
Elasticity in IaaS Cloud, preserving performance SLAs

A Thesis

Submitted for the Degree of

Master of Science (Engineering)

in the Faculty of Engineering

by

Mohit Dhingra

Supercomputer Education and Research Centre

INDIAN INSTITUTE OF SCIENCE

BANGALORE – 560 012, INDIA

FEBRUARY 2014

Purity, patience, and perseverance are the three essentials to success, and above all,

love. --- Swami Vivekananda

Whether You Think You Can Or Can’t, You’re Right.

--- Henry Ford

1

Acknowledgments

I acknowledge my sincere gratitude to my supervisors Dr. J. Lakshmi and Prof. S. K.

Nandy for their help to accomplish and realize this work. Without their insights and

discussions, this work would not have taken a meaningful shape. I thank Dr. Lakshmi

for bearing with my naive style of writing and teaching me how to express my thoughts

clearly. This was especially helpful while writing papers and thesis. She has also taught

me the art of being patient which I found was almost missing in me and is an indispensable

part of research. I thank Prof. Nandy for his ever-encouraging discussions and providing

me the opportunity to work in CAD Lab. His experienced reviews really helped during

paper submissions. I am forever indebted and thankful to both of them for their efforts.

I am thankful to Prof. K. Gopinath and Prof. Chiranjib Bhattacharyya for their

discussions and insightful comments during the course project in “Computer Systems and

Machine Learning” which later turned out to be the backbone of my thesis. The project

meetings with them were really enlightening. I would also like to mention Prof. Matthew

Jacob for his amazing lectures and instigating the spirit of asking questions and more

importantly, finding the answers on my own. I also thank Prof. Govindrajan, Chair-

man, Supercomputer Education and Research Centre for providing a unique environment

that stands apart from rest of institutes. Another important mention here is for the

administrators of SERC for providing me with the data that I could use in my project.

I thank my friends Anurag, Ankit, Aakriti, Akash, Vasudevan, Priyanka, Siva and

Nitisha for their constant support, encouragement, love, and making the workplace a real

fun. All fun activities involving long informal discussions, cycling trips, eating out etc.

rightly complemented the work and were equally important. Anurag and Ankit need a

i

special mention here as I have had the best times with them during my stay at IISc.

Finally, I would like to thank my parents to support me to pursue my Masters as it

was difficult to quit job and coming back to academia. I thank them for showing me the

right path all the times. I thank Almighty to provide me the great opportunity to be at

Indian Institute of Science. The environment is just right to do good work and people are

so passionate about research. I can not think of utilizing my previous two years better

by being at anywhere else.

ii

Abstract

Infrastructure-as-a-Service (IaaS), one of the service models of cloud computing, provides

resources in the form of Virtual Machines (VMs). Many applications hosted on the IaaS

cloud have time varying workloads. These kind of applications benefit from the on-demand

provisioning characteristic of cloud platforms. Applications with time varying workloads

demand time varying resources in IaaS, which requires elastic resource provisioning in

IaaS, such that their performance is intact. In current IaaS cloud systems, VMs are static

in nature as their configurations do not change once they are instantiated. Therefore,

fluctuation in resource demand is handled in two ways: allocating more VMs to the ap-

plication (horizontal scaling) or migrating the application to another VM with a different

configuration (vertical scaling). This forces the customers to characterize their workloads

at a coarse grained level which potentially leads to under-utilized VM resources or un-

der performing application. Furthermore, the current IaaS architecture does not provide

performance guarantees to applications, because of two major factors: 1) Performance

metrics of the application are not used for resource allocation mechanisms by the IaaS,

2) Current resource allocation mechanisms do not consider virtualization overheads, can

significantly impact the application’s performance, especially for I/O workloads.

In this work, we develop an Elastic Resource Framework for IaaS, which provides

flexible resource provisioning mechanism and at the same time preserves performance of

applications specified by the Service Level Agreement (SLA). For identification of work-

loads which needs elastic resource allocation, variability has been defined as a metric

and is associated with the definition of elasticity of a resource allocation system. We

iii

introduce new components Forecasting Engine based on a Cost Model and Resource man-

ager in OpenNebula IaaS cloud, which compute an optimal resource requirement for the

next scheduling cycle based on prediction. Scheduler takes this as an input and enables

fine grained resource allocation by dynamically adjusting the size of the VM. Since the

prediction may not always be entirely correct, there might be under-allocation or over-

allocation of resources based on forecast errors. The design of the cost model accounts

for both over-allocation of resources and SLA violations caused by under-allocation of

resources. Also, proper resource allocation requires consideration of the virtualization

overhead, which is not captured by current monitoring frameworks. We modify exist-

ing monitoring frameworks to monitor virtualization overhead and provide fine-grained

monitoring information in the Virtual Machine Monitor (VMM) as well as VMs. In our

approach, the performance of the application is preserved by 1) binding the application

level performance SLAs to resource allocation, and 2) accounting for virtualization over-

head while allocating resources.

The proposed framework is implemented using the forecasting strategies like Seasonal

AutoRegressive and Moving Average model (Seasonal ARIMA), and Gaussian Process

model. However, this framework is generic enough to use any other forecasting strategy

as well. It is applied to the real workloads, namely web server and mail server workloads,

obtained through Supercomputer Education and Research Centre, Indian Institute of

Science. The results show that significant reduction in the resource requirements can be

obtained while preserving the performance of application by restricting the SLA violations.

We further show that more intelligent scaling decisions can be taken using the monitoring

information derived by the modification in monitoring framework.

iv

Publications

1. Mohit Dhingra, J. Lakshmi, S. K. Nandy, Chiranjib Bhattacharya, K. Gopinath,

“Elastic Resources Framework for IaaS, preserving performance SLAs”, in Proceed-

ings of 6th International Conference on Cloud Computing, June 2013, Santa Clara,

California, US.

2. Mohit Dhingra, J. Lakshmi, S. K. Nandy, “Resource usage monitoring in clouds”, in

Proceedings of the 2012 ACM/IEEE 13th International Conference on Grid Com-

puting, GRID 12, Sepetember 2012, Beijing, China.

3. Ankit Anand, Mohit Dhingra, J. Lakshmi, S. K. Nandy, “Resource usage monitoring

for kvm based virtual machines”, in Proceedings of 18th annual International Con-

ference on Advanced Computing and Communications (ADCOM 2012), Bangalore,

India, December 2012.

Prediction is very difficult, especially if it’s about the future.

--Niels Bohr

v

Contents

Abstract iii

1 Introduction to Compute Clouds 1

1.1 Overview of Compute Cloud . 2

1.1.1 A brief history and evolution . 2

1.1.2 What is cloud computing? . 4

1.1.3 Cloud Architecture . 5

1.1.4 Characteristics of Clouds . 5

1.1.5 Cloud Deployment Models . 6

1.1.6 Service models of Cloud - SaaS, PaaS and IaaS 8

1.2 Cloud enabling Technologies . 11

1.2.1 Service-oriented Architectures . 11

1.2.2 Grid Computing . 12

1.2.3 Utility computing . 12

1.2.4 Autonomic Computing . 12

1.2.5 Virtualization . 13

1.3 Quality of Service in Clouds . 14

1.4 IaaS Architecture . 16

1.5 Issues with current IaaS architecture . 20

1.6 Objective of the thesis . 21

1.7 Organization of the Thesis . 22

1.8 Summary . 24

vi

2 Elasticity in Clouds 25

2.1 Elasticity as a metric . 26

2.1.1 Variability of Workload . 27

2.1.2 Elasticity of System . 30

2.2 Elasticity in current IaaS cloud systems . 33

2.3 Dynamic Provisioning Proposals . 37

2.3.1 Reactive Scheduler based techniques 37

2.3.2 Forecasting based techniques . 41

2.4 Main Contribution of this work . 44

2.5 Summary . 46

3 Provisioning for Elasticity in IaaS Architecture with Performance SLAs 47

3.1 Modified IaaS Architecture . 48

3.2 Forecasting Engine based on Cost Model and Resource Manager 50

3.2.1 Metrics used . 50

3.2.2 Elastic Resources Framework . 52

3.2.3 Changes envisaged in other components 55

3.3 Modifications in Monitoring Engine . 56

3.3.1 Virtualization overhead: A case study 57

3.3.2 Analysis . 59

3.3.3 Monitoring virtualization overhead 61

3.3.4 Proposed Monitoring Framework 63

3.3.5 Segregation of Hypervisor Usage per-VM 65

3.4 Summary . 67

4 Forecasting Engine based on Seasonal ARIMA Model 68

4.1 Introduction to Time Series . 69

4.1.1 ARMA Model . 73

4.1.2 Order selection in AR, MA and ARMA Model 77

4.1.3 ARIMA and Seasonal ARIMA Model for Nonstationary Series . . . 80

vii

4.2 Modeling Cloud workloads . 82

4.2.1 HTTP Logs . 83

4.2.2 Mail Logs . 90

4.3 Summary . 94

5 Forecasting Engine based on Gaussian Processes 95

5.1 Introduction to Gaussian Processes . 96

5.1.1 Obtaining Optimal Hyperparameters 101

5.2 Modeling Cloud workloads using Gaussian Processes 103

5.2.1 Selection of Kernel Function . 103

5.2.2 Prediction Results . 104

5.3 Summary . 108

6 Evaluation of Elastic Framework 109

6.1 System Performance using prediction . 110

6.1.1 Response time with limited resources 110

6.1.2 Response time using predicted resources 112

6.2 Minimizing Excess Cost . 112

6.3 Improvement using the framework . 114

6.4 Summary . 118

7 Conclusions and Future Work 119

7.1 Conclusion . 119

7.2 Future Work . 122

7.3 Summary . 124

Bibliography 124

viii

List of Figures

1.1 Cloud Architecture . 4

1.2 Cloud Deployment Models . 7

1.3 Cloud Service Model . 8

1.4 Cloud Enabling Technologies . 11

1.5 System Virtualization Stack . 13

1.6 Cloud OS architecture . 16

2.1 Different workloads to evaluate variability metric 29

2.2 Gradient of Workloads . 30

2.3 Illustrating Elasticity of different systems 32

2.4 Horizontal scaling in IaaS . 34

2.5 Vertical Scaling in Amazon Elastic Compute Cloud 35

2.6 Typical workload characteristics of web application 36

2.7 Auto Scaling Feature in Amazon EC2 . 38

2.8 Cloud Hosting Provider . 39

2.9 Limitations in dynamic provisioning techniques based on immediate state . 41

2.10 PRESS architecture . 42

2.11 CloudScale architecture . 42

3.1 Elastic Resources Framework for IaaS . 49

3.2 SLA Penalty function . 51

3.3 Components Introduced in OpenNebula IaaS architecture 53

3.4 Finding confidence interval which minimizes total excess cost 54

ix

3.5 Experimental Setup . 58

3.6 Experimental Results . 60

3.7 Para-virtualized device driver architecture 60

3.8 Motivation for modification in monitoring engine 62

3.9 Proposed Monitoring Framework Architecture 64

3.10 Monitoring Results for web server . 67

4.1 Web server logs . 83

4.2 Difference Series characteristics . 85

4.3 Seasonal ARMA Modeling Test Results . 87

4.4 Forecast with actual data . 89

4.5 Mail server workload modeling . 92

5.1 Two Dimensional Gaussian Distribution 97

5.2 Effect of roughness parameter on Periodic Covariance Function 103

5.3 Likelihood Function variation with hyperparameters 104

5.4 Likelihood Function variation with hyperparameters 105

5.5 Web server workload prediction using Gaussian Processes 106

5.6 Mail server workload prediction using Gaussian Processes 107

6.1 Response time with varying request rates and CPU allocated 110

6.2 Response time variation with limited memory 111

6.3 Response time of the system for predicted workload 113

6.4 Minimizing Excess Cost Function . 115

6.5 Reduction in resource allocation . 116

x

List of Tables

3.1 Machine Specification . 58

4.1 Augmented Dickey Fuller Test . 84

4.2 Seasonal ARIMA coefficients for web server workload 86

4.3 Seasonal ARIMA coefficients for mail server workload 91

5.1 SMAPE Error Comparison . 108

6.1 Improvement using proposed elastic framework 118

xi

List of Abbreviations

ACF Autocorrelation Function.

Amazon EC2 Amazon Elastic Compute Cloud.

API Application Programming Interface.

AR Autoregressive.

ARIMA Autoregressive Integrated Moving Average.

ARMA Autoregressive and Moving Average.

AWS Amazon Web Services.

BFGS Broyden Fletcher Goldfarb Shanno Algo-

rithm.

CDF Cumulative Density Function.

CPU Central Processing Unit.

DoS Denial of Service.

GP Gaussian Process.

HAL Hardware abstraction layer.

HTTP Hypertext Transfer Protocol.

I/O Input/Output.

xii

IaaS Infrastructure as a Service.

MA Moving Average.

OS Operating System.

PaaS Platform as a Service.

PACF Partial Autocorrelation Function.

PDF Probability Density Function.

QoS Quality of Service.

SaaS Software as a Service.

SARIMA Seasonal Autoregressive Integrated Moving

Average.

SLA Service Level Agreement.

SLO Service Level Objective.

SMAPE Symmetric Mean Absolute Percentage Error.

SOA Software Oriented Architecture.

TCO Total Cost of Ownership.

VM Virtual Machine.

VMM Virtual Machine Monitor.

xiii

Chapter 1

Introduction to Compute Clouds

Cloud computing has evolved as one of the most promising technologies as it has the poten-

tial to transform the traditional way of computing. It is a paradigm shift in the way how

computing resources including infrastructural resources (CPU, memory, network band-

width, storage), software, applications, platform to build applications etc. are used and

purchased [1]. Cloud computing enables the provisioning of these resources on demand

in the form of service. These services can be accessed over a network (usually Internet)

as they might be located remotely and geographically apart. Virtualization, Grids, Inter-

net, and Service Oriented Architectures (SOA) have simultaneously given the necessary

impetus to the emergence of cloud. However, there are several issues that still need to be

addressed. Infrastructure-as-a-Service (IaaS), one of the service models of cloud, provides

infrastructural hardware as a service to the users. This thesis deals primarily with the

issues related to elasticity in IaaS cloud, which is nothing but the users’ ability to scale

resources on demand as per the application’s need. This chapter provides the background

concepts which are used in the subsequent chapters to understand the elasticity issues

and the approach taken by the thesis towards the solutions. The overview of the compute

clouds including its history and evolution, architecture, key characteristics, service and

deployment models is discussed in section 1.1. Cloud computing is a convergence of ex-

isting technologies, which are discussed in section 1.2. Cloud uses multi-tenancy (hosting

multiple applications on a shared platform) for increased resource utilization. Normally,

1

Cloud achieves multi-tenancy using virtualization in which the underlying resources are

mostly shared. The best-effort sharing of resources usually leads to several Quality-of-

Service (QoS) related issues, which encompasses availability, performance and security.

Ensuring QoS in cloud services is foreseen as an important factor towards cloud adapta-

tion, and it is one of the most interesting and challenging problems that researchers are

looking at, which is discussed in section 1.3. Performance of an application running on

cloud hosts may be significantly impacted by varying infrastructural and service loads.

To ensure the application’s performance at a certain level, appropriate resources need to

be assigned to the application to cater to its varying loads. It requires elastic resource

provisioning in the cloud systems, to ensure that sufficient resources are allocated to the

application keeping the performance intact at all times. The current IaaS architecture

provides coarse-grained elasticity to the users and doesn’t guarantee application’s perfor-

mance. This thesis proposes a few modifications in the current IaaS architecture, hence

the existing IaaS architecture is important to be looked at and is discussed in section 1.4.

This is followed by section 1.5, which explains the issues which the thesis attempt to solve.

The overview of the approach to the issues is presented in section1.6 followed by organi-

zation of the thesis in section 1.7. The chapter concludes its contents with a summary in

section 1.8.

1.1 Overview of Compute Cloud

1.1.1 A brief history and evolution

In the early 60’s, since the mainframe computers were quite expensive, researchers and

scientists were thinking of ways to make large-scale computing power available to more

and more users. Ideas about computation as a public utility also emerged at that time.

“Computing may someday be organized as a public utility just as the telephone system is

a public utility”, Professor John McCarthy said at MITs centennial celebration in 1961.

Later, as the computer hardware became cheaper, the idea slowly started fading away.

In late 90’s, the surge in the use of Internet led to the web based companies like

2

Amazon, Google, etc. investing huge amount of money in their data centers [1]. Because

of their non-uniform and time-varying workload, the resources required to sustain the

workload was also variable. Since they had to maintain the servers to sustain their peak

workload as well, the average utilization of servers was as little as 10%. Soon, they realized

that consolidating the different workloads with the complimentary usage patterns could

improve the server efficiency and it could turn into a viable economic model to rent the

resources to public. Amazon launched the first cloud service called Amazon Web Services

(AWS) [2] on a utility computing basis in 2006. Soon after the launch, several start-up

companies started opting for cloud computing instead of buying costly servers, because

of low initial investment.

As people started realizing the potential of cloud, in early 2008, OpenNebula [3] be-

came the first open-source software for deploying private and hybrid clouds. Eucalyp-

tus [4] also became the first open-source AWS API(Application Programming Interface)-

compatible platform for deploying clouds.

Technically, cloud is not altogether a new concept. It has evolved from clusters,

grids [5] virtualization, Internet and service oriented architecture (SOA), etc.. Clusters

includes several homogeneous compute nodes, which are used together to solve a prob-

lem. The popular programming paradigm that makes use of clusters is Message Passing

Interface (MPI) [6]. Comparatively, grids consists of more loosely coupled heterogeneous

nodes, widely distributed over multiple locations. Clouds inherit few characteristics from

grids like autonomous provisioning over the resources. But the underlying infrastruc-

tural resources in clouds are generally virtualized. Clouds use virtualization to provide

dynamic provisioning of the resources. SOA is a design methodology where in services

(independent and loosely coupled units of functionality) interact with each other using a

well defined interface. Cloud services are based on SOA design principles, which makes

SOA based applications easily integrable with cloud. Cloud services can be requested

anytime, on-demand, hence seamless networking is needed for clouds. Internet has made

possible seamless networking, over which the cloud services are delivered.

3

Cloud User Cloud Provider

Infrastructure

 Network

Cloud front−end
component

Datastores

Figure 1.1: Cloud Architecture

1.1.2 What is cloud computing?

In this thesis, the definition published by the U.S. National Institute of Standards and

Technology (NIST) is used, since it encompasses many facets of cloud computing. NIST

defines cloud computing [7] as follows : “Cloud computing is a model for enabling ubiqui-

tous, convenient, on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider interaction.”

The access to cloud is termed as ubiquitous, since the computing resources can be

accessed from anywhere, anytime using a client. By convenient, it means that the re-

sources are requested or released easily through established mechanisms, either through

a web interface or through well defined APIs (Application Programming Interface) for

automatic scaling of resources. The on demand access and the configurability of the

shared pool of resources means that the cloud resources can be acquired whenever the

application needs them, and can be released when unused. The services offered by cloud

for requesting and releasing resources are provided in an autonomic way, that is, without

human intervention.

4

1.1.3 Cloud Architecture

The cloud architecture mainly consists of two parts: cloud provider and cloud user, as

shown in figure 1.1. Cloud provider is the entity who hosts the cloud services, and cloud

user is the entity who requests them. Cloud user usually accesses the cloud resources

through platforms like mobile phones, tablets, laptops, and workstations, over a local

network or Internet. Cloud provider usually has a front-end component which interacts

with the cloud users. This front-end component provides the computing resources on-

demand to the users either in the form of infrastructure, platform or software. The front-

end is a part of a software entity which controls and manages the resource provisioning,

called cloud operating system (cloud OS), to provision the resources to the user.

1.1.4 Characteristics of Clouds

Compute clouds exhibits the following key characteristics:

� Autonomic Resource Management: The complexity of cloud systems makes it

mandatory to provide autonomic resource management [8]. Service provider doesn’t

have to manage each and every user’s request separately, rather it is done autonomi-

cally. Cloud users ask for the computing resources on demand and cloud provider can

provision them without human intervention. This is usually achieved using cloud

OS. The cloud OS manages the resource provisioning based on a set of policies

(like scheduling objectives, automatic resource scaling policies, service level objec-

tives etc.) defined by administrators or cloud users. It encapsulates the computing

resources and provides services to the users autonomically.

