 WG4 WG5 WG6 WG48

256
256

….....

WI0WI1WI2 WI5WI3WI4 WI6

128
128

….....

a

a+b

c+d

d

a+d

b-d

a-c

Work-items1024

Figure 3.1: S-M-T mode of execution

Each work-group contains 7 work-items each doing one of the operations in eqn. 2.3 or 2.4.

The number of work-groups increases with the iteration number. In the example shown in

Figure. 3.1, in the last iteration of the decompose step, each work-item does 128 x 128 calcu-

lations. Work-items inside a work-group take the branch corresponding to their work-item-id.

This is explained by the Pseudocode 28. So inside an SM, each work-item is mapped to an

FU/SP. To achieve maximum parallelism in this mode, the active work-items have been kept

in different warps along with dummy work-items. But still the parallelism is limited by the

number of Warp-schedulers available.

3.1.2 Single-kernel, Heterogeneous Group, Homogeneous Items (S-T-M)

mode

This relaxed data parallel mode of execution has homogeneous work-items in a work-group.

And the work-groups are heterogeneous. There are always 7 heterogeneous work-groups each

CHAPTER 3. CLASSIFICATION OF PARALLEL MODES OF EXECUTION 18

Algorithm 1 Kernel code for S-M-T mode
Input:matrix A of size 2N × 2N
Output: Array of matrices Aret of size 7×N ×N
switch (itemid)

case (0) :
for {i = 0 to N }

for {i = 0 to N }
Aretgroup id,0[i×N + j] = Agroup id[i× 2N + j] //a

endfor
endfor

endcase
case (1) :

for {i = 0 to N }
for {i = 0 to N }

Aretgroup id,1[i × N + j] = Agroup id[i × 2N + j] + Agroup id[i × 2N + j + N]
//a + b

endfor
endfor

endcase
.
.
.

case (6) :
for {i = 0 to N }

for {i = 0 to N }
Aretgroup id,6[i×N+j] = Agroup id[i×2N+j] - Agroup id[2N×N+ i×2N+j]

// a - c
endfor

endfor
endcase

end switch

doing a single operation on the given data as shown in the Pseudocode 28. Each SM has its

own instruction cache and program counters, so different SMs can follow totally different ex-

ecution paths. The number of work-items increases with the iteration number. In this case,

the number of work-items that can be scheduled at a time per SM becomes a limitation. After

3 iterations the number of work-items per work-group is increased to 2401 which cannot be

accommodated on an SM. In the example step shown in Figure. 3.2, there are 7 work-groups;

each work-group contains 49 work-items. Each work-item does 128 x 128 calculations.

CHAPTER 3. CLASSIFICATION OF PARALLEL MODES OF EXECUTION 19

1024

1024

512

512

256
256

256
256

…..................

WG0
WI0

WG1
WI0

WG2
WI0

WG5
WI0

WG3
WI0

WG4
WI0

WG6
WI0

WG0
WI49

WG1
WI49

WG2
WI49

WG5
WI49

WG3
WI49

WG4
WI49

WG6
WI49128

128

0 1 2 3 4 5 6

a

a+b

c+d

d

a+d

b-d

a-c

…..................

WG0 W
G1

W
G2

W
G3

W
G4

W
G5

W
G6

Work-groups

Figure 3.2: S-T-M mode of execution

3.1.3 Single-kernel, Homogeneous Groups, Homogeneous Items (S-M-

M) mode

This is a pure data parallel mode and all the work-items have the same instructions. But based

on their work-item id, the data they access differs. This mode is expected to perform better

than the other two modes due to the inherently data-parallel nature of the GPUs. But this mode

of execution does not exploit any task-parallelism. In the example step implemented in this

mode, ideally one needs to launch 49 work-groups of 128x128 work-items each. These work-

items may each work on 4 input data-elements and do 7 operations to calculate the 7 output

data-elements as shown in the Figure. 3.3. But the limitation on the number of work-items

CHAPTER 3. CLASSIFICATION OF PARALLEL MODES OF EXECUTION 20

Algorithm 2 Kernel code for S-T-M mode
Input : matrix A of size 2N × 2N
Output : Array of matrices Aret of size 7×N ×N
switch (groupid)

case (0) :
for {i = 0 to N }

for {i = 0 to N }
Aretitem id,0[i×N + j] = Aitem id[i× 2N + j] //a

endfor
endfor

endcase
case (1) :

for {i = 0 to N }
for {i = 0 to N }

Aretitem id,1[i×N + j] = Aitem id[i×2N + j] + Aitem id[i×2N + j+N] //a + b
endfor

endfor
endcase

.

.

.
case (6) :

for {i = 0 to N }
for {i = 0 to N }

Aretitem id,6[i×N + j] = Aitem id[i× 2N + j] - Aitem id[2N ×N + i× 2N + j]
// a - c

endfor
endfor

endcase
end switch

that can be launched per SM allows one to only to launch 32 x 32 work-items. In this example

step shown, there are 49 work-groups and each having 32 × 32 work-items. Each work-item

does 7 operations on 4 x 4 data elements as in Figure. 3.5.

These steps are explained in Pseudocode 13.

CHAPTER 3. CLASSIFICATION OF PARALLEL MODES OF EXECUTION 21

1024

1024

512

512

WG48
(128x128)WG0

(128x128)
WG6WG1

(128x128)
WG2

(128x128)
WG5

(128x128)
WG6

(128x128)
WG4

(128x128)
WG3

(128x128)
…..........

128
128

256 256

256256

a

a+b

c+d

d

a+d

b-d

a-c

Single Work-item

Figure 3.3: S-M-M mode of execution when there is no limitation on the number of work-items
launched

Algorithm 3 Kernel code for S-M-M mode
Input : matrix A of size 2N × 2N
Output : Array of matrices Aret of size 7×N ×N
workAreaSize = N×N

MAX WORK ITEM SIZE
; offset = item id× workAreaSize

for {i = 0 to workAreaSize }
Aretgroup id,0[offset+ i] = Agroup id[4× (offset+ i)] //a

Aretgroup id,1[offset+ i] = Agroup id[4× (offset+ i)] + Agroup id[4× (offset+
i) +N] //a + b

.

.

.
Aretgroup id,6[offset + i] = Agroup id[4× (offset + i)] - Agroup id[4× (offset +

i) + 2N ×N] // a - c

CHAPTER 3. CLASSIFICATION OF PARALLEL MODES OF EXECUTION 22

Ideal

256

256

Ideal

Work-Group0

128

128

Practical

Practical

Figure 3.4: Work distribution in Ideal case

256 256
256256

WG0
(32x32)

WG1
(32x32)

WG2
(32x32)

WG3
(32x32)

WG4
(32x32)

WG5
(32x32)

WG6
(32x32)

WG48
(32x32)…..........

1024

1024

512

512

a

a+b

c+d

d

a+d

b-d

a-c

Single Work-item

Figure 3.5: S-M-M mode of execution with practically possible number of work-items
launched

CHAPTER 3. CLASSIFICATION OF PARALLEL MODES OF EXECUTION 23

3.2 Summary

This chapter introduced a classification of parallel execution modes based on the 3-tuple K-G-I

model and explained the difference between each of them and the limitations of each imposed

by the hardware. The following chapters will present the formulation for the execution time

based on these modes and hardware parameters. They try to find the hardware parameters using

pilot programs and then introduce another mode of hybrid execution that is only supported on

the recent hardware.

Chapter 4

Theoretical Cost Model

A cost model has been devised to obtain theoretical calculations for each operation in the

iterative algorithm by exploring the underlying architectural details of the NVIDIA Fermi and

Kepler K20 GPUs. The device properties of both these GPU architectures are given in table

4.1. Pilot programs have also been devised and executed on both these GPUs to arrive at

the practical numbers to compare with the theoretical calculations for each operation in the

algorithm and the results are discussed in this chapter.