� Resource Pooling and Multitenancy: The resources are allocated for services

requested by customers from a common pool of resources. The same set of resources

over a period of time can be allocated and reallocated to different services requested

by different customers. Also, multiple customers can be allocated resources from

same physical server, which is called multitenancy. Multitenancy improves the over-

all system utilization of the infrastructural resources on account of resource sharing.

� Elasticity and Scalability: Elasticity is the most acclaimed characteristic of

5

cloud, which enables users to acquire and relinquish the computing resources dy-

namically. Cloud facilitates usage based service acquisition, hence the users need not

plan for futuristic usage assuming that cloud can provision for it. On the other hand,

scalability is the application’s ability to sustain more workload by provisioning more

resources to it. Elasticity provides a convenient way for the scalable applications to

scale resources with time.

� Pay-per-use model: Cloud computing is a pay-per-use model where in cloud users

pay for the resources that are allocated to them. The pay-per-user characteristic of

cloud can be leveraged by users by opting for cloud services especially in the case

of variable workloads and time-critical workloads. For variable workloads, users

might request for variable resources at different times and pay accordingly, instead

of buying their own resources to satisfy the workload at peak times. For time-critical

workloads, users can request more resources for a short time interval to complete the

job, as the cost of using a virtual machine (VM) in cloud for 1000 hours is equivalent

of using 1000 VMs of the same configuration for one hour, for example.

� Ubiquitous network access : Cloud services are available over the network

through standard mechanisms. For the public cloud, the standard mechanism is

Internet. Clients from anywhere and anytime can access the cloud via Internet.

1.1.5 Cloud Deployment Models

Cloud can be deployed in a number of ways, depending on certain requirements of the user

like the availability of manpower to handle resources, sensitivity of data and application,

nature of business, performance level [9] etc.. As each of the deployment models are

discussed, their properties would determine the suitability of the model for the user. The

most common deployment models are as follows :

� Private Cloud : When the cloud infrastructure is accessed solely by an organi-

zation, the cloud is referred to as private cloud. The physical resources may be

hosted internally within the organization, or externally. Private cloud can follow

organization’s security measures, and hence can provide a higher level of data and

6

Private Cloud

Private Cloud
Public

Cloud

Public Cloud

Hybrid Cloud

Organization
Other users

Figure 1.2: Cloud Deployment Models

application security over public clouds. It can also provide the benefits of higher

control over performance, as the physical hardware is in control of the organization.

Figure 1.2 shows the various deployment models; the rectangular box denotes the

access boundaries of the organization which hosts the private cloud internally.

An example of private cloud managed by third party is SugarCRM 1, which provide

options to their clients to maintain their data on their own premises to ensure data

privacy. An example of off-premise private cloud is Amazon’s virtual private cloud 2.

� Public Cloud : When the cloud provider provides the various cloud services to

the general public, the cloud is called public cloud. Generally, public cloud service

providers like Amazon AWS, Microsoft and Google, own and operate the infrastruc-

ture and offer access only via Internet. Public cloud users and providers may sign up

a service level agreement (SLA) stating certain level of QoS in the services provided.

If the guaranteed QoS is not provided, provider pays a penalty to the user as per

the SLA. Also, the security and privacy of users’ data is managed by the service

provider, as the data is hosted on provider’s cloud. Figure 1.2 shows the public

cloud available to organizations and other users, outside the access boundaries to

1http://www.sugarcrm.com/feature/multiple-deployment-options
2http://aws.amazon.com/vpc/

7

 ERP, other softwares.

Services : Office/Messaging software, CRM,

Services : SDKs, IDE, database, web

 server, etc.

Services : VMs, Servers, Storage,

 load balancers, network
IaaS

PaaS

SaaS

Physical Infrastructure

Figure 1.3: Cloud Service Model

mean access to anyone.

� Community Cloud : When the infrastructure is shared among several organiza-

tions requiring common attributes and characteristics, the cloud is called community

cloud.

� Hybrid Cloud : When the cloud is a composition of two or more clouds (private,

public and community), the cloud is referred to as hybrid cloud. Hybrid clouds are

generally used in the context of Cloud Bursting. Cloud bursting refers to a service

deployment model in which application runs in a private cloud (or data center), and

bursts into public cloud when the workload increases to an extent such that private

cloud can not handle it. Autonomic components developed specifically for cloud

bursting allow this to happen quite transparently and seamlessly. Figure 1.2 shows

the hybrid cloud with the combination of private and public cloud.

1.1.6 Service models of Cloud - SaaS, PaaS and IaaS

The various deployment models discussed above can be used to provide different services.

A service model represents the structure of services and reflects the dependencies among

services. Figure 1.3 shows the three service layers of the cloud. IaaS is the most basic and

primitive service, PaaS provides services on a higher layer and SaaS provides the services

closest to the end user. These services are described below.

8

Software-as-a-Service (SaaS)

SaaS is a software delivery method that provides access to software and its functions,

hosted on a cloud. SaaS applications are designed using latest web technologies, well

suited to run on Internet. Also, SaaS user doesn’t have to worry about the installation,

maintenance, support and upgrade of the software, rather it is taken care by SaaS provider.

SaaS providers can deliver services using two architectures :

� Multi-tenant : In this model, multiple customers use the same software applica-

tion with same functionality and configuration capability. Also, data for different

customers is stored on the shared server database. Since the same software can be

used by different customers, multi-tenancy helps in the standardization of function-

alities. But it has some limitations in terms of QoS (as the application is shared).

� Single-tenant : In this model, each customer has its own isolated environment

for the software application, thereby, it is arguably more secure than multi-tenant

model. SaaS users can also set the software configuration as per their needs. But

the overhead to the provider is comparatively much more than multi-tenant model,

as the software may be customized for each customer. Consequently, it turns out to

be expensive for customers also.

A user can take a decision to opt for multi-tenant or single-tenant SaaS architecture de-

pending on the needs of the application like configurability, customization, security etc..

For a generic software need (without customization) and without special QoS require-

ments, a multi-tenant model turns out to be a better option. For a user requiring specific

modifications to the software or specific QoS needs like sensitivity of data, single-tenant

model is more suitable.

The most prominent examples of SaaS providers are SalesForce CRM, Google Apps,

etc..

9

Platform-as-a-Service (PaaS)

PaaS provides the platform to build applications/software as a service to the user. The

platform could be programming languages, commonly used libraries, graphical user inter-

faces (GUIs), sandboxed software testing environment for running untested code isolated

from production environment [10], APIs, etc.. PaaS provides easier ways to the developers

(customers for PaaS) to create and deploy software on cloud infrastructure. Also, SaaS

providers can also deploy their applications on platform provided by PaaS providers. The

benefit of using PaaS for developers is they can focus better on software development

rather than platform maintenance and upgrading. For example, Google App Engine [11]

enables hosting and developing web applications in Google-managed data centers. Ama-

zon’s Elastic Beanstalk [12] provides sandbox capabilities on Amazon’s infrastructure.

Microsoft’s Azure [13] provides enterprise database services by way of APIs, software de-

velopment kits (SDKs) for programming languages like .NET, Java, PHP, Python, and

many other services.

Infrastructure-as-a-Service (IaaS)

IaaS provides the physical machines (PMs) or virtual machines (VMs) and other hardware

resources as a service to the users. VM is an abstraction of the underlying hardware, and

hence is a more flexible way of providing the service to customers. Virtualization is the

most prevalent underlying technology for providing abstraction in IaaS clouds (discussed

in detail in 1.2.5). VM provides an isolated environment which is in full control of the

customer. IaaS allows the cloud users to install their own stack of software in the isolated

VM environment. The potential users of IaaS cloud are PaaS providers, SaaS providers,

and other users and organizations who want an isolated environment to host their applica-

tions. Few examples of public IaaS cloud are Amazon Elastic Compute Cloud (EC2) [14],

Google Compute Engine [15], Rackspace Cloud [16].

10

Cloud Computing

Autonomic

Computing

Computing
and Grid

Utility

Web Services

SOA

Systems Management Internet Technologies

Distributed Computing

Hardware

Multi−cores

Virtualization

Hardware

Figure 1.4: Cloud Enabling Technologies

1.2 Cloud enabling Technologies

Cloud Computing has evolved by the convergence of technologies like service-oriented

architectures (SOA), Internet, utility computing, grid computing, autonomic computing,

virtualization etc.. Figure 1.4 shows the intersection of these technologies that enabled

cloud computing and are discussed below.

1.2.1 Service-oriented Architectures

Services are independent and loosely coupled units of functionality. SOA is essentially

a design pattern, which is composed of services interacting with each other using a well

defined interface. Cloud adopts service models from SOA. The services that cloud offers

are automatically discoverable through service discovery protocols and the users (or cloud

brokers) can use these services autonomically [17]. Many service providers, such as Ama-

zon, Facebook, and Google, make their service APIs publicly accessible [18] using standard

protocols such as SOAP (Simple Object Access Protocol) and REST (Representational

State Transfer) [19].

11

1.2.2 Grid Computing

Grid computing technology enables use of federation of computer resources from multiple

locations for a single job. Grid uses middleware to manage the heterogeneous nodes.

Resources in Grids can be discovered, acquired, used and relinquished autonomously.

Resources used by a job are normally not shared. Resources are discovered based on their

property specification. Cloud borrows autonomous resource provisioning methods from

Grids, which usually happens with the help of a middleware.

1.2.3 Utility computing

Utility computing is provisioning of computing services (hardware or software) to the

customer as a metered service. The concept of metered service in cloud enables the

pay-per-use model. Although cloud computing supports utility computing, not all utility

computing is based on the cloud.

1.2.4 Autonomic Computing

The increasing complexity of computer systems makes it essential to handle them in an

autonomic way. IBM’s Autonomic Computing Initiative has contributed to define the four

properties of autonomic systems: self-configuration, self-optimization, self-healing, and

self-protection [20]. Cloud computing providers manage their data centers in an efficient

way, taking cues from well-established autonomic computing practices. Particularly, tasks

like VM provisioning, disaster recovery, capacity management etc. are performed in an

autonomic way. Apart from building autonomic components, monitoring and control

infrastructures are also required to build autonomic systems. Cloud provides services

for sensing the system through a monitoring engine. Also, based on the monitoring

information, control systems can be easily built which handle faults and re-configure the

system using on-demand provisioning.

12

Physical Resources (CPU, Memory, I/O Devices)

Hypervisor

Applications Applications

Guest OS

Applications

Guest OS Guest OS

Figure 1.5: System Virtualization Stack

1.2.5 Virtualization

One of the main enabling technology of cloud computing is Virtualization. It allows the

abstraction of the underlying resources and projection of virtual resources in the form of

Virtual Machines (VMs). Based on the demand, VMs can be instantiated at the run-time.

It makes possible on-demand provisioning of resources, which is an essential characteristic

of cloud. Also, virtualization makes server consolidation possible, it increases server

utilization and efficiency of the cloud systems. Since multiple VMs of different customers

can be co-hosted on the same physical machine, virtualization uses multi-tenancy in clouds

as well.

Hardware abstraction layer (HAL) [21], or system virtualization allows the abstraction

of whole system and multiple operating systems (or VMs) can be co-hosted on the same

physical machine. The software abstraction layer which helps in encapsulating the hard-

ware resources and partitions the hardware into one or more virtual machines is called

Hypervisor or Virtual Machine Monitor (VMM) [22]. VMM has full control of the physical

resources and provides an environment for execution of programs in the VM that is iden-

tical to the original machine. Figure 1.5 shows the classic virtualized machine, in which

hypervisor abstracts the underlying hardware and VMs run on top of hypervisor. Typi-

cally, IaaS use system virtualization to create the abstraction of infrastructural resources.

Other service layers like PaaS and SaaS can be build over IaaS using system virtualization,

or can be build directly on top of bare metal with or without using virtualization.

13

1.3 Quality of Service in Clouds

As discussed in the previous section, virtualization allows sharing of resources in clouds.

When the sharing of resources is done on best-effort sharing basis [23], the QoS of the

application can be compromised [24] [21]. QoS can be defined in terms of availability,

performance, and security. To ensure a certain level of QoS in cloud systems, a cloud user

typically signs up an SLA with the provider, as explained earlier. QoS can be defined

for all service models of cloud. However, unless QoS guarantees at the system level by

allocating appropriate resources are not given, there is no way that QoS at the application

or platform level can be guaranteed [25]. Hence, QoS at the infrastructural level is focused

here and discussed below:

� Availability : Availability is defined as the percentage of time a service (hosted

on cloud) is running and active. It is usually denoted as up-time of a service. A

service could be unavailable in cloud because of issues like hardware failures, network

connectivity problems etc.. There could be several mechanisms of achieving high

availability in cloud. Remus [26], a fault tolerance service implemented in Xen,

provides highly available service with just a few seconds of downtime in case of

failure. VMware’s Fault Tolerance [27] is designed for mission-critical workloads,

using a technique called virtual Lockstep, and ensures no data or state loss.

Availability guarantees of more than 99.9% are provided by most of the public cloud

providers. For example, Amazon EC2 [28] provides service commitment with annual

uptime percentage of 99.95% with specified conditions and definitions. Other IaaS

providers like GoGrid [29] and Rackspace Cloud [30] provide uptime guarantees

of even upto 100%, and users are entitled to receive credits of different kinds if

the providers fail to meet the agreed SLA. However in today’s systems, availability

is guaranteed for individual services but the applications are normally built using

service composition (number of services being used together). It might be more

meaningful to the user if the QoS can be specified on service composition and is an

open area of research.

� Performance : Although cloud provides an isolated and secure environment to

14

the users in the form of VMs, underlying resources (processing cores, memory and

I/O devices) are mostly shared. Variability in the workload of VMs can cause

performance degradation due to resource congestion.

From the cloud’s perspective, QoS is tied to a service. Since IaaS offers VM in the

form of a service, QoS of service would imply the QoS of a VM. However, for an end

user, performance of the application is what really matters which is hosted inside

the VMs. If an application is hosted inside the VM then the user has to associate

the performance of hosted application to the service QoS. This is something that

is difficult in current technologies. Perhaps, guaranteeing the performance of an

application hosted on IaaS cloud needs some kind of tie-up between application and

resources allocated to it at the infrastructural level. In today’s public IaaS cloud

scenario, SLAs which ensure application’s performance guarantees are not used in

practice. This issue is further taken up in section 1.5 and forms one of the motivating

factors behind the work.

� Security : Security is an important aspect of the QoS of cloud which is considered

as a key requirement for feasible cloud solution [31]. Apart from conventional se-

curity issues, cloud imposes certain new security concerns because of shared cloud

environment (normally using virtualization) [32], reputation fate-sharing [33], offline

sensitive data processing etc.. Sharing of resources can cause side channel attacks

and denial of service (DoS) attacks. Due to reputation fate-sharing, a single sub-

verter can disrupt many users co-hosted on a provider. For hosting sensitive data on

cloud, users may either have to trust the providers or use some standardized security

techniques which trigger the unauthorized data access. Currently, standardization

of security as services is one of the open area of research. Hence, security is foreseen

as an important factor towards cloud adoption by a large user community and an

integral entity of QoS of cloud service.

15

Core

Information

manager and auditing

Accounting Authorization

 and
authentication

Image

manager

manager
Federation

Administrator

 tools

Drivers Physical infrastructure drivers

interfaces
Service
manager

Cloud

drivers

Cloud

External Clouds

Cloud OS

Physical Infrastructure

VM
Manager

Network
manager

Storage

manager

Tools Scheduler

Local Users and Administrators

Remote Cloud

 Users

Figure 1.6: Cloud OS architecture

1.4 IaaS Architecture

Large data centers typically have series of many distributed systems that form the un-

derlying physical infrastructure. In order to provide infrastructural resources as a utility,

there must exist some software entity which controls and manages the infrastructure, and

provide the virtual resources. This infrastructure manager is called as Cloud OS. Cloud

OS orchestrates and manages the deployment of VMs on to physical machines (PMs).

It also needs to cater to dynamic resource allocation, that is, increasing or decreasing

demand of VMs. Moreover, management of data center as Cloud makes it possible to

extend the local resource capabilities by reaching out to remote resources from federated

data centers, or public clouds. There are a number of IaaS architectures that are cur-

rently being used to build IaaS cloud. In this thesis, IaaS architecture is explained with

the help of an example of OpenNebula, which is widely used and similar to other IaaS

architectures.

OpenNebula is an open-source cloud computing toolkit for managing heterogeneous

16

and distributed data center infrastructures. It helps to build private, public, and hybrid

clouds. Figure 1.6 shows the cloud OS [34] architecture for OpenNebula. The cloud OS

and computer system’s multi-threaded OS has some similarities. Computer’s OS manages

the hardware resources like CPU, memory, and I/O devices and provides services to the

user applications in the form of system calls. Similarly, Cloud OS manages data center’s

virtualized resources (VMs) and provides services to the cloud users in the form of APIs.

Cloud OS architecture is divided into three main layers : Tools, Core and Drivers.

Tools are the components to interact with the external world and to take inputs from

administrators regarding different policies. Core components are the backbone of the

Cloud OS, and Drivers are the components used to communicate with local infrastructure

or external clouds. These components are discussed below.

� Scheduler: One of the challenging task in IaaS Cloud is the optimal placement of

VMs onto the physical hosts. VM’s characteristics specified by the users/adminis-

trators are the resource requirements (e.g. CPU, memory, disk), affinity with other

VMs (two or more VMs need to be co-hosted on same server), platform (hypervisor

type or OS), geographical location (for security purpose), service level agreements

(SLAs), among others. Scheduler takes decision to place a VM either on one of the

physical server, or on to the external clouds. As and when a new VM arrives, initial

placement decision is taken by the Scheduler. Additionally, scheduler can also take

dynamic reallocation decisions for the variable workloads to optimize some criteria

based on different policies. There can be different optimization criteria, like server

consolidation which aims at minimizing the total no. of servers used, load balancing

to avoid server saturation, etc.. These optimization criteria are provided by the

administrator depending on data center’s requirement.

� Service Manager: It enforces an admission control policy to take decision whether

to accept a new service or not, by interacting with other components like scheduler.

A service can be a single VM or multiple VMs (with additional constraints regarding

placement) to support multi-tier application. It also manages the server elasticity for

variable workloads. It can incorporate different mechanisms for autoscaling based

17

on elasticity rules. For example, elasticity rules can be used to invoke more VMs or

resizing the existing VMs, if the VM CPU utilization exceeds a threshold.

� Information Manager: Another important task of a Cloud OS is to maintain the

sanity and integrity of the whole system. Information manager is a monitoring sys-

tem, which checks the state of VMs, server resource utilization, network usage, etc..

OpenNebula allows integration of third party tools like Ganglia [35] or Nagios [36]

and also allows extension of these tools or enables to integrate customized tools for

VM specific requirements.

� VM Manager: A VM is the basic allocation unit in a Cloud OS. VM manager is

responsible for managing a VM’s life cycle. As soon as a VM is created, VM manager

initializes it to pending state. Either an external command from administrator tools

or VM manager itself deploys the VM, and it moves to prolog state. During prolog

state, VM manager copies the VM files (disk images and recovery file) to the host

in which the VM will be running. After the transfer, VM manager changes its state

to boot state, during which VM boots up. After booting, its state gets changed to

running. This is the state of VMs most of the times, once they are up and active.

There are other commands to save the state of VM, shut it down, suspend the VM

(image remains intact), stop the VM (image gets destroyed), which can be issued

through the administrator tools. The whole life cycle state diagram can be found in

the OpenNebula documentation [37]. VM manager relies on the hypervisor drivers

to perform these actions on the VM. VM manager is also responsible for preserving

the SLA contracted with users. In the current scenario, these contracts are usually

expressed in terms of availability guarantees. To do so, it should include mechanisms

to detect VM crashes and automatic restart in case of failure.

� Infrastructure and cloud drivers: Infrastructure drivers provide the mecha-

nism to communicate with a variety of virtualization technologies. These include

hypervisor, network, storage, and information drivers, which provide services (de-

ploy, manage and monitor) to VM manager, Network manager, Storage manager,

Information manager respectively. Apart from local resources, cloud OS can include

18

different cloud drivers to enable access to external clouds.

� Administrator tools: Administrator tools provide the administrator of the cloud

OS with sufficient tools and interfaces for management purpose. Few examples are

commands for adding/deleting cloud users and manage access control policies for

them, physical server access (boot/shutdown), VM management tools for manual

deployment, monitor, etc., virtual storage management tools and image management

tools.

� Cloud interfaces: Cloud interfaces include APIs for cloud users to interact with

the cloud. It includes invoking VMs, enabling autoscaling policies, shutting down

VMs, etc..