24

CHAPTER 4. THEORETICAL COST MODEL 25

Table 4.1: Architecture Parameters

Parameter Kepler K20 (Tesla K20c) Fermi (Tesla c2070)

Global Memory (MB) 4799 5375

Max. Allocatable Memory (MB) 1199 1343

Local Memory (kB) 48 48

Max. Clock (MHz) 705 1147

Warp Size 32 32

Max. No. of work-items per
work-group

1024 1024

Max. work-item sizes in each di-
mension

(1024, 1024, 64) (1024, 1024, 64)

No. of SMXs/SMs 13 14

No. of SPs per SMX/SM 192 32

4.1 Cost model for different modes in K-G-I classification

The following cost model formulates the time taken for execution of the G work-groups having

I work-items in each of them is given by eqn. 4.1.

T = Lg ×
∑

Gsteps + Li ×
∑

(Gsteps × Isteps) +B ×
∑

(S × C ×Gsteps × Isteps) (4.1)

Where, Gsteps is the number of steps taken to G number of work-groups. It is given by eqn.

4.2.

Gsteps =

⌈
G

Gprac

⌉
(4.2)

And, Isteps is the number of steps taken to run all I work-items in a work-group. It is given by

eqn. 4.3.

Isteps =

⌈
I

Iprac

⌉
(4.3)

The parameters in these equations are of two types.

i) Parameters that are dependent on the programming mode

CHAPTER 4. THEORETICAL COST MODEL 26

Gprac is the maximum number of work-groups that can be scheduled at a time on the device

(≤ number of SMs),

Iprac is the maximum number of work-items that can be scheduled at a time on the device (≤

maximum work-group size supported by the device).

S is the size of the data elements need to be processed, C is the number of calculations done

by a work-item.

ii) Parameters due to the programmatic limitation and are dependent on the architecture

Glaunch is the maximum number of work-groups that be launched by a kernel execution call,

Ilaunch is the maximum number of work-items that can be launched by a kernel execution call,

Lg is the Latency for launching a work-group on an SM,

Li is the Latency for launching set of work-items that are executed in parallel,

B is the Time taken for doing a single computation.

4.2 Pilot Programs for finding the behavior of the runtime

system (finding out value for Iprac)

Even though most of the parameters can be substituted from the parameters from the white-

paper, the practical parameter Iprac are not explicitly stated and varies based on a number of

other parameters as well as the device’s compute capability. So it has to be properly found

out by running pilot programs. The value of Iprac is also dependent on how the work-items

take branches. For homogeneous work-items and for heterogeneous work-items, separate pilot

programs have been run to find out the system behavior in scheduling.

4.2.1 Pilot program for homogeneous work-items

A pilot program has been run for just copying the data to the device memory; add it to itself and

to write the result to another array on memory (no local/shared memory is used). Each work-

item works on 128 data-elements. All the work-items are homogeneous. Various readings are

CHAPTER 4. THEORETICAL COST MODEL 27

2 4 8 16 WARP_SIZE 64 128 192 256 512
0

50
100
150
200
250
300
350
400
450
500

Pilot program for finding out Iprac for homogeneous work-items

Fermi K20

Number of work-items

T
im

e
(u

s)

Figure 4.1: Pilot program for homogeneous work-items

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132
0

100

200

300

400

500

600

Pilot program for finding Iprac value

Fermi K20

No. of warps

T
im

e
(u

s)

Figure 4.2: Pilot program for heterogeneous work-items

CHAPTER 4. THEORETICAL COST MODEL 28

taken by increasing the number of work-items by a factor of two and the kernel execution time

is measured. From these time values, one can derive what is the actual concurrency level inside

an SM.

From the graph results in Figure. 4.1 it can be seen that the number of work-items running

in parallel are limited to 128 in Fermi and 192 in Kepler K20 after which the work-items are

serialized.

4.2.2 Pilot Program to find the number of heterogeneous work-items

launched at a time

Another pilot program containing all heterogeneous work-items was also run and the time

taken for execution was observed by increasing the number of warps.

One can see that there is no increase in execution time when increasing the warp-size till 8

warps in Fermi and till 16 warps in Kepler K20 after which there is a step increase in execution

time is for every 2 warps in Fermi and every 4 warps in Kepler K20. The number of warp

schedulers available in Fermi and Kepler K20 are 2 and 4 respectively. Fig. 4.2 suggests that

there need to be at least 8 warps in Fermi and 16 warps in Kepler K20 to hide the pipeline

latency. So the Iprac value can be approximated to 8 for Fermi and 16 for Kepler K20.