� Accounting and auditing: It keeps track of the usage information of the deployed

services. It is essential to produce billing information and protect it from threats

like unauthorized access, abusive use of resources and other forms of intrusion.

� Authorization and authentication: It incorporates mechanisms to verify the

identity of users, and ensure their permissions to access different cloud resources.

� Image manager: It manages the varied of VM images, and support creation,

deletion, cloning and sharing of VM images.

� Network manager: Network manager manages private virtual networks among

VMs in multi tier applications and assigns public IPs to VMs. It also ensures traffic

isolation between different virtual networks.

� Storage manager: It provides storage services as a commodity, ensuring that

storage system is scalable, highly available, and delivers high-performance for data-

intensive workloads. It relies on external storage drivers to meet these goals by

creating a storage resource pool.

� Federation manager: It enables access to remote cloud infrastructures. There

are different federation types proposed by researchers namely bursting, broker, and

aggregated [38]. Federation manager design differ for each type of federation.

19

1.5 Issues with current IaaS architecture

The IaaS architecture discussed above has some limitations in terms of elastic resource

provisioning options and guaranteeing performance of the applications hosted on cloud.

IaaS users request for the resources in the form of VMs, and resources allocated at the time

of instantiation of a VM can’t be changed over time (static allocation) [2] [39]. Ideally,

time-varying workloads require time-varying resources to keep their performance intact

without leaving resources idle. In the prevalent technologies, the options left with the

customers are either requesting more number of VMs with fixed configuration, or migrate

the same VM to a VM with more resources. This mechanism forces the customers to

characterize their workloads at a coarse grained level, which leads to under-utilization of

VM resources in case user wants its VMs to have sufficient resources at all times, or under-

performing application when allocated resources are not sufficient to meet the workload

requirement. Also, tracking variation in resources based on the workload changes is a

non-trivial task and further linking this variation to appropriate allocation rules is out of

domain for the cloud user.

As mentioned earlier, IaaS treats applications hosted in VMs as black-box. Hence,

infrastructural resource allocation is not based on the performance of application. This is

an important observation because the application’s performance SLAs can only be in place

when such a tie-up between the application’s performance metric and resource allocation

exists. This tie-up can lead to providing performance guarantees to the IaaS users by the

provider.

Another issue with the IaaS architecture is related to how the IaaS deals with the

virtualization overhead. Since the VMs run on virtualized platforms, virtualization over-

head plays a major role impacting the performance of the applications, especially for I/O

workloads. However, VM manager while VM placement doesn’t consider the usage of

hypervisor (because of virtualization) incurred due to VM workload. A major reason for

this is that monitoring engines in today’s cloud systems don’t have capabilities to extract

hypervisor’s effort towards each VM placed on that host. This kind of scheduling may

20

impact the performance of the applications hosted on to the VMs. Modifying the mon-

itoring engine to segregate the virtualization overhead incurred by hypervisor for each

VM would be helpful for the scheduler/VM Manager to do a more performance-aware

scheduling.

1.6 Objective of the thesis

As highlighted in the previous section, current IaaS cloud technologies provide features

of elasticity using mostly VM migration or horizontal scaling techniques. However, as

indicated before, addressing the need for performance guarantees along with elastic pro-

visioning is in nascent stage. For exploiting the elasticity in current systems, the IaaS user

has to profile his application resource requirements with varying workload and then tie-up

these with the available resource allocation policies for the VM where it hosts the applica-

tion. However, the SLA guarantees and allocation triggers that the IaaS provider gives is

based on the resource allocation requirements rather than the metric indicating the appli-

cation performance. Some IaaS solutions do offer features for extending their frameworks

to include user specific code to establish this tie-up. Also, setting these policies in place

ensure that system will choose to enable elastic provisioning only after it has observed

the required saturation, as a reaction to the event. There is a likelihood of performance

suffering when the saturation occurs. And, the basis for saturation today is taken as

VM’s resource saturation rather than application’s performance degradation which might

be because of other resource bottlenecks. This thesis aims to address following issues as

described below:

� To make the elasticity engine pro-active, a forecast based approach is used to predict

the user workload. Using a forecasting engine, instead of reacting to the situations

of system saturation which might have already violated SLAs, trend in the previous

history of the workload is used to predict such situations and take appropriate

resource allocation decisions a priori.

� In order to arrive at VM workload resource requirements, application profiling tools

are used. The resource usage monitoring engine is developed which can be used

21

to 1) translate the predicted user workload into resource requirements, 2) extract

virtualization overhead for each VM such that scheduler takes the proper scheduling

decisions to avoid resource contention.

� Ensuring performance guarantees based on the allocation as per forecasting engine

is non-trivial, since the forecast may not be always correct. Based on the forecast

errors, there might be under-allocation of resources leading to performance degrada-

tion or over-allocation of resources leading to wastage of resources. Hence, to solve

this problem, a cost model is built which modifies the predicted allocation in such a

way that it finds the best trade off between the resource wastage and performance

SLA violations. It also enables the tie up between application’s performance and

infrastructural resource allocation.

1.7 Organization of the Thesis

The focus of this thesis is mainly on the provision of elasticity in IaaS clouds, while

ensuring the performance of the application running in the VM. The work is described in

the following chapters organized as follows:

Chapter 2 discusses elasticity in clouds including its definition, current state-of-the-

art elasticity techniques used and deployed commercially, along with the techniques that

various researchers have proposed. A metric named Variability is defined in this thesis

to identify the kind of workloads which need elastic resource allocation, which is further

associated with the definition of elasticity of a resource allocation system. The chapter

provides a review of current public cloud practices for scaling, namely horizontal scaling

and vertical scaling; followed by the problems with the current elasticity techniques. The

current practices are mostly static and the dynamic provisioning techniques are proposed

in the literature. These techniques are divided in two part: Reactive Scheduler based

techniques and Forecasting based techniques. Then, the limitations in the techniques are

discussed followed by how the thesis addresses the problems identified.

Chapter 3 presents the overview of the approach used in this thesis to solve the prob-

lems in the current IaaS architecture. It addresses mainly two problems 1) Coarse-grained

22

allocation of resources leads to under-utilization of resources or under-performing appli-

cations, 2) Non existent performance guarantees because application level performance

metrics are not used for resource allocation decisions and virtualization overhead is not

considered while taking scheduling decisions. To solve these problems, a new component

called Forecasting engine based on cost model is introduced into the OpenNebula IaaS

architecture, which forecasts the workload and aims to provide the best trade off between

SLA violations and over-allocation. The chapter then discusses the proposed monitoring

framework which can segregate hypervisor’s usage per VM which is shown to be important

to guarantee performance.

Chapter 4 describes one of the strategy used to build forecasting engine, Seasonal

Autoregressive and Integrated Moving Average (Seasonal ARIMA) time series model. It

is a widely used technique used in the time series analysis and can cater to a number

of different workloads expressed in the form of time series. To explain the model, time

series basic concepts are introduced first. Then, the SARIMA model is applied to the real

workload that have been collected from Supercomputer Education and Research Centre,

Indian Institute of Science.

Chapter 5 describes the alternate strategy to build the forecast engine, Gaussian Pro-

cess Model. It is a non-parametric machine learning based approach as opposed to the

parametric statistical seasonal ARIMA model, thereby compliments the earlier technique.

The chapter again starts with describing the basics about the Gaussian processes includ-

ing kernel functions or covariance functions, Bayesian approach, likelihood function etc..

Then, an appropriate kernel function is chosen for workloads, and the model is applied

to them.

Chapter 6 evaluates the proposed elastic resources framework based on cost model and

presents a case study with the Web server and Mail server workloads collected. Firstly, the

system performance (in terms of response times) is analyzed when the system is provided

with constrained resources. Then using the above information, excess cost (over-allocation

cost plus SLA penalty cost) is calculated at each point. The forecast models also gives

us the upper and lower bound of the forecast for a given confidence interval. The upper

23

bound of the forecast is selected for resource provisioning to minimize the SLA violations.

Now since the excess cost is a function of confidence interval, that confidence interval

is then found which minimizes the excess cost. Finally, the improvement of using the

proposed framework is shown for different workloads and forecasting strategies.

Chapter 7 concludes the thesis and presents the future work.

1.8 Summary

This chapter provides the necessary background to understand the basics of cloud systems,

its layered services and evolution. The various characteristics of cloud are introduced that

are unique and differentiate the model from the conventional computing paradigm. It then

goes deeper into the underlying technologies for clouds. Then, a brief introduction about

QoS in clouds and current practices are discussed. An example of IaaS Cloud architecture,

OpenNebula, is then presented to give overview of different components of IaaS. The thesis

aims to solve the elasticity provisioning problems in the current IaaS architecture, and at

the same time preserving performance of applications, which is then discussed with the

approach taken by thesis. The chapter ends with the organization of the thesis.

24

Chapter 2

Elasticity in Clouds

Elasticity refers to the user’s ability to acquire and relinquish resources on-demand. Appli-

cations with time-varying workloads can request for variable resources over time, thereby

making cloud a convenient option for such applications. In the traditional computing

model, users would own resources which can meet the demand of peak workload. At

other times, resources would be under-utilized. Elasticity in clouds provides the feature

to the users not to own the resources for peak workload, rather request for more resources

when demand increases and release resources when not required. The ability to pay for

use of cloud resources eliminates the up-front commitment for resources by cloud users [1]

and reduces the Total Cost of Ownership (TCO) for the user.

This chapter discusses the elasticity in clouds including its definition, current state-of-

the-art elasticity techniques used and deployed commercially, along with the techniques

that various researchers have proposed. Section 2.1 discusses the definition of elasticity

as proposed in the literature and in this thesis. Section 2.2 discusses how the current

IaaS clouds provide elasticity to users to scale resources. The problem with most of the

existing used models is that the resource provisioning is static as the VMs are of fixed

sized. To address these problems, various dynamic provisioning models that researchers

have proposed are then discussed in section 2.3. There are some limitations in the exist-

ing proposals and the prevalent elastic solutions, which are attempted in this work and

discussed in section 2.4

25

2.1 Elasticity as a metric

Although elasticity is one of the central characteristics of cloud computing, but the term is

still used by different researchers and cloud providers to mean different things. Open Data

Center Alliance (ODCA) defines elasticity [40] as “the configurability and expandability

of the solution. Centrally, it is the ability to scale up and scale down capacity based on

subscriber workload”.

Herbst et. al [41] have proposed the following definition: “Elasticity is the degree to

which a system is able to adapt to workload changes by provisioning and deprovisioning

resources in an autonomic manner, such that at each point in time the available resources

match the current demand as closely as possible.” They define elasticity metric in two

cases: elasticity while scaling up the resources on increasing workload and, elasticity while

scaling down the resources on decreasing demand. They measure elasticity by the delay

in acquiring resources and the amount of under-provisioned resources when the demand

increases. When demand decreases, elasticity is measured by delay in releasing resources

and amount of over-provisioned resources. In another work [42], elasticity is calculated

by finding dynamic time warping (DTW) [43] distance between the demand (required

resources) and supply (allocated resources).

Kuperberg et. al in a report [44] have identified several characteristics of elasticity

namely effect of reconfiguration which is nothing but the amount of resources added/re-

moved with respect to change in workload, how frequent are reconfiguration points, re-

action time by the system to adapt to the changed resource configuration. The unified

metric which combines these features is considered as a future work.

Mika et. al in [45] have proposed a Quality of Elasticity (QoE) metric based on a

weighted sum of several factors. Some of the factors considered included are as follows:

• Price-performance ratio which quantifies the performance received for a certain ex-

penditure related to scaling out the deployment infrastructure.

• Infrastructure pricing by cloud provider.

• Billing granularity.

26

• VM provisioning speed.

• Decision making speed of elasticity controller.

• Correctness of scaling decisions.

• Level of parallelization of applications which decide horizontal scaling or vertical

scaling decision, among others.

Further, Weinman has proposed a theoretical model [46] to measure elasticity in clouds.

He considers different demand curves for a computational resource D(t) and the corre-

sponding allocation R(t). Elasticity has been measured as the weighted sum of area

under curve of over-provisioning and under-provisioning. Further, Islam et. al in [47]

have extended Weinman’s approach to include complex real-world scenarios, and more

sophisticated QoS based under-provisioning models to define elasticity.

All of the definitions above mainly focus on how the system reacts to the changes

in workload. However, when measuring elasticity, an important consideration must be

to choose the workloads which exhibit significant variability because otherwise the mea-

surement can be misleading. Hence, in this work, the notion of capturing variability in

workload is discussed first which is then connected with the elasticity of the system.

2.1.1 Variability of Workload

Variability is a term introduced in this work to characterize such workloads that exhibit

significant change in their workload resulting in resource demand that is variable with

time. Workload can be measured by several metrics depending on the kind of workloads.

For CPU intensive workloads, number of tasks/jobs per unit time can be used as an

indicator of workload. For I/O intensive jobs, number of requests per unit time hitting the

server can be an indicative workload. In this thesis, mainly I/O workloads are considered

for case study and workload metric used is request rate. Further, variability of workload

can be defined using several characteristics of workload. A gradient based approach is

used here to measure variability. In this approach, an approximate gradient (since the

27

workload is discrete) is calculated at each point of the workload. Approximate gradient

is calculated as follows:

∆(X(t)) ≈ X(t)−X(t− 1)

(t)− (t− 1)
= X(t)−X(t− 1) (2.1)

where, X(t − 1) and X(t) denotes the workload at time t − 1 and t respectively, and

∆(X(t)) denotes the approximate gradient or the change in workload at time t. It is

positive when the workload increases and negative when it decreases. When the workload

is constant, the gradient is zero at that point as gradient denotes the rate of change

of workload. However, if the workload exhibits slight changes, approximate gradient at

those points would be close to zero. Hence, to check whether the approximate gradient

is close to zero or not, a threshold is used and the absolute value of gradient |∆(X(t))|

is compared against the threshold. This threshold is set on the workload so that it

captures if there is a big divergence between the workload in the previous cycle and

next cycle. Variability is calculated as a percentage of points where the approximate

gradient is greater than the threshold over all the points. Mathematically, if ε denotes

the threshold, then variability can be defined using a step function u() which maps the

positive arguments to 1 and negative arguments to 0. If the absolute gradient is greater

than threshold, then the difference (|∆(X(t))| − ε) would be positive. Hence, taking the

summation of step function of this difference expression at each point would count all of

the points where the workload is variable. Using this, the variability can be defined as:

V ariability =

∑n
t=1 u (|∆(X(t))| − ε)

n
× 100 (2.2)

where, n is the length of the workload, ε denotes the threshold, |∆(X(t))| denotes the

absolute value of approximate gradient, and step function u() is defined as follows:

u(t− a) =


1 for t ≥ a

0 otherwise

To evaluate the variability of workload, different kinds of workloads have been chosen.

28

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Time (in hours)

A
ct

u
a

l W
o

rk
lo

a
d

Almost Static Workload
Sine Wave (Highly Variable)
Web server Workload

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time (in hours)

A
ct

u
a

l W
o

rk
lo

a
d

Random Noise

Figure 2.1: Different workloads to evaluate variability metric

Figure 2.1 shows the workloads: i) A two-level step workload with square wave shape,

ii) a periodic workload with sine wave shape, iii) web server workload used in this thesis,

iv) random noise. Their respective approximate gradients are calculated and shown in

Figure 2.2. The variability calculated as a percentage for all of the workloads is 7.949791%,

82.84519%, 60.25105% and 86.61088% respectively with a threshold of 0.04 (almost zero).

It shows that the square wave shaped workload is the least variable since the most of

the time it remains constant. Sine wave shaped workload is variable 80% of the total

time except for the topmost and bottommost points where it is remains almost constant.

Web server workload is less variable than perfect sine shaped workload, but it still has

significant variability. Noise is highly variable, as expected. However, the mere fact that

variability metric for square wave shaped workload is low does not imply that it does not

require elastic resource allocation. All it conveys is that it needs elastic resource allocation

at a larger scheduling window rather than at every scheduling cycle like in case of Sine

wave shaped workload. Here, variability attempts to identify those workloads which need

short-term dynamic resource allocation decisions, or which need frequent scheduling to

change resource allocation.

29

0 50 100 150 200

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Time (in hours)

G
ra

d
ie

n
t

o
f

w
o

rk
lo

a
d

Almost Static Workload
Perfectly Elastic (periodic)
Web server Workload

0 50 100 150 200

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Time (in hours)

G
ra

d
ie

n
t

o
f

w
o

rk
lo

a
d

Random Noise

Figure 2.2: Gradient of Workloads

It is worthwhile to note that the workload is actually continuous and it has been

converted into discrete form by averaging it out over a time period. This time period

actually plays an important role in the correctness of finding variability. If the time

period is too large, there is a possibility of missing out the important variations in the

workload. Hence, it is important that this time period should be small enough to capture

the variations of the workload. Intuitively, if the variability does not change on decreasing

the time period further, then that time period can be selected to represent workload.

Further, considering workloads which have considerable variability is important when

measuring and defining elasticity of a system. Hence this metric is used in defining

elasticity of the system in the next subsection.

2.1.2 Elasticity of System

There are several aspects of elasticity that are described in the literature. There are

mainly two classes of definitions:

• Based on system factors: This class includes those definitions which define

elasticity based on certain characteristics of the system. Some of the factors that

30

affect elasticity of the system are: a) time to allocate resources once the resources

are requested, b) reaction time of the system after the resources have been allocated,

c) how often the configuration of the system can change, etc.. There might be other

factors like unit of resource allocation (VM size) etc. that also affect elasticity of

the system.

• Based on closeness of demand and supply: This class includes those defi-

nitions of elasticity which measures the closeness of allocation of resources to the

requirement. Defining elasticity in this way actually encompasses all of the factors

that are described above. This is because all of the factors like delay in allocation

of resources, scheduling points etc. finally cause a mismatch in demand and supply

curve, leading to over-allocation or under-allocation.

Hence, in this work, the second class of definitions is further explored. Based on the

existing definitions [46] [47], elasticity in this thesis is defined as follows:

Definition 1. Given the workload is significantly variable, elasticity of a resource alloca-

tion system S is defined by the closeness of resource requirement RR(t) and the allocated

resources RS(t) with respect to change in workload W (t).

Here, resource requirement is used to denote the amount of resources which are suffi-

cient enough such that SLA (service level agreement) violations do not occur and at the

same time, they are not over-allocated. Note that the resource requirement depends on

the SLAs. For example, if the SLA mentions that the average response time of the re-

quests for an application hosted on cloud to be less than 100 ms, the resource requirement

could be higher than the SLA which mentions the average response time limit of 200 ms.

Further, allocated resources are assumed to be available to the application too.

The additional factor considered in this definition apart from the previous definitions

is that the workload is considered to be significantly variable, which means that the

variability of the workload being considered for measuring elasticity of the system should

be greater than a threshold (say 50% as measured by gradient approach). Otherwise, if

the workload is not variable enough, then the measurement of elasticity of the system

31

0 50 100 150 200

0.0
0.5

1.0
1.5

Time (in hours)

Re
so

urc
e (

CP
U/

Me
mo

ry)

●●●

Requirement o Resource Allocation S1
Resource Allocation S2
Resource Allocation S3
Resource Allocation S4

Figure 2.3: Illustrating Elasticity of different systems

may lead to wrong interpretations since a non-elastic system can also allocate resources

close to requirement if the workload is static. Further, the closeness can be measured

by number of metrics. Intuitively, for a significantly variable workload, if the allocation

matches exactly with the requirement, then the system is perfectly elastic. One resource

allocation system S1 is more elastic than the other S2 if S1 allocates resources more closer

to requirement. Fox example, if S1 takes lesser time to allocate resources than S2 after

the requirement is known, then S1 is more elastic as the allocation and requirement would

be closer for S1. Similarly, if S1 predicts the resource requirement more accurately than

S2, then again S1 would be more elastic.

Figure 2.3 shows examples of different resource allocation systems. In this example,

solid line shows the resource requirement corresponding to a workload. Resource alloca-

tion S1 shows the static allocation, where in resources corresponding to the maximum

requirement is allocated over all times. As can be seen from the Figure, allocation and

requirement have high separation. S2 shows semi-static allocation where in allocated

resources have two different levels (may correspond to day and night times). This alloca-

tion is comparatively more closer to the requirement than S1. Further, S3 and S4 shows

the adaptive allocation where in the allocation follows more closely to requirement, as

32

they form the kind of upper and lower envelope over the requirement. Both S3 and S4

are equally close to the requirement. S3 mostly over-allocates the resources leading to

resource wastage. On the other hand, S4 mostly under-allocates the resources and might

lead to performance degradation. Both S3 and S4 are examples of elastic system but S3

might be more preferred to S4 as performance degradation has more severe consequences

in terms of SLA violations than over-allocation of resources. In order to quantitatively

measure the elasticity, the closeness needs to be captured by some metric. In this thesis,

a cost model (derived in later chapters) is used to capture the closeness. However, first

the elasticity in current IaaS architecture is discussed in the next section, which brings

out the need to develop an elastic resource framework.

2.2 Elasticity in current IaaS cloud systems

The resource allocation unit in the current IaaS cloud systems is a fixed-size VM. Hence,

from IaaS point of view, elasticity means to acquire and relinquish VMs dynamically

based on need. Usually, public IaaS cloud providers provide a fixed set of VMs with

different configurations. For example, Amazon provides few standard instance types [48]

like small, medium, large, extra large instance with increasing resource configuration.

Apart from the standard instances, it also provides resource-specific instances like High-

Memory, High-CPU, High-I/O instances. To scale the resources, users can use the scaling

strategies mentioned below.

� Horizontal Scaling: Horizontal scaling is a method used in which resource scaling

is achieved by adding (or removing) more number of VMs to support the changing

demand of application. For the horizontal scaling to be a feasible option, the user

application must be designed in a way such that it can be distributed onto multi-

ple machines. One way to achieve the horizontal scaling is by distributing different

components of muli-tier application to different VMs, although there might be per-

formance implications [49]. Further, one component can itself be built to distribute

among different VMs and then using a load balancer to distribute the workload

among the VMs.

33

Load

Balancer
Other
VMs

Other
VMs

VM2 VM3
Other
VMs

Other

VMs
VM1 Other

VMs

Workload

Physical HostPhysical Host Physical Host

Single application components

Figure 2.4: Horizontal scaling in IaaS

Figure 2.4 shows the typical set-up of horizontal scaling in IaaS. Here, VM1, VM2

and VM3 run the same component of the application and a load balancer distributes

the load among these VMs. For horizontal scaling, another VM can be added and the

load balancer re-distributes the load among all of the VMs. Some of the challenges

involved with horizontal scaling are: application may need to be re-written such that

it can run in a distributed environment, devising a metric for the application that

can be monitored to trigger horizontal scaling, significant VM instance acquisition

times [50] [51], etc.. However, the main advantage of horizontal scaling is that

powerful servers are not needed to support the increased workload of applications,

rather commodity servers can be used to do the same in a distributed fashion.

� Vertical Scaling: Vertical scaling is a method in which the change in workload

is handled by migrating the application to a different VM (might be on a different

physical host). Figure 2.5 shows how the vertical scaling can be achieved in Ama-

zon EC2 IaaS Cloud by migrating the application among small, medium and large

instance VMs. Although migration is a costly operation and incurs some penalty in

terms of availability and performance during migration, but for applications which

can’t scale horizontally, resource scaling is achieved by migration only.

The current IaaS cloud systems provide a coarse-grained control over the resource

allocation. As a result, users are left with no choice but to ask for the most appropriate

34

Migration Migration

Medium Instance

Large Instance

1 EC2 Compute Unit

1.7 GB RAM

160 GB Storage

2 EC2 Compute Unit

3.75 GB RAM

410 GB Storage

4 EC2 Compute Unit

7.5 GB RAM

850 GB Storage

Small Instance

Figure 2.5: Vertical Scaling in Amazon Elastic Compute Cloud

sized VM regardless of how efficiently they use it. As an instance, Figure 2.6 shows

the actual workload of a web server hosted in our academic institute. The x-axis in

the Figure represents time in days and the y-axis indicates the web server workload,

measured as the number of HTTP requests per hour, received by the server. The server

receives higher requests during the day as compared to night times. Using the existing

resource provisioning model, for this workload, a user would demand two types of VMs as

represented by the peak and trough of the workload corresponding to allocated resources

curve, for the vertical scaling. If the application can be horizontally scaled, the peak might

represent workload corresponding to two VMs and trough might correspond to workload

for one VM. From the Figure, it is visible that for supporting an average request rate

of about 200 requests/hour, one might allocate a server of capacity 500 requests/hour

so as to handle the maximum load. This obviously, leads to idle resources most of the

time. Hence this mode of allocation is coarse-grained because it does not change in

accordance to the variations observed in the workload. Further, calculations show that

the effective utilization of resources as per this allocation is just 45.5307% (assuming linear

relationship between workload and resources), which is the ratio of area under curve of

the actual workload to the workload corresponding to allocated resources. In such cases,

cloud users end up paying more than what they actually use.

Existing provisioning models are not very efficient for the cloud providers too. Al-

though, there are idle resources available, the provider can not release them for better

35

0
50

00
00

10
00

00
0

15
00

00
0

Time (in Days)

Wo
rklo

ad
 (in

 Re
qu

est
s/h

ou
r)

1 2 3 4 5 6 7 8 9 10

Workload corresponding to allocated resources
Actual workload

Figure 2.6: Typical workload characteristics of web application

usage. Also, inefficient models contradict the whole idea of achieving high server utiliza-

tion using server consolidation, which is widely used in cloud computing for improving

resource utilization. This motivates the problem that this thesis attempts to solve. In

summary, static allocation of VMs in the current IaaS systems leads to the following

problems:

• Static VM sizes forces users to characterize their resources on coarse-grained level,

leading to under-utilized resources or under-performing applications.

• Cloud users pay even for the idle resources.

• Idle resources can not be utilized by the cloud providers.

A more flexible and dynamic resource allocation mechanism would help to achieve

fine-grained resource allocation that is close to requirement. This is primarily because

the variable workload has variable resource requirement, which can not be met by static

allocation. In the current literature, various researchers have proposed dynamic provi-

sioning proposals which change the allocation based on a trigger decision. Next section

takes it forward and discusses the problems with the approaches followed by how this

thesis attempts to solve the problems.

36

2.3 Dynamic Provisioning Proposals

In this section, various proposals by researchers related to dynamic provisioning ap-

proaches are discussed. There are two broad categories in which these approaches can be

classified. First category includes the techniques where provisioning decisions are taken

based on the immediate state of the system, discussed in 2.3.1. Second category includes

the techniques where provisioning is done based on a forecast using previous resource

usage history, resource usage trend, load stability etc., and is discussed in 2.3.2.

2.3.1 Reactive Scheduler based techniques

Reactive scheduler here means the one which takes provisioning decisions based on the

immediate state of the system. A vast literature exists which is based on these techniques.

To start with some of the practically used elasticity frameworks, Amazon provides a

service named Auto Scaling [52] where users can declare various rules based on which

the scaling of the resources is done automatically on behalf of the user in Amazon EC2

cloud. It can scale the resources periodically by the specified schedule by the user (for

example, everyday at 12:00:00). It can also scale the resources dynamically by specified

conditions from the user (like change in system load). The conditions can be specified

by the user based on the values of some metrics (which can measure system load, for

example). Amazon provides some inbuilt metrics or users can define their own metrics,

which are measured by a monitoring engine, called Amazon CloudWatch. CloudWatch

can be configured to generate alarms based on the conditions specified by the user, which

in turn, can trigger the scaling activities.

Figure 2.7 demonstrates how Amazon Auto Scaling works and its integration within

the system [53]. Consider the AWS user as a SaaS Provider, which hosts its web appli-

cation onto the EC2 cloud. AWS user sets up the Launch Configuration to launch new

instances, CloudWatch metrics to monitor, policies to trigger CloudWatch Alarm, and

scaling policies based on the CloudWatch Alarm. Typically, an AWS user would con-

figure scale-in and scale-out policies for the increasing and decreasing system load. For

example, alarms can be configured that trigger auto scaling policies to launch additional

37

Instance

EC2 EC2 EC2

Instance Instance

CloudWatch
Metrics

CloudWatch

Alarm

Scaling

Policies
Activities

Scaling

Message

SaaS Users

Launch

Configuration

(SaaS Provider)

AWS User

Auto Scaling Interfaces

Application

Figure 2.7: Auto Scaling Feature in Amazon EC2

EC2 instances when network traffic, VM’s load, or other measurable statistic, gets too

high, say 85% usage. Again, the scaling policies can use both horizontal and vertical

scaling, depending on the application needs. This shows a close feedback based loop,

which takes scaling actions based on monitoring feedback. Hence, using Auto Scaling fea-

ture, users can use elasticity automatically. However, the CloudWatch feature measures

the VM’s load and take decisions based on that. But in certain case, VM’s usage might

not be too high but the server can still be saturated because of virtualization overhead.

CloudWatch and other such commercially available monitoring engines have this limita-

tion that they can not measure virtualization overhead. It is further shown in Chapter

6 with the help of experimental observations that segregating virtualization overhead is

indeed important to guarantee performance.

Scalr [54] is another cloud management suite, which also provides AutoScaling feature

on top of Amazon EC2 infrastructure. Scalr provides more sophisticated techniques to

handle scaling [55]. As an example, let’s assume that in Amazon Auto Scaling, web

servers are hosted on Amazon EC2 and downscaling policies are in place which state to

shut down the servers if the traffic is below a certain threshold. Now, while shutting

down a server, all of the active connections to that server would also be closed and users

38

WSMScheduler

Proxy

Web
Hosting

Provider

Cloud Service Provider

Clients

CHP

Figure 2.8: Cloud Hosting Provider

would be logged out. Scalr handles this by performing maintenance actions and running

scripts to prepare the server for termination. Furthermore, Scalr uses the web servers safe

shutdown method, so that no new connections are made. It waits until all the connections

are closed to terminate the server. There are other similar cloud management suites, like

RightScale 1, Enstratius 2, etc. which also provides similar features.

Apart from the practically used systems, there are several papers in literature which

talk about reactive schedulers. Fitó et al. in [56] presents a web hosting provider (named

as Cloud Hosting Provider (CHP)), which scales up/down the resources based on an

immediate state of the servers. The architecture of CHP is shown in Figure 2.8, where in

a proxy server is used to distribute load among servers (horizontal scaling). Web Hosting

Provider is the entity which contains local servers. When the local servers are not sufficient

to satisfy the demand, CHP outsources the workload to Cloud Service Provider. WSM

refers to Web Server Monitoring component, which measures the response time of all of

servers. Intuitively, when the response time of the system goes beyond a certain point and

the SLA penalty (for violating response time SLA) is more than the cost of hosting the

web service locally, scheduler outsources the web operation to cloud. Proxy then divides

the load in local and cloud servers.

1http://www.rightscale.com/
2http://www.enstratius.com/

39

In another attempt towards elastic cloud, Marshall et al. in [57] have devised different

policies like On demand, Steady stream, Bursts to handle different kind of workloads in

batch systems where jobs get queued up for execution on clusters. On demand policy

simply boots up another VM when a new job is queued. Steady stream policy is suitable

for “steady stream” of jobs and always leaves one VM running to handle a new job. This

avoids thrashing caused by On demand policy when a job arrives shortly after the last VM

has been terminated. However this policy is conservative to adjust to changes in demand,

as compared to Bursts. The third policy, Bursts, is meant for jobs arriving in bursts. It

boots sufficient VMs to handle the workload arriving in bursts, based on a formula. Their

experiments show the different kinds of workloads which justify workload-based policies.

Another similar approach is used by Murphy et al. in [58], where the main focus is on On

demand policy. They have demonstrated dynamic provisioning in virtual organizational

clusters without any intervention by the system administrator.

Another immediate state based scaling strategy is implemented and integrated with

Eucalyptus by Iqbal et al. in [59]. They show in their experiments the difference between

static and dynamic VM allocation. The workload chosen includes ten load levels which

are increased step-wise. In case of static allocation, only one VM serves throughout the

workload period and the system is unable to handle the workload after a certain load level.

In case of dynamic allocation, as the adaptive resource manager detects the increase in

response time of the VM, it instantiates more VMs. For a certain time period, the response

time of the web requests goes beyond SLA limits, till the new VMs boot up and are ready

to handle the requests.

Limitations

In the papers discussed above, the provisioning always lags the demand in time as can be

seen by their results in Figure 2.9 (source: [58]). Dotted lines denote the number of VMs

provisioned in the current state, and dark line shows the workload in terms of number of

jobs. Once the provisioned resources have been identified to be not consistent with the

required ones, more VMs are provisioned. Due to this lagging effect, the newly added

40

Figure 2.9: Limitations in dynamic provisioning techniques based on immediate state

VMs take some time to boot up, get configured and handle the increased workload. This

causes SLA violations for some amount of time, whenever there is an increase in demand.

Following limitations can be observed in the reactive scheduler based techniques:

• Do not capture the past trends and hence can not take pro-active decisions.

• Most business oriented enterprise workloads show trends that can be captured to

build pro-active mechanisms that can help reduce SLA violations. In these tech-

niques, such trends can’t be used to take better decisions.

2.3.2 Forecasting based techniques

The limitations stated above can be overcome using forecasting based techniques, which

derive meaningful prediction based on the history of resource usage, workload, etc..

Bobroff et al. in [60] have introduced dynamic server migration and consolidation

algorithm. They state that variability in the workload accrue the benefits of dynamic

placement of VMs in terms of reduced resource allocation, shown by an analytical formula

that they have derived. The forecasting algorithm that they use first removes periodic

components in the resource usage (represented in form of time series), then it represents

the residuals by Auto-regressive process. Their results show the reduction in number of

physical machines as compared to static allocation. Although the paper discusses the

problem in virtualized domain, the approach can be directly applied to cloud systems.

41

Signature
Predictor

State−based
Predictor

VM

Hypervisor

Dom 0

HostPRESS

Resource
Limits

Usage
Data

Figure 2.10: PRESS architecture

Host

VM

Dom 0

CloudScale

Xen Hypervisor

Scaling conflict handling

Prediction error correction

Resource demand prediction

Initial resource caps

Predictive frequency/voltage scaling

Resource demands

caps

Adjusted resource

Resource
Usage

Feedback

Figure 2.11: CloudScale architecture

Gong et al. in [61] have proposed PRESS (PRedictive Elastic ReSource Scaling)

scheme for cloud systems. Figure 2.10 shows the high level architecture, integrated with

Xen. Resource usage data is fed to PRESS from Dom0, which monitors all of the VMs.

For workloads with repeating patterns, PRESS derives a signature for the pattern of

historic resource usage and uses that signature in its prediction. To calculate the period of

repeating pattern, they calculate the Fast Fourier Transform (FFT) and find out the most

dominating frequency out of it. For workloads without repeating patterns, PRESS uses

discrete-time Markov chain with a finite number of states for short-term prediction. Either

one of them gives back the prediction of resources and Dom0 modulates the resources

accordingly. To reduce the chance of under-provisioning, PRESS pads 5-10% of predicted

value to avoid risk of Service Level Objective (SLO) violations.

In the extended version of PRESS, Shen et al. in [62] have presented an automatic

prediction-driven resource scaling system, CloudScale, which addresses a set of problems

42

to minimize the SLO violations. Figure 2.11 shows the CloudScale architecture pro-

posed in the paper. The first component in the CloudScale architecture, namely Resource

demand prediction was proposed in PRESS (previous work). The second component Pre-

diction error correction appropriate scales up the predicted resources and updates the

prediction engine based on previous under-estimations, in order to minimize the SLO

violations. The appropriate amount of padding is found by taking the maximum among

Burst-based padding and Remedial padding. Burst-based padding is calculated by check-

ing the burstiness of the workload in the near past using signal processing techniques. For

more bursty workload, higher padding value is used because chances of under-provisioning

would be higher. Remedial padding is calculated by the Weighted Moving Average of pre-

vious under-estimation errors. Scaling conflict handling manages the conflicts when the

local resources are not sufficient to satisfy all of the VMs’ requirements based on local

conflict handling priorities, or decide for migration. As the name suggests, the compo-

nent Predictive frequency voltage scaling adjusts the hosts’ CPU frequency to save energy

consumption without affecting application SLOs.

Control theory based approach has been applied by Lim et al. in [63], where in they

build an elasticity controller, which dynamically adjusts the number of virtual server

instances in cloud and rebalances the load among servers. A control policy based on a

performance metric provides the feedback to the controller to take appropriate actions.

Gemma Reig and Jordi Guitart in [64] propose a Prediction System that combines

statistical and Machine Learning techniques. For immediate prediction of resources (CPU

demand in their case), they use basic statistical techniques like Local Linear Regression,

Moving Average, Last value prediction. The reason stated is that the near history is most

influential in the immediate prediction. Machine learning based techniques have been

applied for the long term prediction of resources for capacity planning. This might be

used to make an informed admission control by means of accepting only those requests that

will be able to fulfill QoS agreed in their SLAs. Their experiments show high prediction

accuracy on their workloads.

43

Limitations

As mentioned earlier, performance SLAs play a crucial role in the adoption of clouds.

Building elastic cloud systems which also guarantee performance SLAs is challenging.

Most of the works mentioned above focus mainly on building elastic systems, and try to

minimize the SLA violations by aiming for the accurate prediction. Although PRESS [61]

does a padding of 5-10% in the actual prediction to avoid SLA violations, but there is no

basis given for this number. Further, they have used a constant percentage, whereas the

padding is workload dependent. CloudScale [62] then applies different techniques to find

the appropriate amount of padding, but the formulation of proper SLA penalties in terms

of performance metrics is missing. Indeed, if the resource prediction is 100% accurate,

SLAs would never be violated. However, when dealing with the real-world applications,

100% accurate prediction is almost impossible to achieve.

Moreover, most elastic IaaS approaches deal with VM CPU dynamic provisioning and

their framework also deals with history of VM usage only. However, VM usage is not the

true indicator of the workload of customer. Instead, for example in case of I/O workloads,

request rate could be a true indicator of the workload. Also, if the allowable response

time limits are allowed to be changed, then the resources required to sustain the same

workload (such that SLA violations do not occur) could be different. Hence, working with

resource usage for the application can potentially lead to wrong interpretations. The next

section discusses how these limitations are addressed in this work.

2.4 Main Contribution of this work

In this work, an elastic resources framework is developed for IaaS, which provides flexible

resource provisioning mechanism and at the same time preserve performance of applica-

tions specified by SLAs. The elastic framework enables fine grained resource allocation

by dynamically adjusting the size of VM as provided by a forecasting engine based on a

cost model. Forecasting engine basically forecasts the user workload, which is then mod-

ulated based on a Cost model and translated into resource requirements. The significant

44

contributions of the work are described in the following points:

• Reduction in resource allocation for variable workloads: For identification

of workloads which needs elastic resource allocation, variability has been defined as

a metric. Further, this work shows that for variable workloads, significant reduction

in the resource allocation can be achieved using dynamic allocation of resources

along with negligible SLA violations.

• Fine grained resource allocation: The coarse grained allocation in the current

IaaS systems limits the elasticity of the system. To improve elasticity, fine grained

allocation of resources is enabled by changing the size of the virtual machine al-

located. Hence, a generic fine-grained elastic resources framework based on a cost

model is developed in this work.

• Optimal trade off between over-allocation and SLA penalty: Most of

the techniques in the literature rely on the correctness of forecast to avoid SLA

violations. However, as discussed earlier, accuracy of the prediction engine is highly

data dependent. There is no universal prediction engine that can predict accurately

for any kind of data. The proposed framework overcomes this limitation by changing

the predicted resource requirement based on an excess cost model. The excess cost

model aims to minimize the SLA violations as well as the over-allocation of resources

by finding an optimal trade off between over-allocation cost of resources and under-

allocation SLA penalty.

• Enabling performance based SLAs: While leaving the resource provisioning

decisions to the IaaS cloud provider, this work shows how the users’ interest can be

protected by enabling performance based SLAs.

• Monitoring framework capable of extracting virtualization overhead: In

the proposed framework, workload is predicted instead of resource requirement.

Predicted workload is then translated into resource requirement using a monitor-

ing framework developed. This work also identifies that considering virtualization

45

overhead is important to guarantee performance of the application. Hence, the

monitoring framework developed has the capability of segregating virtualization

overhead for each VM.

2.5 Summary

This chapter provides an extensive discussion of elasticity in IaaS cloud. Elasticity defi-

nition has been first explored in the literature and modified to consider the variability of

workloads. The elasticity in current IaaS cloud provides mainly two options to the users:

horizontal and vertical scaling. Since the basic resource allocation unit is fixed-sized VM,

it forces the cloud users to characterize their workload based on VM size, which might

lead to under-utilization of resources. This turns out to be an inefficient model for both

cloud users and providers, which motivates the problem that the thesis aims to solve. The

various approaches by researchers are then discussed followed by a brief introduction to

the limitations in existing solutions and the approach taken in this work to resolve them.