Experiments have also been conducted to find out the parameters namely, work-group launch

latency (Lg), launch latency for work-items (Li) and time taken for a single computation (B)

for Kepler K20. These values are found out to be 13, 0 and 1 respectively.

4.3 The theoretical execution time calculated based on the

analytical model for the algorithm

Presented in this subsection is the execution time calculations for the decompose step of the

algorithm based on the formula for running time given in eqn. 4.1

CHAPTER 4. THEORETICAL COST MODEL 29

The theoretical execution time calculations done for the Kepler K20 are presented in three

modes of executions namely S-M-T, S-T-M and S-M-M.

4.3.1 Single-kernel, Homogeneous Group, Heterogeneous Items (S-M-T)

mode

The S-M-T mode has an increasing number of work-groups and a constant number of work-

items. Table 4.2 gives sample calculation of the parameters for finding out the theoretical T

value for the decompose step using eqn. 4.4.

Number of iterations = 3, C = 1, Gprac = 13 (= Number of SMXs), Iprac = 16 (refer to section

3.3.2)

Table 4.2: Theoretical parameters for S-M-T mode’s Decompose step on Kepler K20

G (= 7i−1) I(= 7) Gsteps Isteps
Iter. no. S

GA GB IA IB GstepsA GstepsB IstepsA IstepsB

1 512 ×
512

1 1 7 7 1 1 1 1

1 256 ×
256

7 7 7 7 1 1 1 1

1 128 ×
128

49 49 7 7 4 4 1 1

T =12× Lg + 12× Li + (512× 512× (1× 1 + 1× 1)+

256× 256× (1× 1 + 1× 1) + 128× 128× (4× 1 + 4× 1))×B.
(4.4)

4.3.2 Single-kernel, Heterogeneous Group, Homogeneous Items (S-T-M)

mode

The S-T-M mode has an increasing number of work-items and a constant number of work-

groups. Table 4.3 gives sample calculation of the parameters for finding out the theoretical T

value for the decompose step using eqn. 4.5.

CHAPTER 4. THEORETICAL COST MODEL 30

Number of iterations = 3, C = 1, Gprac = 13 (= Number of SMXs), Iprac = 192 (refer to

section 3.3.2)

Table 4.3: Theoretical parameters for S-T-M mode’s Decompose step on Kepler K20

G (= 7) I(= 7i−1) Gsteps Isteps
Iter. no. S

GA GB IA IB GstepsA GstepsB IstepsA IstepsB

1 512 ×
512

7 7 1 1 1 1 1 1

1 256 ×
256

7 7 7 7 1 1 1 1

1 128 ×
128

7 7 49 49 4 4 1 1

T =6× Lg + 6× Li + (512× 512× (1× 1 + 1× 1)

+ 256× 256× (1× 1 + 1× 1) + 128× 128× (1× 1 + 1× 1))×B.
(4.5)

4.3.3 Single-kernel, Homogeneous Group, Homogeneous Items (S-M-M)

mode

The S-M-M mode has an increasing number of work-groups and a variable number of work-

items. Table 4.4 gives sample calculation of the parameters for finding out the theoretical T

value for the decompose step using eqn. 4.6.

Number of iterations = 3, C = 7, Gprac = 13 (= Number of SMXs), Iprac ≤ 192 (refer to

section 3.3.2), Isteps =
⌈

Ilaunch

Iprac

⌉
, S(= I

Ilaunch
).

T =12× Lg + 72× Li + (256× (1× 6 + 1× 6)+

64× (1× 6 + 1× 6) + 16× (4× 6 + 4× 6))× 7(ops)×B.
(4.6)

CHAPTER 4. THEORETICAL COST MODEL 31

Table 4.4: Theoretical parameters for S-M-M mode’s Decompose step on Kepler K20

Iter.
No.