46

Chapter 3

Provisioning for Elasticity in IaaS

Architecture with Performance SLAs

Provisioning for elasticity in IaaS essentially means enabling resource provisioning mecha-

nisms to acquire and relinquish resources dynamically. Enabling elastic resource allocation

in IaaS is useful for applications with highly variable workload. The main challenge is to

allocate the resources in such a way that they are not over-allocated and at the same time

ensure that performance doesn’t get degraded. This chapter revolves around the idea of

ensuring elasticity along with performance of application.

The design of OpenNebula IaaS architecture was discussed in Chapter 1 of this thesis.

Chapter 2 further discussed the shortcomings in the elastic resource provisioning tech-

niques and how the various proposed approaches also fall short to address all of these

limitations together. This chapter addresses these issues. In section 3.1, the overview of

the proposed modifications in IaaS architecture to address the issues aforementioned is

explained. To provision for fine grained elasticity, new components have been introduced

namely “Forecasting Engine based on Cost Model” and “Resource manager”, explained

in section 3.2. Finally, few changes are proposed in “Monitoring Engine” in IaaS archi-

tecture which are shown to be important to ensure performance guarantees in IaaS and

are discussed in section 3.3.

47

3.1 Modified IaaS Architecture

Existing IaaS technologies project infrastructural resources as VMs of pre-fixed sizes.

Issues with such provisioning was elaborated in the last chapter. One of the key problems

with this model, as listed in section 2.2, is that a user has to pick the best match for

his requirement. On the other hand, the provider cannot use idle resources inspite of

knowing that these resources are not being used. Secondly, time varying workloads that

need elasticity need significant effort to be facilitated to use features of resource scaling.

The third important aspect is that for an end user, application’s performance is measured

in metrics like response time, throughput, etc. whereas, IaaS mechanisms for elasticity

only understand resource allocation metrics. In prevalent solutions, this gap has to be

bridged by the cloud user.

To address the above issues, the OpenNebula IaaS architecture is modified as shown

in Figure 3.1. To enable fine-grained elasticity, new components Forecasting engine based

on cost model and Resource manager depicted in black color are introduced in the core

layer of IaaS architecture. By addition of this component, changes are anticipated in

other components of the architecture, which is captured by gray colored boxes. Other

components that are not affected are the white colored boxes. The component Forecasting

engine based on cost model basically forecasts the workload based on the history of the

application workload that the VM hosts and Resource manager further translates this

predicted workload into the resource requirements. The newly introduced components

are discussed next and the changes anticipated in the other components are discussed at

the end of this section.

The forecast made by the prediction engine may not be always correct, therefore lead-

ing to under-allocation or over-allocation of resources. Over-allocation leads to under

utilization of resources and under-allocation leads to poor performance of the applica-

tion. To assess the same, an excess cost model is derived and formulated into a cost

optimization problem. The excess cost comprises of two components, namely, cost due

to over-allocation of resources (COver−allocation) to the cloud users and the penalty cost

48

Core

Information

manager and auditing

Accounting Authorization

 and
authentication

Image

manager

manager
Federation

Tools Administrator

 tools

Drivers Physical infrastructure drivers

interfaces
Service
manager

Scheduler Cloud

drivers

Cloud

External Clouds

Cloud OS

Physical Infrastructure

VM

Manager

Storage
manager

Network
manager

Forecasting engine

based on cost model

Resource
Manager

Figure 3.1: Elastic Resources Framework for IaaS

(CSLApenalty) to the cloud providers corresponding to poor application performance re-

sulting from under-allocation of resources. The goal of optimization problem is to reduce

the excess cost. The basic intuition of this cost model is to reduce the resource cost of the

user by enabling resource allocation closer to what is actually used, without compromising

on the application performance. At the same time, by adaptively allocating resources as

dictated by the workload, the provider is aware of idle resources that could potentially be

used for some other workloads. This leads to better utilization of resources.

However, there are some issues with the forecasting engine, in general. It is a well

known fact that the forecasting model is always data specific. Hence, building custom

forecasting engine for each application would be a tedious task. Building forecasting

engines generic enough to cater many applications’ needs is one way to overcome this

problem. In this thesis, two forecasting strategies are used: Seasonal ARIMA time

series model and Gaussian Processes, which are widely used for a number of applica-

tions [65] [66] [67] [68] [69]. Since the scheduling decisions need to be taken for the next

scheduling cycle, a short-term forecast is needed. Both of the techniques Seasonal ARIMA

and Gaussian processes are found to be useful in such scenarios [70] [71]. Although the

effort required in building and using the forecasting engine is not trivial, the benefits do

outweigh the efforts involved, as will be apparent by the results of decrease in resource

49

allocation keeping the performance at a respectable level.

3.2 Forecasting Engine based on Cost Model and Re-

source Manager

The forecasting engine based on a cost model is introduced into the core layer of the

OpenNebula architecture. As indicated earlier, the main function of this component

is to host a prediction model for an application hosted on the cloud. It generates the

appropriate workload prediction for the next scheduling cycle that is calculated using a

cost model, which is then translated into appropriate resource requirement using Resource

manager. While building this engine, it is important to identify some key application

metrics that are defined as follows:

3.2.1 Metrics used

Request rate and Response Time

In this study, I/O workloads are considered as they have the potential to exercise most of

the resources of a system. They provide a useful case study as they are highly prevalent

workloads in clouds [72]. I/O workloads are characterized by spurts of CPU usage followed

by I/O activity. Examples of I/O workloads are read/write operations to disk, interactive

network I/O workloads such as request-response sequence of web server or mail server

etc.. In interactive network I/O workloads, the metric representing the workload can be

“Request rate”. The request rate is the number of requests per unit time. In this study,

since the scheduling decisions are assumed to be taken on a per hour basis, request rate

represents number of requests per hour. The performance metric that is of interest to

the user is the response time that the server takes to service these requests. For each

request, there is a response time associated. Let’s say there are number of requests with

their arrival times as r1, r2, ... , rn, with the corresponding response times as s1, s2, ... ,

sn. Here, n represents the number of requests for a given hour. The response time that

50

0 500 1000 2000 3000

0.0
0.2

0.4
0.6

0.8
1.0

Response Time (in ms)

SLA
 Pe

nalt
y

Figure 3.2: SLA Penalty function

define the SLA could be one of the following:

• p-percentile Response Time: If the response times of the n requests are sorted

in the increasing order (sk1, sk2, ... , skn), then p-percentile response time is skl

such that:

l = (p/100) ∗ n (3.1)

• Average Response Time: Average response time is simply the average of the

response times of all the n requests.

s̄(t) =
s1 + s2 + ...+ sn

n
(3.2)

• Maximum response time: It is simply the maximum response time among all of

the response times, for all n requests.

SLAs defined with these different metrics are different in terms of performance. For

example, SLA defined in the terms of maximum response time would be very stringent,

since there shouldn’t be any single request whose response time exceeds a given threshold.

But it ensures performance for all of the requests. These kind of SLAs are very difficult

to achieve as well. For this study, average response time has been used because of the

simplicity, and is used interchangeably with the response time.

51

SLA Penalty function

Although the performance SLAs and penalty functions are defined theoretically by many

researchers [73], they are not commonly used, yet, in practice. Figure 3.2 shows an exam-

ple of penalty function which is used in this thesis, where penalty starts increasing when

the response time increases beyond a threshold as specified in the SLA. A simple linear

model has been assumed where in penalty increases linearly with increase in response

time. Furthermore, it saturates after a point, which captures a state wherein the response

time is so huge that the service is meaningless to the user. This denotes a trigger point

for identifying situations like total loss of service which are dealt under different category

and are not within the scope of this thesis.

Initial handshaking of Resource Requirements

In order to derive the resource requirements from the request rate, a provider needs

some initial information from the user about the workload hosted in the cloud. For

example, provider may need resource requirements of the application that user wants to

host corresponding to the different request rates, such that performance SLA doesn’t get

violated. Since the workload is variable, user needs to provide a vector of <Request rate,

Resource requirement> pairs (Note that Resource Requirement itself could be a vector of

resources, for example, CPU, Network Bandwidth, Memory, etc.). Resource requirements

can be derived by the user using a monitoring framework [74].

3.2.2 Elastic Resources Framework

The key component in the proposed elastic resources framework is the forecasting engine

which uses an excess cost model to arrive at an optimal resource allocation based on

predicted workload for the application. The forecast engine uses associated confidence

intervals for the predicted workload to optimize the resource allocation.

Figure 3.3 details the two components Forecasting Engine based on cost model and

Resource manager discussed in the Figure 3.1. The input to the engine is the user work-

load and it outputs the optimal resource requirements. The forecasting engine uses past

52

Forecast request rate with bounds

based on confidence interval

Time series analysis

 and modeling

Workload (Request rate in form of time series)

Model

Resource Derivation
Logic

Derive resource requirement

based on upper bound of forecast

Request rate forecast

based on cost model

Forecasting Engine

Resource Manager

Confidence Interval

Find confidence interval

which minimizes total cost

Resource requirement

Figure 3.3: Components Introduced in OpenNebula IaaS architecture

history of the application workload and builds a time-series model out of it. Systematic

analysis of the time series is executed offline to build a prediction model. A probabilistic

bound of the forecast, within a given confidence interval, is generated using the prediction

model. For instance, upper and lower bounds of the forecast for 95% confidence interval

implies that the probability that the forecast would be within the upper and lower bounds

is 0.95. The upper bound of the forecast is used to provision the resources since the aim

is also to minimize the SLA violations. By increasing confidence interval, over-allocation

cost will increase and SLA violations penalty will decrease. Hence, confidence interval

is the key to optimize the two excess cost functions associated with the allocation. The

component Finding confidence interval which minimizes total cost generates the confi-

dence interval which finds the best trade-off between over-allocation and SLA violations

penalty and the same is explained below.

Finding Confidence Interval which minimizes total excess cost

The objective is to find the confidence interval which corresponds to the minimum total

excess cost of the system. Mathematically, if CExcess defines the excess cost, which is

defined as a function of COver−allocation and CSLApenalty, then the optimization problem

53

 Logic

Data

Response time

Test

Data

Calculate

More Test Data ?

Derive actual

Resource requirement

Calculate

Yes

No

Interval

Confidence

Total Cost

Find confidence interval which minimize total cost

Workload in form of time series

Resource Derivation

Training

Penalty Cost (C1)

Calculate SLA
over−allocation cost (C2)

Total Cost = Total Cost + C1 + C2

Confidence Interval which minimizes total cost

Figure 3.4: Finding confidence interval which minimizes total excess cost

can be formulated as follows:

Minimize

CExcess = COver−allocation(α) + CSLApenalty(α) (3.3)

subject to

0 < α < 100 (3.4)

where, α is the confidence interval. Both COver−allocation and CSLApenalty are functions of

confidence interval. The solution to this optimization problem would give us the value of

confidence interval, which a provider can choose to minimize the excess cost.

Figure 3.4 further describes the component Find confidence interval which minimizes

total cost discussed in the Figure 3.3. First of all, the data is split into two parts: training

and test data. Using the training data, a model is built and the resources are derived

using the same Resource Derivation Logic used in Figure 3.3. Then, based on the resources

54

predicted by the forecast and the actual workload (test data), the response time of the

system is checked. In other words, if the system recieves the actual workload and is

allocated resources based on prediction, the system performance is checked. If the response

time of the system exceeds a threshold defined in SLA, SLA penalty cost is calculated

based on SLA penalty function. Otherwise, predicted resources are compared with the

resources actually required, and calculate the over-allocation cost. Excess cost is the sum

of these two costs for all of the test points. For each point, the model needs to be updated

to include the next test point. Note that update does not mean recalculation of model

parameters every time. Then, the confidence interval is updated and the procedure is

repeated again to find excess cost. The objective is to reach to a point near to confidence

interval, where excess cost is minimized.

Using the above described model, the optimal resources can be predicted for the next

scheduling cycle which minimizes the excess cost of the model. Minimizing of excess cost

is equivalent of obtaining the best trade off between over-allocation and SLA violations

penalty.

3.2.3 Changes envisaged in other components

By introducing the new components into the OpenNebula IaaS architecture, following

changes to the other components are envisaged:

• Scheduler: In the current system, the Scheduler gets new VMs’ requests for:

a) Spawn new VMs (from users), b) Terminate existing VMs which are already

running (from users), c) Horizontal scaling request (from Service manager using

autoscaling), d) Vertical scaling request (from Service manager using autoscaling).

Hence, it recieves the request either from external users or from Service manager

in the current system. Now, after the introduction of the new components in the

OpenNebula IaaS architecture, it also gets the request for change in allocation of

resource from the forecasting engine. It needs to be modified to handle the request

from Resource manager and run the scheduling algorithm again to place the VM to

another physical host, if need arises.

55

• VM Manager: In the current system, VM manager is responsible for managing

VMs’ life cycle on each physical host. It gets allocation request for a VM from

Scheduler. On introducing forecasting engine, fine grained resources might be al-

located leading to change in number of Virtual CPUs (VCPUs) or size of VCPUs,

memory, network bandwidth, disk bandwidth etc., which needs to be handled by

VM Manager.

• Accounting and auditing: In the current system, this component keeps track

of the usage information of the deployed services which is used to produce billing

information. Now, when the size of the VM (resources allocated to the VM) is

changing dynamically, then this component also needs to be informed to note the

changed allocation so that it can produce the correct usage information.

• Information Manager: In the current system, the component Information Man-

ager monitors the resource utilization in the VMs. Since the forecasting engine

predicts the user workload, it needs to save the workload that VM is currently re-

cieving and pass it to the forecasting engine to update the model. Hence, it should

now also collect and interpret the workload history saved in VM and presents it to

the forecasting engine.

Apart from the new introduction of the forecasting components to ensure elasticity,

there is one more modification in the Information Manager that is indeed important to

ensure performance guarantees. It is explained in the next section.

3.3 Modifications in Monitoring Engine

In order to allocate resources pro-actively based on the forecast, the forecasted work-

load needs to be translated into the corresponding resource requirement. The resource

requirement that can be derived from workload can be a tuple including CPU, memory,

network bandwidth etc.. As discussed earlier, applications are normally hosted in virtu-

alized environment in IaaS, therefore each physical machine normally hosts a hypervisor.

56

With all the benefits of virtualization by means of server consolidation, there are some

limitations as well. The downside of virtualization is the overhead incurred in the form

of extra resource usage by hypervisor. This overhead becomes significant, particularly

in case of I/O workloads and can degrade application’s performance [21]. Hence, CPU

usage of an application hosted in IaaS needs to be broken down into VM CPU usage

and hypervisor CPU usage on behalf of the VM where application is hosted. This virtu-

alization overhead (hypervisor CPU usage) becomes an important resource in itself and

needs to be considered while taking scheduling decisions. However, most of the mon-

itoring frameworks in current systems including monitoring subsystem in OpenNebula,

Eucalyptus [4], other independent monitoring tools like Ganglia [35], Nagios [36] etc. do

not provide the hypervisor usage of each VM. Or, in other words, they do not extract the

virtualization overhead for each VM. To understand the need to modify the monitoring

system to extract virtualization overhead, a case study is presented next.

3.3.1 Virtualization overhead: A case study

A case study is presented here which shows that virtualization overhead can become quite

significant, particularly in I/O workloads like web servers, and can affect the performance

of applications. In this study, web servers are hosted inside the VMs and web server

workload is generated using a tool called httperf [75]. Httperf is a benchmarking tool

used to measure web server performance. It runs on client machines to generate a specific

HTTP workload in the form of number of request rate. By varying the characteristics

of the generated workload, different metrics like physical resource usage patterns, max-

imum achievable throughput, and response time are analysed. Physical resource usage

patterns are observed to identify the resources which act as bottlenecks leading to system

saturation. Throughput and Response time give us a fair picture of request rate when

system gets saturated. The goal of this experiment is to understand the different resources

contributing to the performance of the application.

Table 3.1 lists the characteristics of the computing resources that are used during the

experiment. OpenNebula cloud computing toolkit [3] is used to build IaaS cloud with

57

Client2

Httperf

Client1

NIC

VM1 VM2 VM3

Http Server Http Server

LAN

Httperf Httperf

Client3

Http Server

Dom0 +

Xen Hypervisor

Open vSwitch Bridge

Figure 3.5: Experimental Setup

HW-SW Physical Machine Virtual Machine
Processor Intel i7 Quad-Core 3.07

GHz
Intel i7 One Core 3.07 GHz

Memory 8 GB 1 GB
Storage 512 GB 8 GB
Platform OpenSUSE 11.4 Xen Kernel OpenSUSE 11.4
Network Bandwidth 1 Gbps1 N.A.2

1 Same Network Interface Card is shared by all VMs using Xen paravirtualized driver.
2 Virtual Machines are connected through software bridge, without any control/limit.

Table 3.1: Machine Specification

Xen [76] as Virtual Machine Monitor (VMM) or hypervisor. Xen boots into a privileged

hypervisor, called Dom0, with privileged access to the hardware. In our setup, Dom0 is

OpenSUSE 11.4 with Xen aware kernel. Figure 3.5 shows the different components of the

experimental setup. Three Web Servers are hosted on three virtual machines on a single

host, with httpd as the program serving the HTTP requests. Client1, Client2, and Client3

simultaneously run httperf benchmark tests for VM1, VM2, and VM3 respectively. Since

Dom0 has elevated privileges, it is displayed along with the hypervisor.

Figure 3.6 shows the experimental results. Figure 3.6(a) shows the variation of Net

I/O throughput with varying HTTP request rates from the client running httperf tests.

Net I/O data rate measures the actual network data rate on TCP connections, excluding

headers and retransmissions. Figure 3.6(b) shows the variation of response time with

varying HTTP request rates. Response time captures the average time the server takes,

58

to respond to requests. Both figures show that all VMs get saturated at 400 requests

per second, as response time increases sharply and Net I/O shows random distribution

among VMs, beyond this request rate. After VMs are saturated, timeout errors also

increase sharply as web servers are unable to handle requests exceeding their saturation

limits, so they start dropping packets leading to timeouts and subsequent retransmissions.

Both throughput and response time metrics are measured at the client side.

To understand the resources contributing to the performance of the httperf client, the

resource usage on the cloud host is observed. It can be noticed that both the VM and

Dom0 CPU usage, and network bandwidth contribute to the behaviour of httperf client.

This can be attributed to Xen virtualization architecture. In order to measure resource

usage at server side, a XenMon [77] tool to measure CPU Usage at Dom0 and the guest

VMs (called DomUs) has been used. For the experiment, each of the DomUs and Dom0

are pinned to a particular CPU Core. Figure 3.6(c) shows the CPU usage with varying

HTTP request rates. Output shows that there is drastic difference between the CPU

usage of Dom0 and DomUs. Dom0 shows more than 90% CPU usage when the system gets

saturated. This shows the strong possibility of Dom0 CPU being a performance bottleneck

leading to system saturation. On the other hand, all VMs consume just under 20% CPU

even at the time of saturation. This shows how significant virtualization overhead can

be, particularly for I/O workloads. An analysis of the same is presented in the next

subsection.

3.3.2 Analysis

The virtualization technology that Xen uses is called as para-virtualization [76]. It is a

virtualization technique in which VMM provides an environment to VM which is similar

but not identical to the underlying hardware. The guest OS is made aware of the fact

that it is running on a virtualized platform. Using para-virtualization, I/O devices can be

virtualized by writing paravirtualization-aware device drivers in guest (called front-end).

A front-end driver in the guest OS interacts with the back-end driver in the hypervisor

(or privileged domain such as Dom0 in case of Xen) for any I/O transaction. Back-end

59

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700

N
et

 I
/O

 d
at

a
ra

te
 (

in
 M

b
p

s)

Load (Req/sec)

Client1

Client2

Client3

(a) Net I/O throughput with varying httperf load

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700

R
es

p
o

n
se

 T
im

e
(i

n
 m

s)

Load (Req/sec)

VM1

VM2

VM3

(b) Response Time with varying httperf load

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700

C
P

U
 u

sa
ge

 (
in

 %
)

Load (Req/sec)

Dom0

VM1

VM2

VM3

(c) CPU Usage with varying httperf load

Figure 3.6: Experimental Results

Physical device

Back end
Driver

Domain

Privileged

Physical driver

Guest Domain

Driver
Front end

Para−virtualized I/O architecture

(Modified)

Hypervisor

Hardware

Figure 3.7: Para-virtualized device driver architecture

60

device driver further interacts with the physical device driver which in turn communicates

with the physical device. Figure 3.7 shows the typical para-virtualized device driver

architecture.

In this case study with Xen, Dom0 hosts the physical device driver for the network

interface and the para-virtualized back end driver instance for each VM. All of the in-

coming packets are first processed by the physical device driver for the interface and then

passed on to the bridge/router connecting the back-end drivers to the physical device.

Dom0’s backend driver can either copy the packet buffer from its address space to the

guest VM’s address space, or it can use the zero-copy page-flipping technique. Consider-

ing the network packet size, it is faster to copy the data than flipping the pages [76]. This

whole process involves large amount of CPU usage by Dom0. Since the Dom0 processes

the packets for other user domains, this virtualization overhead should be accounted for

the VM on behalf of which it is processing. It is important to monitor and account for

this usage while making scheduling decisions that support performance SLAs.

3.3.3 Monitoring virtualization overhead

Based on the observations and experiments showing significant virtualization overhead,

a motivational example is presented here which shows that monitoring framework with

certain capabilities is indeed an important entity to guarantee performance. Assuming

that the web server is hosted on all of the three VMs with the same setup shown previously,

the resource usage required to sustain the web server workload (the usual running example

in this thesis) is calculated first. The results obtained earlier are used to translate workload

in requests rate to the resource requirement, which is depicted in the Figure 3.8(a). It

shows the VM CPU and Hypervisor CPU usage variation with time based on the workload.

As apparent from the figure, the hypervisor usage is quite high as compared to the VM

CPU usage. This is the virtualization overhead.

To further analyze the system saturation, the corresponding response times of all VMs

are observed. Figure 3.8(b) shows the corresponding response time of the three VMs. The

safe response time denotes the maximum allowed response time for the web server, which

61

0 100 200 300 400

0
20

40
60

80
10

0
12

0

Time (in hours)

CP
U

Us
ag

e (
in

%)

Hypervisor Usage
Saturation

VM1
VM2
VM3

(a) Resource Usage (corresponding to web server workload) with time

0 100 200 300 400

0
2

4
6

8

Time

Re
sp

on
se

 Ti
me

 (in
 m

s)
− L

og
ari

thm
ic

plo
t

VM1
VM2
VM3

Safe Resp Time

(b) Response Time of the system

Figure 3.8: Motivation for modification in monitoring engine

62

is kept as 50 ms in this case and is achieved by the system when it is not saturated.

Note that when hypervisor usage goes beyond 75%, response time of the system increases

beyond the safe response time, indicating the system saturation and poor performance of

the system. However, VM CPU usage is well under 20% for all of the VMs. This brings

out the fact that VM resources do not measure system saturation in certain cases because

of significant virtualization overhead.

As discussed earlier in Chapter 2, the current systems (like Amazon AutoScaling)

normally implement scaling strategies based on the VMs’ resource usage (provided by

CloudWatch, for example). Usually, the scaling strategies written dictate that when the

VMs’ resources reach at the stage of saturation, more resources should be allocated to

the application. But in the scenario described above, these systems will never be able

to take scaling decisions, because the VM’s CPU usage doesn’t reach beyond 20-25%.

Monitoring hypervisor’s usage in such cases would help taking proper scaling decisions.

This gives the motivation to modify the component “Information manager” to measure the

virtualization overhead for each physical machine and segregate the effort of hypervisor

on a per-VM basis. Calculating such overhead is essential in preserving performance of

the applications. However, in the current IaaS cloud systems, this overhead is not used

to take resource allocation decisions and for VM scheduling.

3.3.4 Proposed Monitoring Framework

Figure 3.9 shows the basic architecture of a distributed monitoring framework. In a

typical cloud setup, there could be a number of physical hosts (all of them running an

independent hypervisor), and a front-end Cloud entity (like OpenNebula) to talk to ex-

ternal world. In the proposed architecture, each host carries a Hyper Agent and a number

of VM agents (one for each VM). All of them communicate with the Metrics Collector

(MC) placed inside the cloud front-end entity, which in turn, communicates with the Cus-

tomer Interface Module (CIM). Both of these components (MC and CIM) could also be

placed on a separate entity, different from cloud front-end, but with sufficient privileges

to communicate with physical machines and external customers.

63

VM2

Host 1 Host 2

Metrics Collector

Cloud Front−end

VM1

VM Agent

Hyper Agent

VM Agent

Customer 1 Customer 2

Customer Interface Module (CIM)

VM Agent VM Agent

VM1 VM2

Hyper Agent

HypervisorHypervisor

Figure 3.9: Proposed Monitoring Framework Architecture

SLA manager or customers initiate the monitoring request by an interface provided

by CIM. CIM instantiates the MC module. MC on-demand instantiates only those VM

Agents and Hyper Agent which need to gather monitoring information as requested by

customers. The roles of each of these components is described below in detail:

VM Agent

It resides in VM, collects all VM specific metrics and passes it on to the Metrics Collector.

VM specific metrics could be CPU, Memory and I/O Bandwidth utilization, either at the

system level or fine-grained process level. MC configures VM Agent, such that, it collates

the required metrics. Most of the system level metrics could also be obtained by the

Hyper Agent directly, except that process level metrics need a VM resident agent.

Hyper Agent

It resides in hypervisor, collects the per-VM effort that hypervisor incurs and forwards

it to the MC. As discussed earlier, hypervisor does a lot of processing on behalf of the

guest VMs, which needs to be accounted to the corresponding VM. Hence, Hyper Agent

complements the VM agent metrics in order to obtain the complete information. As an

64

example, this could be the distribution of CPU usage contribution in the device driver

process, virtual switch, or the netback driver (in case of Xen), for each virtual machine.

Metrics Collector (MC)

It collects the set of metrics, that are required by the customer, from the CIM segregates

the metrics required from each of the agents and configures the agents to obtain the same.

Typical configuration could be the required monitoring metrics and the time interval after

which it needs the monitoring data repeatedly.

Customer Interface Module (CIM)

As discussed earlier, Monitoring requirements for each customer could vary significantly.

One may require very fine-grained details for debugging purposes or to take corrective

actions at their end, others may leave it upto the cloud provider. CIM provides a great

deal of flexibility for SLA manager or customers to customize the monitoring metrics

based on their requirements.

3.3.5 Segregation of Hypervisor Usage per-VM

The main differentiating factor in the proposed monitoring framework from the others is

that Hyper Agent in combination with VM Agent can monitor fine grained resources in

hypervisor as well as VMs and can also segregate virtualization overhead. In this thesis,

the segregation of hypervisor’s effort for each VM is discussed for Xen hypervisor. The

similar work on KVM hypervisor which is also based on this framework has been done

in [78] and is not discussed here.

Hyper Agent calculates the CPU Usage distribution on a per-VM basis, as configured

by MC. Hyper Agent calculates total number of pages mapped and unmapped by Dom0

on behalf of other VMs by capturing page grant map and page grant unmap events for

all VMs. Since a guest VM always needs to keep buffers ready for the incoming packet, it

offers pages to Dom0 to map onto its own address space. page grant map captures these

map events. After the reception of the incoming packet by VM, Dom0 unmaps the page.

65

The number of pages actually copied by Dom0 is approximately the same as number of

map events as well as the number of unmap events, excluding the boundary conditions

(for example, the number of pages that were already mapped at the time of start of the

profiler and at the end of the profiler are assumed to be equal, unmap events that were

pending at the start of the profiler and at the end of the profiler are also assumed to be

equal, and so on). Hence, average of these two events gives us a rough approximation of

the number of pages copied by Dom0 to the VM, as denoted by pages copied[i] for ith VM

in 3.5.

pages copied[i] ≈ (map[i] + unmap[i])/2 (3.5)

where, map[i] is number of page grant map events for ith VM and unmap[i] is number

of page grant unmap events for ith VM.

cpu contribution ratio[j] =
pages copied[j]∑
i

pages copied[i]
(3.6)

Using oprofile profiler [79], Hyper Agent calculates the CPU percentage used for a

Dom0 process which does processing for other VMs and divide that in the ratio as calcu-

lated by cpu contribution ratio[j] for the jth VM in 3.6.

Using the above analysis, the distribution of the CPU usage per-VM process level for

web server, as calculated by 3.5 and 3.6 is shown in Figure 3.10(a). It shows four pro-

cesses running in Dom0 and their contribution towards each VM as calculated by above

equations. Further, Figure 3.10(b) shows the monitored metrics as requested by the cus-

tomer from the cloud provider at the load of 400 requests/sec. Monitored values are filled

up dynamically by MC after gathering relevant information from different agents, at the

time interval specified by the customer. In this example, Incoming Network Bandwidth,

and Outgoing Network Bandwidth are collected by VM Agent and total VM CPU usage,

66

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

ovs-vswitchd

netbk
e1000e

openvswitch-mod

C
P

U
 U

sa
g
e
 (

in
 %

)

Processes (Dom0)

VM1 Contribution
VM2 Contribution
VM3 Contribution

(a) CPU Usage for Dom0 processes per-VM
as measured by Hyper Agent at the load of
400 requests/sec

Metric to Monitor
Speed

Monitored Value

VM CPU usage 3.07 GHz 1 500 ms 9.67 %

Dom0 CPU usage contribution 3.07 GHz 1 500 ms 14.31 %

Incoming Network Bandwidth

Outgoing Network Bandwidth

100 Mbps

100 Mbps

1000 ms

1000 ms

3.18049 Mbps

44.73642 Mbps

No. of Cores

Total Allocation

Interval

Update

(b) Metrics Monitored at the load of 400 requests/sec

Figure 3.10: Monitoring Results for web server

and Dom0 CPU Usage contribution for each VM is collected by Hyper Agent.

Monitoring framework results have also been obtained for other applications including

video streaming server and encrypted video streaming, which shows different resource

bottlenecks in the system. These results can be found in [74].

3.4 Summary

This chapter presents the approach used in this thesis to solve the problem of: 1)

Coarse-grained allocation of resources leading to under-utilization of resources or under-

performing applications, 2) Non existent performance guarantees because application level

performance metrics are not used for resource allocation decisions and virtualization over-

head is not considered while taking scheduling decisions. To solve these problems, new

components called Forecasting engine based on cost model and Resource manager are in-

troduced into the OpenNebula IaaS architecture, which forecast the workload and aims

to provide the best trade off between SLA violations (by looking at the applications per-

formance metrics) and over-allocation. To monitor virtualization overhead, a distributed

monitoring framework has been proposed which extracts the virtualization overhead for

each VM.

67

Chapter 4

Forecasting Engine based on

Seasonal ARIMA Model

The proposed component “Forecasting engine based on cost model” discussed in the

previous chapter forecasts the optimal resource requirement for the next scheduling cycle

of an application. One of the main sub-component in this component is the forecasting

engine which can produce the forecast based on a model. Forecasting means to estimate

a future event. It can be based on historical data analysis, or other factors that affect

the event. Forecasting can be a) Causal [80] [81] where in a complete cause and effect

model is developed after identifying several factors which influence the forecast variable,

b) Non-causal [82] [65] [66] [67] where in forecast is made based on the past patterns

in the data and are usually known as “time series” methods. In non-causal methods,

forecast is usually not influenced or minimally influenced by other factors. In this thesis,

a non-causal forecasting model has been used to forecast cloud workloads where in the

past workload is used to predict the workload for next scheduling cycle for pro-active

allocation of resources. However, there may be other factors that can affect the future

workload apart from the historical data like the knowledge about festival season in case of

e-commerce business web server workload, presidential election in case of news web server,

etc.. These factors have not been considered as of now and are part of future work.

68

This chapter explains the forecasting engine used in the component “Forecasting En-

gine based on cost model”, which was introduced in Chapter 3. There are various ap-

proaches in practice which can be used for forecasting. For the kind of workloads that

have been used in this thesis and the variability that they exhibit, a time series based

approach called Seasonal AutoRegressive Integrated Moving Average Model (SARIMA)

has been found to be appropriate as it can model seasonality, dependence on past values

and error terms etc.. To explain the model, time-series concepts are introduced first in

Section 4.1 including its definition, characteristics, stationarity, autoregressive and mov-

ing average model and approaches to handle non-stationary series. Section 4.2 deals with

the modeling of the workloads that are used to illustrate the elastic resources framework.

Section 4.3 concludes the chapter.

4.1 Introduction to Time Series

Time series is a collection of data points measured over a fixed interval of time. The data

points may refer to any observable quantity such as daily closing price of a stock of a

company, monthly population of a country, etc. In this work, the data points in the time

series denote the hourly workload of a given application in cloud. Time series analysis can

be useful, for example, to forecast the future data points, classification, clustering, etc.

depending on the type of application. In the context of this thesis, time series analysis

is used for forecasting of the workload and that of corresponding resources required to

sustain the same, in order to take pro-active scheduling decisions.

Time-series aims to identify the pattern in the data to make meaningful predictions.

Formally, time series is defined in terms of random variables, defined below:

Definition 1. A random variable X is a real-valued function defined on a set of possible

outcomes, each with an associated probability.

In the view of this work, random variable might correspond to the probabilistic dis-

tribution of the value of the workload.

69

Definition 2. Time series is a collection of random variables {Xti : ti ∈ T}, where T is

the index set containing time points t1, t2, ..., tn.

Note that the collection of data points observed over time {xt} is just one realization

of the underlying time series {Xt}. The interesting characteristics in the time series

are observed by the fact that these random variables are mostly not independent and

identically distributed (iid). This makes time series analysis distinct from other data

analysis problems where observations are assumed iid. A complete description of the

time series [83] can be then expressed as the joint distribution function of all random

variables {Xt1 , Xt2 , ..., Xtn} as below:

FXt1 ,Xt2 ,...,Xtn
(xt1 , xt2 , ..., xtn) = P (Xt1 ≤ xt1 , Xt2 ≤ xt2 , ..., Xtn ≤ xtn) (4.1)

where, F is the cumulative distribution function (cdf). The same can also be expressed

using probability density function (pdf) as follows:

fXt1 ,Xt2 ,...,Xtn
(xt1 , xt2 , ..., xtn) = P (Xt1 = xt1 , Xt2 = xt2 , ..., Xtn = xtn) (4.2)

Time series is difficult to analyze primarily because in most cases, the form of distri-

bution function is not known. A subset of the general classes of time series is a stationary

time series, which has some special characteristics that makes it easy to analyze. Sta-

tionary time series are of two types: strict and weak. Strict stationary time series is

defined [84] as follows:

Definition 3. A time series is called strictly stationary if

FXt1 ,Xt2 ,...,Xtm
(xt1 , xt2 , ..., xtm) = FXt1+h

,Xt2+h
,...,Xtm+h

(xt1 , xt2 , ..., xtm) (4.3)

for all shift parameters h, all possible sets of indices t1, t2, ..., tm and t1+h, t2+h, ..., tm+h in

the index set (defined above) and all (xt1 , xt2 , ..., xtm) in the range of random variable Xt.

As the definition suggests, the joint distribution of the strictly stationary time series

of any subset of random variables doesn’t change with time. Intuitively, it suggests

70

that the behavior and characteristics of the series doesn’t change with time. However,

strict stationarity imposes very strong conditions and it is often very difficult to assess

and achieve the same for real world applications. Hence, in practice, a weaker form of

stationarity is assumed and applied to the real world time series as it relaxes some of the

conditions. Weak stationarity uses few of its characteristics like mean, autocovariance

and autocorrelation, to analyze them for time independence. These characteristics are

described below:

Definition 4. Mean of a random variable Xt is defined as

µXt = E(Xt) =
xt=∞∑
xt=−∞

xtf(xt) (4.4)

where, xt represents the possible realizations of Xt and f(xt) represents the pdf at Xt = xt.

Mean of a random variable is also known as its expected value. In the context of time

series, mean of Xti is known as ensemble mean at ti. However calculating ensemble mean

is usually not possible for the practical purpose, since only one realization of the time

series is normally known. In this case, an assumption is made about the ergodicity of the

time series [85] [86], which states that ensemble mean converges to mean of a sample of

the time series. The definition of mean is further used in defining autocovariance function,

which is also another interesting characteristic of time series. The autocovariance function

is defined as follows:

Definition 5. Autocovariance function of a time series is defined as

γX(s, t) = E[(Xs − µXs)(Xt − µXt)] (4.5)

for all s and t in the index set.

Basically, autocovariance between two time points in a time series measures the linear

dependence between them. If two points s and t have no dependence in them, then

71

γX(s, t) = 0. For s = t, the autocovariance reduces to variance, since

γX(t, t) = E[(Xt − µt)2] (4.6)

Note that the autocovariance function depends on the absolute values of the data

points of time series. It may be misleading to look at the absolute value of the autoco-

variance function, hence there is a need to normalize the same. Another function, namely

autocorrelation function (ACF) is the normalized autocovariance function and is defined

as follows:

Definition 6. ACF is defined as

ρX(s, t) =
γX(s, t)√

γX(s, s)γX(t, t)
(4.7)

The range of ACF [87] is −1 ≤ ρX(s, t) ≤ 1. If Xt can be perfectly predicted using

Xs through a linear relationship, Xt = α + βXs, then |ρX(s, t)| = 1. As the value drops

close to zero, the two random variables become more and more uncorrelated. Again, ACF

measures the linear predictability of the series Xt using only the value Xs.

Now, since the characteristics of time series are defined, it is convenient to discuss

weak stationarity of the time series. It was earlier pointed out that the strictly stationary

time series must have the same distribution of any set of random variables. In case of weak

stationarity, only few characteristics of the distribution, namely mean and autocorrelation

are time-independent. Formally, weak stationarity can be defined as follows:

Definition 7. A weak-sense or wide-sense stationary time series, {Xt} is a random

process with finite variance such that the mean value function, µXt is constant and doesn’t

depend on time t, and the covariance function, γX(s, t) depends on s and t only through

|s− t| and not on their absolute values. It is also known as covariance stationarity.

As the definition suggests, mean µXt is constant for all t, it can be simply written as

µX . Also, since autocovariance of the weakly stationary series is only dependent on the

lag between the two time points, it means that γX(h, 0) = γX(t + h, t) for any time t.

72

Hence the autocovariance and ACF of the weakly stationary series can be written as:

γX(h, 0) = γX(h) = E[(Xt+h − µX)(Xt − µX)] (4.8)

ρX(h) =
γX(t+ h, t)√

γX(t+ h, t+ h)γX(t, t)
=

γX(h)√
γX(0, 0)γX(0, 0)

=
γX(h)

γX(0)
(4.9)

Also, since the time series is of finite length, mean, autocovariance and autocorrelation

need to be estimated from the given population of data points rather than calculating

the exact value. In this thesis, the time series is assessed for weak-sense stationarity after

applying different transformations as it is mode practical approach than strict stationarity.

Using the stationarity property, the time series can be easily broken down further into

different components and it makes the analysis and prediction easier.

4.1.1 ARMA Model

One of the most widely used model to represent the stationary series is ARMA (Autore-

gressive and Moving Average) model. It is a simple linear model1, and has widely been

applied to many applications [65] [66] [67]. ARMA model is composed of AR and MA

components. Both of the components are discussed in the following paragraphs.

AR model is based on the idea that the current value of the time series Xt can be

explained as a function of p past values, Xt−1, Xt−2, ... , Xt−p, where p is the number of

steps into the past needed to forecast the current value. Formally,

Definition 8. An autoregressive model of order p, AR(p), is expressed as follows:

Xt = φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + wt (4.10)

where, Xt is stationary, φ1, φ2, ... , φp are constants (φp 6= 0). wt is a noise term, usually

1Wold’s decomposition theorem allows the representation of any stationary series {Xt} by a linear

model which looks like MA process (equivalent of ARMA), however there are subtle differences and the

details are out of the scope of this thesis.

73

it is assumed to be Gaussian white noise with zero mean and some finite variance.

Without the loss of generality, it can be assumed that the mean µ of Xt is zero. If it

was not zero, then Xt could be replaced by Xt − µ in the equation 4.10 and a constant

would be added to the right hand side. The AR model is similar to a regression model

with the input variables being the Xt−1, Xt−2, ... , Xt−p and φ1, φ2, ... , φp being the

regression coefficients, hence the name autoregressive since it is regression on its own past

values.