GA GB Glau

nch

IA IB Ilau
nch

Gste

psA

Gste

psB

Iste
psA

Iste
psB

S

1 1 1 1 512×
512

512×
512

32 ×
32

1 1 6 6 256

2 7 7 7 256×
256

256×
256

32 ×
32

1 1 6 6 64

3 49 49 49 128×
128

128×
128

32 ×
32

4 4 6 6 16

4.4 Summary

This chapter presented a theoretical cost model for calculating the runtime for each of the

modes in K-G-I model. It has also tabularized the various parameters in the execution time

formula for each iteration in the decompose step of the algorithm as executed on the Kepler

K20 machine. The upcoming chapter gives the techniques to exploit maximum parallelism

based on the knowledge of the device architecture and the runtime system. It also presents

how to ease the parallelism specification in the program using an API extension.

Chapter 5

API Extension

5.1 Extracting maximum parallelism by leveraging on the

knowledge of device architecture

Changing trends in modern GPU architectures expose further opportunities for parallelism.

In this section, experiments have been done to exploit the capability of NVIDIA’s new Kepler

K20 to execute multiple concurrent kernels. This feature allows one to move from the contrived

task parallelism mode (in reality, a relaxed data-parallel mode) to actual task parallelism where

multiple kernels can be launched concurrently.

5.1.1 Multiple-kernel, Homogeneous Group, Homogeneous Items (M-

M-M) mode

This mode of execution is exclusively supported only by the newest NVIDIA devices with

compute capability of 3.5 and above. These devices allow multiple kernels to execute at the

same time on the device.

In this execution mode, each of the seven elementary operations in the decompose operation

is specified as a separate kernel and these kernels have pure data-parallel elements; they all

follow the same execution path. These are all light-weight kernels having work-items that do a

single operation. In the example above, there are 7 kernels, each performing single operations

32

CHAPTER 5. API EXTENSION 33

(add, multiply or copy). In each of these kernels, there are 49 work-groups. Each work-group

has 32 × 32 work-items. Each work-item does a single operation on 4 × 4 data as shown in

Figure.5.1 and Figure.5.2.

In the current state-of-the-art Kepler K20 GPU from NVIDIA, this mode of execution can

1024

1024

512

512

256
256

256

256

WG48
(32x32)

WG0
(32x32)

WG1
(32x32)

WG2
(32x32)

WG5
(32x32)

WG6
(32x32)

WG4
(32x32)

WG3
(32x32)

WG48
(64x64)

WG0
(32x32)

WG1
(32x32)

WG2
(32x32)

WG5
(32x32)

WG6
(32x32)

WG4
(32x32)

WG3
(32x32)

WG48
(32x32)

WG0
(64x32)

WG1
(64x64)

WG2
(32x32)

WG5
(32x32)

WG6
(32x32)

WG4
(32x32)

WG3
(64x64)

WG48
(32x32)WG0

(32x32)
WG1
(32x32)

WG2
(32x32)

WG5
(32x32)

WG6
(32x32)

WG4
(32x32)

WG3
(32x32)

WG48
(32x32)

WG0
(32x32)

WG1
(32x32)

WG2
(32x32)

WG5
(32x32)

WG6
(32x32)

WG4
(32x32)

WG3
(32x32)

WG48
(32x32)WG0

(32x32)
WG1
(32x32)

WG2
(32x32)

WG5
(32x32)

WG6
(32x32)

WG4
(32x32)

WG3
(32x32)

WG48
(32x32)

WG0
(32x32)

WG1
(32x32)

WG2
(32x32)

W64G5
(32x32)

WG6
(32x32)

WG4
(32x32)

WG3
(32x32) …...............

kernel0

kernel1

kernel2

.

.

.

.