It is easy to represent the above equation using a backward operator B. It is defined

as, B(Xt) = Xt−1, B2(Xt) = Xt−2 and so on. Using this operator, equation 4.10 can be

rephrased as:

Xt = φ1B(Xt) + φ2B
2(Xt) + ...+ φpB

p(Xt) + wt (4.11)

Xt =

p∑
i=1

φiB
i(Xt) + wt (4.12)

=⇒ (1−
p∑
i=1

φiB
i)Xt = wt (4.13)

=⇒ φ(B)pXt = wt (4.14)

where, φ(B) is called the autoregressive operator and

φ(B)p = 1− φ1B − φ2B
2 − ...− φpBp.

The final equation 4.14 shows that the final aim of AR model is to reduce the time series

into white noise. In fact, any time series analysis stops at the point when it has been

converted into white noise. That’s because, white noise is uncorrelated, and there is no

other relation that can be extracted out of it.

AR model is quite intuitive in the way that the current value of the time series depends

on the past values as they are correlated with each other. Another very useful, but rather

less intuitive way to model the time series is using MA model. In MA model, the current

value of the series is explained in terms of previous q innovation terms. Innovation is the

difference between the observed value of a variable at time t and the optimal forecast of

that value based on information available prior to time t. When the forecasting method is

74

good, successive innovations are uncorrelated with each other, that is, constitute a white

noise time series. Hence, in MA model, past white noise terms wt−1, wt−2, ..., wt−q are

combined linearly to form the observed data.

Definition 9. The moving average model of order q, MA(q) is defined as

Xt = wt + θ1wt−1 + θ2wt−2 + ...+ θqwt−q (4.15)

where Xt is stationary, θ1, θ2, ... , θq are the coefficients of the past white noise terms.

The noise (or innovations) wt is assumed to be Gaussian white noise.

As earlier, equation 4.15 can also be represented using backward operator.

Xt = wt + θ1B(wt) + θ2B
2(wt) + ...+ θqB

q(wt) (4.16)

=⇒ Xt = (1 + θ1B + θ2B
2 + ...+ θqB

q)(wt) (4.17)

=⇒ Xt = θ(B)qwt (4.18)

where, θ(B) is called as moving average operator. The basic difference in the AR and

MA model is with respect to the effect of noise values or random shocks to the future

values. As an example, consider the difference between AR(1) and MA(1) model. MA(1)

is

Xt = θwt−1 + wt (4.19)

It suggests that the effect of the random shocks propagate till next time step, that is,

wt−1 affects only Xt−1 and Xt. It has no effect on Xt+1 and further. However, compare it

75

with AR(1), which is

Xt = φXt−1 + wt

=⇒ Xt = φ(φXt−2 + wt−1) + wt

= φ2Xt−2 + φwt−1 + wt

....

= φkXt−k +
k−1∑
i=0

φjwt−j

=
∞∑
i=0

φjwt−j (4.20)

It suggests that the random shocks affect the value of the time series indirectly, and

it’s long lasting. That is, wt affects Xt+1 through Xt, and so on. One-time shock affects

the values of the evolving variable infinitely far into the future.

An interesting point to note here is, the same AR(1) model in the above example can

be represented by MA(∞) model as well. AR and MA processes are convertible to each

other, but with different number of parameters. However, in many practical cases, both

AR and MA models are combined because it usually leads to a model even with fewer

parameters. Also, in some cases, the past dependence on its own values as well as past

error terms are useful to describe a model.

Definition 10. An autoregressive and moving average model, ARMA(p,q) is defined as

Xt = φ1Xt−1 + ...+ φpXt−p + wt + θ1wt−1 + ...+ θqwt−q (4.21)

where Xt is stationary, φ1, φ2, ... , φp are the coefficients of the past values (φp 6= 0),

wt is a white noise and θ1, θ2, ... , θq are the coefficients of the past white noise terms

(θq 6= 0).

Using the same autoregressive operator φ(B)p and moving average operator θ(B)q,

76

the above equation can be rewritten as follows:

φ(B)pXt = θ(B)qwt (4.22)

In order to apply above processes to the practical time series, the number of parameters

of the models need to be estimated first. Following subsection discusses about the same.

4.1.2 Order selection in AR, MA and ARMA Model

The order selection in the ARMA(p,q) models involves identifying the value of p and

q. Although there are several possibilities of the order, but the aim is to choose them

parsimoniously, keeping the model as simple as possible. This reduces the complexity of

the model which is especially important in the real-time scenarios like taking scheduling

decisions in cloud environments. Finding order of MA model is quite straight forward.

Let us first look at the autocovariance and ACF of MA(1) model.

For the model Xt = wt + θwt−1, the autocovariance can be found as follows:

γ(h) = E[XtXt+h]

= E[(wt + θwt−1)(wt+h + θwt+h−1)] (4.23)

Now, since wt and wt+h are uncorrelated, E[wtwt+h] = 0 for any h 6= 0. Hence the

value of autocovariance becomes zero in most of the cases except for lag 0 and 1. For

h = 1, the above equation 4.23 simplifies to:

γ(1) = E[(wt + θwt−1)(wt+1 + θwt)]

= E[θw2
t]

= θσ2
w (4.24)

where, σ2
w is the variance of the white noise. For h = 0, autocovariance comes out to be

77

equal to variance, that is,

γ(0) = E[(wt + θwt−1)2]

= (1 + θ2)σ2
w (4.25)

It can be calculated that the ACF for MA(q) process would be non-zero till the lag

q. This is an important observation, which is generally used to estimate the order of MA

process. Although in time series for real life data, the ACF does not exactly vanish, but

it becomes close to zero.

Regarding the order of AR process, analysis of its ACF is first discussed. For the

AR(1) model Xt = φXt−1 + wt, the autocovariance can be calculated as:

γ(h) = E[XtXt−h]

= E[(φXt−1 + wt)Xt−h]

= E[φXt−1Xt−h + wtXt−h]

= φγ(h− 1) (4.26)

The term E[wtXt−h] vanishes because Xt−h involves wt−h, wt−h−1... and these terms

are uncorrelated to wt. The final equation 4.26 suggests that the autocovariance (and

ACF) between Xt and Xt−2 is not zero, as was the case in MA(1) process. This is because

Xt is dependent on Xt−2 through Xt−1. By removing the effect of Xt−1, the dependency

can be removed between Xt and Xt−2. The following equation explains that after taking

out the effect of Xt−1 from Xt and Xt−2, the covariance becomes zero.

cov(Xt − φXt−1, Xt−2 − φXt−1) = cov(wt, Xt−2 − φXt−1) = 0 (4.27)

The above observation leads to defining a quantity called partial autocorrelation func-

tion (PACF), which measures the autocorrelation between Xt and Xt+h after removing the

linear dependence of intermediate random variables Xt+1, Xt+2, ... , Xt+h−1. Formally,

78

Definition 11. The partial autocorrelation function, α(h) is defined as follows:

α(1) = ρ(1) (4.28)

α(h) = ρ(Xh −Xh−1
h , X0 −Xh−1

0) (4.29)

where, Xh−1
h denotes the regression of Xh on Xh−1, Xh−2, ..., X1; and Xh−1

0 denotes the

regression of X0 on X1, X2, ..., Xh−1.

Now, for an AR(p) process (Xt =
∑p

i=1 φiXt−i + wt), when the lag h is greater than

p, its PACF is discussed below. The regression of Xh on Xh−1, Xh−2, ..., X1 will be,

Xh−1
h =

p∑
j=1

φjXh−j (4.30)

since the coefficients of AR(p) process itself denotes the linear regression on past elements.

PACF can then be found using the above equation as follows:

α(h) = ρ(Xh −Xh−1
h , X0 −Xh−1

0)

= ρ(Xh −
p∑
i=1

φjXh−j, X0 −Xh−1
0)

= ρ(wh, X0 −Xh−1
0) = 0, (4.31)

because X0 − Xh−1
0 only involves terms {wh−1, wh−2, ...}, and white noise terms are un-

correlated to each other. Hence, PACF vanishes after p lags, which is nothing but the

order of AR process. For h ≤ p, PACF is not necessarily zero. Hence, based on this, the

order of AR process can be estimated, as the PACF cuts off after lag p. It can be further

shown that PACF tails off for MA processes. However, for ARMA processes, both ACF

and PACF tail off.

In spite of the techniques described above, sometimes it becomes extremely difficult

to come up with the exact order of the model in a real life scenario, but an approximate

order can be obtained. Further, to find the exact order to use for the time series, AIC

(Akaike information criterion) [88] is used. AIC is a measure of relative goodness of fit

79

of different models to the observed data. It provides a nice tradeoff between goodness

of fit and complexity of the model. Goodness of fit is measured by likelihood function,

which is nothing but the probability of the observed outcomes, given the parameters.

And, complexity of the model is measured in terms of total number of parameters of the

model. Preferred model among all of the models is the one with minimum AIC value.

4.1.3 ARIMA and Seasonal ARIMA Model for Nonstationary

Series

Most of the real world series are not stationary. This is because of the presence of trend fac-

tor, seasonality, change in variance with time, etc. in the series. ARMA process assumes

that the time series being analyzed is stationary. However, in case of non-stationary time

series, the model can not be directly applied. Trend and seasonality changes the mean

with time, hence making the series non-stationary. This can be addressed by doing some

transformations and operations on the series and making it stationary. For example, if

the series has a linear trend, then differencing a series will remove the trend from series.

As an instance, the following series has trend and a stationary component:

Xt = β0 + β1t+ Yt (4.32)

Here, assume Yt is stationary. Because of time varying mean, Xt becomes non-stationary.

Taking the difference of such a process will lead to a stationary process:

∇Xt = Xt −Xt−1 = β1 + Yt − Yt−1 = β1 +∇Yt (4.33)

ARIMA (AutoRegressive and Integrated Moving Average) model is an extension of

ARMA, where the processXt is assumed to be an integrated process (which on differencing

becomes stationary). In general, it may be required to difference the series multiple times,

not just once. The precise definition is as follows:

80

Definition 12. A process is said to be ARIMA(p, d, q) if

∇dXt = (1−B)dXt (4.34)

is ARMA(p, q). The model can be represented in the following form:

φ(B)p(1 − B)dXt = θ(B)qwt (4.35)

where, (1 − B)Xt = Xt − Xt−1, which basically implies the differencing of Xt. The

symbols in bold are newly introduced into the ARMA equation 4.22. The differencing

may have to be performed a number of times to obtain the stationarity, which is why the

differencing operator (1−B) is applied d times.

Finally, there is another important characteristic that the real-world time series ex-

hibit, which is seasonality. Seasonality is apparent in number of human behavior related

data. For example, organizational data based on day and night patterns which is typi-

cally dictated by the working hours of an organization usually has seasonal component.

Similarly, based on business cycles of an organization, monthly or quarterly patterns are

quite observable. However, the presence of seasonality in the time series also makes it

non-stationary. In case of seasonal time series, the dependence on the past tends to occur

most strongly at multiples of some underlying seasonal lag S. Seasonal ARIMA is an

extension of ARIMA model to include seasonal components, which capture the seasonal

variations in the series. Mathematically, the seasonal lag S can be represented using

backward operator S times, that is, BS(Xt) = Xt−S.

The seasonal part of an SARIMA model has the same structure as non-seasonal one in

ARIMA: it may have an AR factor, an MA factor, and an order of seasonal differencing.

The seasonal differencing helps to remove the seasonality, which basically meansXt−Xt−S.

As in the case of ARIMA model, the seasonal differencing might have to be performed

several times. Seasonal AR factor means the regression of Xt on Xt−S, Xt−2∗S, ... ,

Xt−P∗S. In a similar way, a seasonal autoregressive operator can be used to represent the

81

same.

ΦP (BS) = 1− Φ1B
S − Φ2B

2∗S − ...− ΦPB
P∗S (4.36)

Similarly, MA factor implies the regression on past seasonal noise terms and a seasonal

moving average operator captures the same.

ΘQ(BS) = 1−Θ1B
S −Θ2B

2∗S − ...−ΘQB
Q∗S (4.37)

Incorporating these ideas (seasonal AR, MA and differencing operators) into the usual

ARIMA model leads to the final model that is used in this work.

Definition 13. The seasonal autoregressive integrated moving average (SARIMA) model,

SARIMA(p, d, q)× (P,D,Q)S, is given by

ΦP (BS)φp(B)(1 − BS)D(1−B)dXt = ΘQ(BS)θq(B)wt (4.38)

where, ΦP (BS) and ΘQ(BS) are the AR and MA polynomials of seasonal part, and (1−BS)

is the difference operator with a seasonal difference lag S and the rest of the symbols are

defined earlier in the section.

Here, the symbols in the bold are newly introduced into the ARIMA equation 4.35.

SARIMA model is used for the data sets, HTTP logs and mail logs. Next section applies

the theoretical concepts discussed in this section.

4.2 Modeling Cloud workloads

In this section, workloads that are the potential candidates for cloud systems are modeled

using time series. In this thesis, there are two workloads that are used and are collected

from the institute: web server and mail server workload, thereby represent the real world

data. These are modeled using Seasonal ARIMA model due to their characteristics like

dependence on past values, seasonality etc. which will be discussed in the following

subsections.

82

0 100 200 300 400

0
50

00
00

15
00

00
0

25
00

00
0

Time (in hours)

Re
qu

es
t ra

te
(R

eq
ue

sts
/ho

ur)

(a) Original Request rate - Weekdays

0 100 200 300 400−2
00

00
00

−1
00

00
00

0
50

00
00

15
00

00
0

Time (in hours)

Re
qu

es
t R

ate
 (R

eq
ue

sts
/ho

ur)

(b) Difference series

Figure 4.1: Web server logs

4.2.1 HTTP Logs

The first workload comprises of HTTP requests receiving by the web server. Web servers

are one of the most popular I/O workloads hosted on cloud systems. Due to high variabil-

ity in these workload, they can gain significantly from the elastic resource provisioning.

Normally, web applications hosted on cloud are multi-tier (consisting of different com-

ponents in different VMs). In such case, this workload would represent the workload of

front-end component. Normally in large-scale distributed systems like the Cloud, schedul-

ing decisions to reallocate resources are taken at the granularity of one hour. Further,

the chosen workload also does not miss out the significant variations if the workload is

averaged out for one hour. Therefore, each point represents the total number of requests

for one hour and the scheduling decision for the next one hour needs to be taken. The

steps required to produce a good forecast are: finding the order that best describes the

model, finding coefficients of the polynomials of obtained order, testing goodness of fit,

and forecast using the system equation. These steps are described below.

The request rate variations, are first modeled in the form of a discrete time series.

Figure 4.1(a) shows the workload collected for the weekdays. The first observation is that

this request rate series is not stationary as the mean doesn’t remain constant. This is

because it has a seasonal trend of 24 hours. Hence, to model seasonal component, first

the difference of the series with a difference interval of 24 hours is taken. Or, in other

83

words, if Xt denotes the weekdays time series, then the difference series is Xt − Xt−24.

Figure 4.1(b) shows the difference series at a seasonal lag.

The next step is to identify whether there is need for further differencing. This is

determined by testing whether the series has become stationary or not. In statistics,

there are several tests that are proposed in the literature to test the stationarity of the

series. In this thesis, Augmented Dickey-Fuller (ADF) Test [89] is used to test the series’

stationarity. The results of the ADF test when applied on the difference series are shown

in Table 4.1.

Dickey-Fuller Value Lag order p-value
-5.8156 7 0.01

Table 4.1: Augmented Dickey Fuller Test

The more negative is the value of Dickey-Fuller statistic, stronger is the rejection

of the hypothesis that the series is non-stationary. The value -5.8 is smaller than the

critical value (-3.50 at 95 percent confidence level) [89]. Also, the low p-value indicates

the more confidence in the result of the statistic [90]. Supported by both the facts, the

null hypothesis that the series is non-stationary can be rejected.

Since the stationary series has been obtained, no further differencing of series is needed.

With the above observations, the orders d = 0, D = 1 and S = 24 are fixed, as only one

seasonal differencing at lag of 24 hours is required.

The next step is to come up with the order of the AR, MA and seasonal AR, MA

polynomials. The approximate idea about the order can be obtained by looking at the

ACF and PACF plots of the series. Figure 4.2 shows the ACF and PACF plots, using stats

package in R [91]. As already discussed, PACF tells about the order of MA polynomial

and ACF gives an idea about the order of AR polynomial. The same is valid for the

seasonal AR and MA polynomials, that is, order of seasonal AR and MA polynomial can

be approximated by looking at the seasonal lag in PACF and ACF plots respectively.

Characteristics of the ACF of the series tend to show a strong peak at a lag of 24 hours,

hence there is a possibility of first order seasonal MA polynomial, that is, Q = 1. Similarly,

84

0 50 100 150 200

−1
.0

−0
.5

0.
0

0.
5

1.
0

Lag

AC
F

V1

(a) ACF of difference series

0 50 100 150 200

−1
.0

−0
.5

0.
0

0.
5

1.
0

Lag

PA
C

F

Series diff(total, 24)

(b) PACF of difference series

Figure 4.2: Difference Series characteristics

characteristics of PACF of the series show two peaks at lags of 24 and 48 hours, hence

there is a possibility of second order AR polynomial, that is, P = 2. Another possibility

is that both seasonal AR and MA polynomials might be needed.

For the non-seasonal components, ACF and PACF are looked at within lags, h =

1, 2, ..., 23. It may be observed that both the ACF and PACF are tailing off. The parsi-

monious approach suggests that p = 1, q = 1 can be considered.

Based on the above observations, following three models are considered for the Seasonal

ARIMA modeling:

SARIMA(p, d, q)× (P,D,Q)S =



(1, 0, 1)× (2, 1, 0)24 AIC = 5535.83

(1, 0, 1)× (0, 1, 1)24 AIC = 5490.2

(1, 0, 1)× (2, 1, 1)24 AIC = 5492.25

Along with the models, their corresponding AIC values are also shown found by using

Arima() function from forecast package [92] in R. As discussed earlier, the model with

the minimum AIC value is chosen. The obvious choice is the second model.

85

Once the order of all of the polynomials is fixed, the coefficients are computed using the

Arima() function. Using the order found above, Arima function returns the coefficients

as shown in Table 4.2.

Coefficients ar1 ma1 sma1

Values 0.7428 -0.5509 -0.8116
s.e. 0.0839 0.1032 0.0362
Absolute
Ratio

8.85 5.33 22.4

Table 4.2: Seasonal ARIMA coefficients for web server workload

The above result are the coefficients of the AR, MA and Seasonal MA polynomial.

The s.e. denotes the standard error for each of the coefficient found and the absolute ratio

denotes the magnitude of the ratio of the corresponding coefficient to the standard error.

The rule of the thumb is if the ratio of the coefficient to its standard error comes out to

be less than 2, then that coefficient is not correctly determined and should be omitted

from the equation. In this case, the absolute ratio for all of the coefficients is well above

2 and hence all of the coefficients can be kept intact. Using the above coefficients, the

Seasonal ARIMA model equation is obtained as follows:

(1− 0.7428B)(1−B24)Xt = (1− (−0.5509)B)(1− (−0.8116)B24)wt

=⇒ (1− 0.7428B)(Xt −Xt−24) = (1 + 0.5509B)(wt + 0.8116wt−24)

=⇒ Xt − 0.7428Xt−1 −Xt−24 + 0.7428Xt−25 = wt + 0.5509wt−1 + 0.8116wt−24 + 0.4471wt−25

=⇒ Xt =



0.7428

1

−0.7428

1

0.5509

0.8116

0.4471



T 

Xt−1

Xt−24

Xt−25

wt

wt−1

wt−24

wt−25



(4.39)

86

Standardized Residuals

Time

0 100 200 300 400

−3
−1

1
2

3

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

AC
F

ACF of Residuals

●
●

●
●

●

●

●
●

●
●

● ●
● ● ●

● ● ● ● ● ● ● ● ●

●
● ● ● ●

● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

0 10 20 30 40 50

0.
0

0.
4

0.
8

p values for Ljung−Box statistic

lag

p
va

lue

Figure 4.3: Seasonal ARMA Modeling Test Results

The equation 4.39 comes out to be the governing equation for the web server workload.