Figure 5.1: M-M-M mode of execution on Kepler K20

be supported by utilizing the HyperQ technology. HyperQ is a feature that enables multiple

CPU cores to simultaneously utilize multiple CUDA cores on a single Kepler GPU. Kepler

has 32 hardware queues from which the GPU can simultaneously take jobs and execute. It has

13 SMXs (SMX is the next generation SM that supports a number of new features including

multiple kernel executions at the same time), so it can simultaneously execute 13 different

jobs [14]. This cannot be directly implemented using the existing OpenCL APIs. In this work

CHAPTER 5. API EXTENSION 34

Work-Group0

256

256

Work-Group0
Work-Group0
Work-Group0
Work-Group0
Work-Group0
Work-Group0

Work-item0

Work-item1

Work-item2

128

128

Figure 5.2: Work distribution for M-M-M mode on Kepler K20

this has been achieved by creating multiple command queues (for a single device), each of

which was enqueued with a different kernel. These kernel executions overlap. But there needs

to be a synchronization mechanism in every iteration to ensure correctness. Since OpenCL’s

native execution modes are i. Task Parallel and ii. Data-parallel, this hybrid mode of execution

was not explicitly supported by the OpenCL API.

5.1.2 The theoretical execution time calculated based on the analytical

model for the algorithm

For the M-M-M programming mode, the number of work-groups that are run in parallel are

7 times higher than the S-M-M model. In this model the kernels are made as light-weight

kernels that does a single operation on the input data. The theoretical parameters for finding

out the execution time are tabulated in table 5.1 and the theoretical execution time is given by

eqn. 5.1 Number of iterations = 3, C = 1, Gprac = 13 (= Number of SMXs), Iprac ≤ 192 (refer

to section 3.3.2) , Isteps =
⌈

Ilaunch

Iprac

⌉
, S = I

Ilaunch

CHAPTER 5. API EXTENSION 35

Table 5.1: Theoretical parameters for M-M-M mode’s Decompose step on Kepler K20

Iter.
No.

GA GB Glau

nch

IA IB Ilau
nch

Gste

psA

Gste

psB

Iste
psA

Iste
psB

S

1 1× 7 1× 7 1× 7 512×
512

512×
512

32 ×
32

1 1 6 6 256

2 7× 7 7× 7 7× 7 256×
256

256×
256

32 ×
32

4 4 6 6 64

3 49 ×
7

49 ×
7

49 ×
7

128×
128

128×
128

32 ×
32

27 27 6 6 16

T =64× Lg + 384× Li + (256× (1× 6 + 1× 6)+

64× (4× 6 + 4× 6) + 16× (27× 6 + 27× 6))×B.
(5.1)

5.1.3 Comparison of the Theoretical and Experimental execution times

The graphs of theoretical and experimental execution times of the decompose step are shown in

Figure. 5.3 and Figure. 5.4 respectively. The theoretical model doesn’t take into account some

of the system parameters like the L1 and L2 cache sizes, Memory bandwidth, etc. But still

the trend is the same as compared to the experimental results. For a programmer to efficiently

code an algorithm, one needs to find the behavior of the run-time system and a number of

parametric values of the architecture. Also an analytical model cannot accurately predict the

system behavior. So the burden is on the programmer to specify the parallelism for efficient

implementation.

CHAPTER 5. API EXTENSION 36

51225612864321684
1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

Theoretical execution time for Decompose step

S-M-T

S-T-M

S-M-M

M-M-M

block size

T
im

e
(u

s)

Figure 5.3: Theoretical results

4 8 16 32 64 128 256 512
8.00E+03

8.00E+04

8.00E+05

Decompose step

S-M-T

S-T-M mode

S-M-M mode

M-M-M mode

block size

T
im

e
(u

s)

Figure 5.4: Practical results

CHAPTER 5. API EXTENSION 37

5.2 API extension to support hybrid parallelism

OpenCL specifications allow extensions to be added to its core API subset. The kernel exe-

cution call API in OpenCL and its parameters are explained in the following subsection. An

API extension in OpenCL has been proposed then that will support the hybrid mode parallel

execution of kernels and makes it easy for the programmer to express parallelism.

5.2.1 OpenCL’s current kernel execution API call

The kernels in OpenCL are executed on the device using the command clEnqueueNDRangeK-

ernel which specifies the index space in which the kernel function should be executed. This

API call and its parameters are explained below. clEnqueueNDRangeKernel(command queue,

kernel,

work dim,

∗ global work offset,

∗ global work size,

∗ local work size,

num events in wait list,

∗ event wait list,

∗ event)
command queue

Kernel

Work dim

global work offset

global work size

local work size

num events in wait list

event wait list

- The command queue that executes this NDRange call,

- The kernel function to be executed,

- global work size & local work size dimensions (1 or 2 or 3),

work-item id offset in each of the dimension,

Total No. of work-items in each of the dimension,

No. of work-items in a work-group in each of the dimension,

No. of events this NDRange call waits on,

Ref. to the events this enqueue call waits on.

This API call allows users to specify only the size of work-groups and total number of

work-items. All these work-items are considered to be data-parallel by most of the devices.

CHAPTER 5. API EXTENSION 38

There is no explicit way to tell the task-parallelism using this API call.

5.2.2 Proposed kernel execution API

The current OpenCL API can support either data parallelism or task parallelism but it can-

not support a hybrid mode where multiple data-parallel work-groups with different execu-

tion paths can be launched. In order to implement a hybrid mode, one should be able to

group data-parallel work-items and work-groups into different task-parallel work-clusters that

can be concurrently launched. The proposed API call clEnqueueNDRangeHyperKernel in-

troduces a new parameter universal work size that gives the total number of work-items

among all the work-clusters. The number of task-parallel work-clusters are given by uni-

versal work size/sizeof(global work size array). In this proposed mode, all work-groups and

work-items have the same sizes. A future enhancement would take into consideration different-

sized work-groups and work-items.

clEnqueueNDRangeHyperKernel(command queue,

work dim,

∗ universal work size,

∗ global work offset,

∗ global work size,

∗ local work size,

num events in wait list,

∗ event wait list,

∗ event)

If this extension is supported by OpenCL, devices having MIMD capabilities can execute hy-

brid data-and-task-parallel applications efficiently. The programmer doesn’t have to worry

about the behavior of the runtime system and architectural parameters while coding for effi-

cient parallelization. The runtime system can then take care of the mapping of the task-parallel

clusters containing data-parallel groups.

CHAPTER 5. API EXTENSION 39

5.3 Summary

This chapter described how the features of the device were utilized for its maximum to achieve

maximum parallelism by programmatically choosing the decomposition of the work-items. It

compared the graphs of the theoretical running time with the experimental running time for

each of the modes explained in the previous chapter as well as for the hybrid execution mode

that exploited maximum parallelism by utilizing the device features. It also introduced the API

extension to make it easy for the programmer to specify hybrid parallelism.

Chapter 6

Conclusion and Future Work

In this thesis, efficient task and data parallel implementations of the iterative Strassen’s al-

gorithm have been proposed. It presented results of the execution of all these different pro-

gramming models on NVIDIA Fermi and Kepler K20 GPUs [13] [14]; It devised cost models

to derive execution times for the decompose step in the iterative algorithm for each of these

implementations; It has also presented results of pilot programs that are run to arrive at the ac-

tual device parameters required for formulating the cost models and compared them with the

theoretical calculations. The thesis has proposed OpenCL API extension to exploit multiple

level parallelism and to leverage features in modern GPUs to achieve true task parallelism by

launching multiple kernels. The proposed hybrid model of parallelism allows the programmer

to choose multiple modes and degrees of parallelism thereby facilitating efficient implemen-

tations of task-and-data-parallel algorithms on inherently data parallel architectures such as

GPUs.

There is a scope to design a run-time system that supports this API extension and efficiently

maps the work-items to the resources available on the device. In future the API extension can

also be improved to support launching of work-clusters that have data-parallel work-groups of

different size.

40

Bibliography

[1] AMD Corporation. AMD Radeon HD5870 GPU Architecture Details, October 2012.

[2] Saniya Ben Hassen, Henri E. Bal, and Ceriel J. H. Jacobs. A task- and data-parallel

programming language based on shared objects. ACM Trans. Program. Lang. Syst.,

20(6):1131–1170, November 1998.

[3] Ganesh Bikshandi, Jia Guo, Daniel Hoeflinger, Gheorghe Almasi, Basilio B. Fraguela,

Marı́a J. Garzarán, David Padua, and Christoph von Praun. Programming for parallelism

and locality with hierarchically tiled arrays. In Proceedings of the eleventh ACM SIG-

PLAN symposium on Principles and practice of parallel programming, PPoPP ’06, pages

48–57, New York, NY, USA, 2006. ACM.

[4] Jacques Cohen and Martin Roth. On the implementation of strassen’s fast multiplication

algorithm. Acta Informatica, 6(4):341–355, 1976.

[5] Maneesh Dhagat, Rajive Bagrodia, and Mani Chandy. Integrating task and data paral-

lelism in uc, 1994.

[6] VinothKrishnan Elangovan, Rosa.M. Badia, and EduardAyguade Parra. Ompss-opencl

programming model for heterogeneous systems. In Hironori Kasahara and Keiji Kimura,

editors, Languages and Compilers for Parallel Computing, volume 7760 of Lecture Notes

in Computer Science, pages 96–111. Springer Berlin Heidelberg, 2013.

[7] Hossam A. ElGindy and George Ferizis. On improving the memory access patterns

during the execution of strassen’s matrix multiplication algorithm. In ACSC, pages 109–

115, 2004.

41

BIBLIOGRAPHY 42

[8] Brian Grayson, Ajay Pankaj Shah, and Robert A. Van De Geijn. A high performance

parallel strassen implementation. In Parallel Processing Letters, Vol 6, pages 3–12, 1995.

[9] Mats Johansson and Academy Winter. General purpose computing on graphics process-

ing units using opencl, 2010.

[10] Prabhanjan Kambadur, Anshul Gupta, Amol Ghoting, Haim Avron, and Andrew Lums-

daine. Pfunc: modern task parallelism for modern high performance computing. In

Proceedings of the Conference on High Performance Computing Networking, Storage

and Analysis, SC ’09, pages 43:1–43:11, New York, NY, USA, 2009. ACM.

[11] Khronos OpenCL Working Group. The OpenCL Specification, version 1.0.29, 8 Decem-

ber 2008.

[12] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. Nvidia tesla: A

unified graphics and computing architecture. IEEE Micro, 28(2):39–55, March 2008.

[13] NVIDIA Corporation. NVIDIA Fermi Architecture Specification Sheet, July 2010.

[14] NVIDIA Corporation. NVIDIA Kepler K20 Architecture White Paper, October 2012.

[15] David A. Patterson and John L. Hennessy. Computer Organization and Design, Fourth

Edition, Fourth Edition: The Hardware/Software Interface (The Morgan Kaufmann Se-

ries in Computer Architecture and Design). Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 4th edition, 2008.

[16] J.E. Stone, D. Gohara, and Guochun Shi. Opencl: A parallel programming standard

for heterogeneous computing systems. Computing in Science Engineering, 12(3):66–73,

2010.

[17] Jaspal Subhlok, James M. Stichnoth, David R. O’Hallaron, and Thomas Gross. Exploit-

ing task and data parallelism on a multicomputer. In Proceedings of the fourth ACM

SIGPLAN symposium on Principles and practice of parallel programming, PPOPP ’93,

pages 13–22, New York, NY, USA, 1993. ACM.

BIBLIOGRAPHY 43

[18] Jaspal Subhlok and Bwolen Yang. A new model for integrated nested task and data par-

allel programming. In Proceedings of the sixth ACM SIGPLAN symposium on Principles

and practice of parallel programming, PPOPP ’97, pages 1–12, New York, NY, USA,

1997. ACM.

[19] Rafael Alejandro Vejarano, Phuong Thi Yen, and Jeong-Gun Lee. Parallel acceleration

on manycore systems and its performance analysis: Opencl case study. 2013.

[20] E. A. West and A. S. Grimshaw. Braid: integrating task and data parallelism. In Proceed-

ings of the Fifth Symposium on the Frontiers of Massively Parallel Computation (Fron-

tiers’95), FRONTIERS ’95, pages 211–, Washington, DC, USA, 1995. IEEE Computer

Society.

[21] Chao-Tung Yang, Chih-Lin Huang, Cheng-Fang Lin, and Tzu-Chieh Chang. Hybrid

parallel programming on gpu clusters. In Parallel and Distributed Processing with Ap-

plications (ISPA), 2010 International Symposium on, pages 142–147, 2010.