Once the modeling is done, its goodness of fit can be checked by testing the residuals of

the generated model from the actual workload. The independence of the residuals ensure

that there is no more information in the data that can be extracted. Figure 4.3 shows

the diagnostic results of the data fit. It shows standardized residuals of the generated

model, their ACF and the p-values of Ljung-Box statistic, which indicate the dependence

among the residuals. There is no evident pattern in the residuals which is a good sign of

independence. Further, ACF of the residuals are almost zero at all lags, which shows there

is no correlation among the residuals. The final test is checking the p-values of Ljung-Box

statistic, low p-values (close to 0) indicate dependence among the residuals. In this case,

all of the p-values of Ljung-Box statistic are high (close to 1), which implies that the

residuals are independently distributed. High p-values indicate that the null hypothesis

(Null hypothesis is that the model is good fit) cannot be rejected at any reasonable level

of significance, which justifies that the model is correctly specified [83].

87

Next, to forecast the demand, the model generated above is used for prediction. Along

with the true forecast, Seasonal ARIMA model is also capable of forecasting bounds for

a given confidence interval. The collected web server workload is for the 20 days which

translates into 480 observations (one observation corresponds to one hour data). In this

study, 240 observations are used to construct the model which is reasonable amount of

data to build the model. It is then used to forecast the workload for next cycle. Once

the next data point is observed, the model is updated to include this point to forecast

the next observation. Similarly, the forecast is generated for the next 240 observations.

Figure 4.4(a) shows the forecast based on the model constructed above. Solid line shows

the observed values, and the upper bound of the forecast using different confidence inter-

vals is shown. 0% confidence interval implies the actual forecast with no bounds. As the

confidence interval is increased, the upper bound of the forecast moves upwards.

Finally, the forecasted workload needs to be converted to resource requirement. In or-

der to do this, HTTP workload needs to be simulated when web server is actually hosted

on cloud. To simulate the HTTP workload, web server is hosted on a VM with Xen as

the underlying hypervisor. OpenNebula cloud is used to build the IaaS cloud. In order to

generate the HTTP requests, the same client program httperf is used. The system con-

figuration of the experimental machine is the same as was discussed in previous chapter.

Using the monitoring framework discussed in previous chapter, Figure 4.4(b) shows the

variation of VM CPU usage with request rate. CPU requirement of VM increases with

increase in request rate almost linearly.

Using the above experimental results, predicted workload is translated into predicted

resource requirement. Since the original workload is also known, it is translated to obtain

resource requirement. In the case of web server, the resource considered for dynamic

provisioning is VM CPU and the other resources (like memory, network bandwidth) are

considered unconstrained. Figure 4.4(c) shows the comparison of the actual and predicted

VM CPU requirement using the forecast obtained by Seasonal ARIMA . Again, based on

the different confidence intervals of the bound of the forecast on request rate, VM CPU

requirements are derived as shown in the Figure 4.4(c). Since the VM CPU requirement

88

0 100 200 300 4000.0
e+0

0
4.0

e+0
6

8.0
e+0

6
1.2

e+0
7

Time (in hours)

Re
que

st R
ate

 (R
equ

est
s/h

our
)

Original workload
Predicted (alpha = 0%)
Predicted (alpha = 75%)
Predicted (alpha = 99.5%)

(a) Workload forecast

0e+00 4e+06 8e+06

10
20

30
40

Request Rate (Requests/hour)

V
M

 C
P

U
 R

eq
ui

re
m

en
t (

in
 p

er
ce

nt
)

(b) Resource Requirement for Web Server

350 400 450

0
10

20
30

Time (in hours)

CP
U R

eq
uir

em
en

t (i
n p

erc
en

t)

Actual CPU requirement
Predicted (alpha = 0%)
Predicted (alpha = 75%)
Predicted (alpha = 99.5%)

(c) VM CPU requirement forecast

0e+00 4e+06 8e+06

10
15

20
25

30

Request Rate (Requests/hour)

H
yp

er
vi

so
r's

 C
P

U
 o

ve
rh

ea
d

fo
r

V
M

 (
in

 %
)

(d) Virtualization overhead for Web
Server

350 400 450

0
5

10
15

20
25

Time (in hours)

Hy
pe

rvi
so

r C
PU

 ov
erh

ea
d f

or
VM

 (in
 %

)

Actual
Predicted (alpha = 0%)
Predicted (alpha = 75%)
Predicted (alpha = 99.5%)

(e) Hypervisor’s CPU overhead forecast

Figure 4.4: Forecast with actual data

89

is almost linear with respect to request rate, forecast of CPU requirement is on the similar

lines to that of forecast of request rate. Further, hypervisor’s overhead for the VM is also

a resource that is predicted along with VM’s resources. For this workload, Figure 4.4(d)

shows the variation of virtualization overhead in the form of hypervisor’s CPU usage with

the change in workload. Figure 4.4(e) finally shows the forecast of virtualization overhead

on the similar lines of VM’s CPU requirement forecast.

Provisioned resources based on the forecast actually dictate the system’s performance.

Hence, forecast accuracy is measured in terms of resource requirement against allocation.

There can be several metrics that can be used to check the forecast accuracy. In this thesis,

the forecast accuracy is measured by a well known metric called SMAPE (Symmetric Mean

Absolute Percentage Error), which is defined as follows:

SMAPE =

∑
|Xt − X̂t|∑
(Xt + X̂t)

(4.40)

where, Xt is the actual resource requirement and X̂t is the predicted resource requirement.

The SMAPE values for web server workload using Seasonal ARIMA model come out to be

8.849851% for VM requirement and 5.835377% for hypervisor’s CPU overhead forecast.

These SMAPE errors correspond to the actual forecast, that is, for the 0% confidence

interval. This includes both over-prediction errors and under-prediction errors and are

treated equally. However, the cost model discussed in the chapter 6 treats both errors

differently.

4.2.2 Mail Logs

Another workload tthat exhibits high variability is that of mail server. The mail server

workload deals with the number of incoming and outgoing mails per unit time. Here, the

outgoing mail server workload has been used. Mail services are again widely deployed

on clouds. A number of SaaS vendors provide mail services e.g. Google Apps for Busi-

ness [93], VMware Zymbra [94] etc. Mail server workloads are also inherently variable, as

the workload is usually higher during the working hours of any organizations than other

90

times.

Figure 4.5(a) shows the mail server workload for the weekdays. It is comparatively

more intermittent than the web server workload. A similar analysis as for previous work-

load is done for this workload as well. On the similar lines of web server time series, the

order that is found for this workload is the following: (2, 0, 0) × (0, 1, 1)24. Using this

order, the coefficients are found as shown in Table 4.3.

Coefficients ar1 ar1 sma1
Values 0.3223 0.1859 -0.7991
s.e. 0.0506 0.0485 0.0440
Absolute ratio 6.36 3.83 18.16

Table 4.3: Seasonal ARIMA coefficients for mail server workload

The standard errors are again not significant and the absolute ratios are well above

2, hence all of the coefficients can be kept in the equation. The equation governing the

system for mail server workload comes out to be following:

(1− 0.3223B − 0.1859B2)(1−B24)Xt = (1− (−0.7991)B24)wt

=⇒ (1− 0.3223B − 0.1859B2)(Xt −Xt−24) = wt + 0.7991wt−24

=⇒ Xt − 0.3223Xt−1 − 0.1859Xt−2 −Xt−24 + 0.3223Xt−25 + 0.1859Xt−26 =

wt + 0.7991wt−24

=⇒ Xt =



0.3223

0.1859

1

−0.3223

−0.1859

1

0.7991



T 

Xt−1

Xt−2

Xt−24

Xt−25

Xt−26

wt

wt−24



(4.41)

91

0 100 200 300 40015
00

0
25

00
0

35
00

0
45

00
0

Time (in hours)

N
um

be
r o

f M
ai

ls
 p

er
 h

ou
r

(a) Mail Server workload

0 100 200 300 400

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

Time (in hours)

Nu
mb

er
 of

 M
ail

s p
er

 ho
ur

●●●●
●

●

●

●
●
●

●

●

●
●
●

●

●

●

●
●●●
●●●●●●

●

●

●
●
●●

●
●●
●●

●

●

●●●●●●●●●●
●

●

●●●

●

●

●

●
●

●
●

●

●

●
●●●●
●●●●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●●●●
●●●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●●
●●
●●
●●●

●

●
●

●

●

●
●

●
●

●

●

●
●
●

●
●●●●●●●

o

Original workload
Predicted (alpha = 0%)
Predicted (alpha = 75%)
Predicted (alpha = 99.5%)

(b) Workload forecast

15000 25000 35000 45000

22
00

00
26

00
00

30
00

00

Request Rate (No. of Mails per hour)

M
em

or
y

(in
 K

B)

(c) VM Memory Requirement for Mail Server

300 320 340 360 380 400 420

20
00

00
24

00
00

28
00

00

Time (in hours)

Me
mo

ry
 R

eq
uir

em
en

t (
in

KB
)

●●●●●

●

●

●
●
●

●

●

●●
●

●

●

●

●

●

●
●

●●●●●●

●

●

●
●
●
●

●
●
●
●●

●

●

●
●
●●●

●●●●●●

●

●●●

●

●

●

●
●

●
●

●

●

●

●
●●●

●●●●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

●
●
●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●

o

Actual Memory requirement
Predicted (alpha = 0%)
Predicted (alpha = 75%)
Predicted (alpha = 99.5%)

(d) VM’s Memory requirement forecast

15000 25000 35000 45000

10
50

00
0

11
50

00
0

12
50

00
0

Request Rate (No. of Mails per hour)

Bu
ffe

r C
ac

he
 S

iz
e

in
 D

om
0

(in
 K

Bs
)

(e) Buffer cache requirement in Dom0 for Mail
Server

300 320 340 360 380 400 420

95
00

00
10

50
00

0
11

50
00

0
12

50
00

0

Time (in hours)

Bu
ffe

r C
ac

he
 R

eq
uir

em
en

ts
(in

 K
Bs

)

Actual Memory requirement
Predicted (alpha = 0%)
Predicted (alpha = 75%)
Predicted (alpha = 99.5%)

(f) Dom0’s Buffer cache requirement forecast

Figure 4.5: Mail server workload modeling

92

The final system equation explains that the current value of time series depends on the

past two hours workload and also to the previous day’s workload (because of the terms

Xt−24, Xt−25, Xt−26, wt−24). Again, similar analysis of the residuals yields that the model

is correctly specified. Finally, based on this model, the forecast with a given confidence

interval is obtained. Figure 4.5(b) shows the upper bound of the forecast at different

confidence intervals.

Similar to web server workload, in order to derive resources corresponding to mail

server workload, mail server needs to be hosted onto the cloud to simulate the mail server

workload. An experiment is performed where in mail server is hosted on a VM with the

same cloud and hypervisor as previous case. For generating the mail requests, a client

program smtp-source 2 is used. smtp-source is a simple mail benchmarking program which

sends mails in parallel to a mail server. To measure the performance of mail server, the

delivery time of mails is extracted from the logs of mail delivery. The performance metric

used here is the average response time of all of the mails delivered. However, in this case,

CPU utilization does not vary much, but the main memory used has significant variation.

Hence, the resource to be elastically provisioned in this case is considered as memory.

Figure 4.5(c) shows the variation of VM memory usage with request rate (Number of

Mails per unit time).

Further, in the case of mail server, the resource considered for the dynamic provi-

sioning is VM memory since it is observed to be varying significantly with change in

workload. Figure 4.5(d) shows the comparison of the actual and predicted VM memory

requirement using the forecast obtained by Seasonal ARIMA. SMAPE error in case of

memory requirement prediction (for 0% confidence interval) using this model comes out

to be 6.081282%.

In the case of mail server experiment, mails are written on the VM’s disk. As the

workload is increased, more is the disk activity that happen in the VM and consequently

in the Dom0 as the VM image is treated as a file in Dom0. Linux uses memory based

caching technique for writing and reading through disk files [95]. Hence, in the Dom0,

2http://www.postfix.org/smtp-source.1.html

93

enough buffer cache is needed to support the increased disk activity in the VM. The buffer

cache usage in the Dom0 with the workload is shown in Figure 4.5(e). A similar forecast

model for buffer cache requirement prediction is developed and is shown in Figure 4.5(f).

SMAPE error in this case is found out to be 1.049119%. However, overhead in terms of

hypervisor CPU usage is observed to be very small in this case, since the network traffic

here is very less in this case as compared to web server workload and therefore it is not

shown here.

4.3 Summary

Forecasting is an important step to build the elasticity engine, as it helps in taking the

scheduling decisions proactively. This chapter provides the design of the forecasting en-

gine based on a time series model. The forecasting engine built provides the forecast

bounds (an upper bound and a lower bound) for a given confidence interval. The Sea-

sonal ARIMA time series model is used for forecasting of cloud workloads (web server and

mail server workloads have been used here) and it provides good forecasting accuracy for

these workloads.

94

Chapter 5

Forecasting Engine based on

Gaussian Processes

Forecasting engine involving significant human interaction might not be an ideal candidate

in Clouds as the sole purpose of introducing the component is to reduce manual effort

by outsourcing the tedious task of coming up with optimal resource requirement to this

component. In the previous chapter, forecasting engine based on Seasonal ARIMA model

was explained. It can be observed that coming up with the number of parameters for

Autoregressive model or Moving average model, and even the value of seasonal lag term

was not trivial to find and easy to automate. However there exist tools for ARIMA

model (like auto.arima() [96] in R) which find the parameters automatically, but as of

now, for Seasonal ARIMA, they do not. Moreover, the results of manual and automatic

tools for prediction can differ since it requires human effort to take better decisions in

few situations. Consequently, looking at forecasting models which are non-parametric is

a next step. Gaussian Processes is an example of such a model [97]. However, there are

certain other problems with this model like the prior assumption about the data, which

also involves initial human intervention. But once the prior has been selected, the rest of

the process can be easily automated.

This chapter details another forecasting technique used in the component “Forecasting

Engine on a Cost Model”, namely Gaussian Processes. The introduction to Gaussian

95

processes is presented in Section 5.1 encompassing the basic intuition, formal definition,

Gaussian prior, kernel functions, bayesian framework etc.. Then, the model is applied

to cloud workloads to obtain a forecast, which includes making a choice of the prior

covariance function. Section 5.2 explains the same and demonstrates the prediction output

while using different kernel functions.

5.1 Introduction to Gaussian Processes

Gaussian process (GP) [97] is a powerful technique in machine learning and has been

applied extensively to classical problems like regression [98] and classification [99]. Time

series analysis, apart from statistical techniques, has also been studied using GP [100].

GP represents a powerful way to perform Bayesian inference [101] about functions. In this

technique, a prior probability distribution is assumed initially over the various functions

possible to describe the underlying process generating data, and then a posterior proba-

bility distribution is obtained after gaining knowledge about the observed values. A prior

denotes the apriori assumptions about the data, the kind of relation that the data points

can exhibit. Then, a posterior improvises the knowledge of the observed over the prior.

More formally, given the training data set D = {(x(i), y(i))|i = 1, 2, ..., n} and a test point

x(n+1), the goal of bayesian forecasting is to compute the distribution P (y(n+1)|D, x(n+1)),

which can be further used for prediction purposes.

Gaussian processes assume Gaussian distribution as prior over the function values.

Each value of the function is assumed to be a random variable with Gaussian distribution.

And the set of values of the function (set of random variables) also form a joint Gaussian

distribution.

Definition 14. Gaussian process is a collection of random variables, any finite number

of which have joint gaussian distribution.

A function can be continuous, involving infinite random variables. But, as the def-

inition suggests, any subset of the random variables form multi-variate Gaussian distri-

bution, hence the problem can be reduced to finite dimensions by taking only the points

96

First Gaussian Variable

−4

−2

0

2

4

Se
co

nd
 G

au
ss

ian
 V

ar
iab

le

−4

−2

0

2

4

Joint Distribution

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.1: Two Dimensional Gaussian Distribution

containing training data and test data.

An example of a Gaussian distribution is shown in figure 5.1, which shows a joint

Gaussian probability density function (a bell shaped curve). The interesting character-

istic of Gaussian (or normal) distribution is that it can be characterized by only two

parameters, mean and covariance. Hence, a Gaussian process is completely specified by

its mean function m(x) and the covariance function k(x, x′), given by

m(x) = E[f(x)] (5.1)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (5.2)

and the Gaussian process can be written as

f(x) ∼ GP (m(x), k(x, x′)) (5.3)

Hence, for the Gaussian process, the prior is expressed as an initial estimate of mean

97

and covariance of the function. If there is no reason to prioritize one mean function over

the other, it is initially assumed to be zero. Covariance function encodes the assumptions

about the similarity of the various data points in function. A general name for a function

k of two arguments mapping a pair of inputs x and x′ into real numbers R is a kernel

and is used interchangeably with covariance function in this thesis. Based on the prior

knowledge about the data, an appropriate covariance function can be chosen. Both mean

and covariance functions are specified by a set of hyperparameters (that is, parameters of

the GP prior), which are collectively denoted by θ here. As an example, the smoothness

in the data can be represented by a covariance function called squared exponential (SE),

or Radial Basis Function (RBF), or Gaussian covariance function. It is defined as follows:

cov(f(x), f(x′)) = k(x, x′) = θ2
1exp

(
−|x− x

′|2

2θ2
2

)
(5.4)

It can be noticed that the covariance between the outputs f(x) and f(x′) is written as

a function of inputs x and x′. For the RBF covariance function written above, covariance

between the nearby points is higher than the points farther away from each other. This

property of above function ensures that the function doesn’t change too rapidly, as they

have high similarity given by high covariance value in the nearby points. There are two

parameters in RBF function, θ1 and θ2. In this case, θ1 captures the magnitude of simi-

larity and θ2 captures the length scale of the function after which the value of the function

can change significantly. Significant changes in function values are allowed when there is

no covariance between the two points. By increasing θ2, covariance rapidly drops down

to zero. Other covariance functions used popularly include Matérn covariance function,

Rational Quadratic (RQ) covariance function, Dot Product covariance function, Periodic

covariance function, neural network covariance function, bessel covariance function etc..

All of these functions are used to explain different characteristics of the data. More

complex covariance functions can be made by the multiplication/addition of the existing

covariance functions.

Given a set of input points {xi|i = 1, 2, ..., n}, the covariance matrix can be obtained

whose entries are Kij = k(xi, xj) = cov(xi, xj). It can be shown that the covariance

98

matrix is always positive semi-definite(PSD) [102] [103], which means that for all vectors

v ∈ Rn, vTKv ≥ 0. This imposes restrictions on the type of matrices that can be used as

covariance matrices as they must be PSD. Now, using the notation of covariance matrix

and mean function, the probability distribution function(pdf) of Gaussian processes can

be represented as follows:

p(y|X, θ) =
1√

2π|K|
exp

(
−1

2
yTK−1y

)
(5.5)

where X denotes the vector of input points and y denotes the vector of observed values

of the underlying function. Let’s first consider the noise-free data, where X represents

the training data and X∗ represents the test points for which a forecast is to be made.

The GP prior including the test point would be as follows.

 f

f∗

 ∼ N
0,

K(X,X) K(X,X∗)

K(X∗, X) K(X∗, X∗)


 (5.6)

Here, K(X,X) denotes the original covariance matrix involving training points which

is a n× n matrix. Suppose there are n∗ test points, then K(X,X∗) would be a n× n∗

matrix of covariances evaluated at all pairs of training and test points, and similarly for

other entries K(X∗, X) and K(X∗, X∗) in the above covariance matrix involving both

training and test data. The above distribution represents the prior distribution of GP,

without actually looking at the data. Posterior distribution changes this prior distribution

based on the training data. Intuitively, all of the functions based on the prior which pass

through the training data (for noise-free regression) or pass nearby training data (for noisy

data) are assigned more probability than others. The posterior can be calculated using

Multivariate Gaussian Theorem (Appendix A.2 in [97]), stated as below.

99

Theorem 1. Suppose a and b are jointly distributed Gaussian random vectors such thatf(a)

f(b)

 ∼ N

µa

µb


K(a,a) K(a, b)

K(b,a) K(b, b)


 (5.7)

then the marginal distribution and conditional distribution of a given b are

f(a) ∼ N (µa, K(a,a)) (5.8)

f(a|b) ∼ N
(
µa +K(a, b)K(b, b)−1(b− µb),

K(a,a)−K(a, b)K(b, b)−1K(a, b)T
) (5.9)

The above theorem can be used to calculate the posterior predictive distribution of

output f∗ corresponding to test inputs X∗. Using equation 5.9, the posterior distribution

of f∗ corresponding to prior in equation 5.6 can be found as below.

f∗|X∗, X,f ∼ N
(
K(X∗, X)K(X,X)−1f ,

K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)
) (5.10)

It can be noticed that the posterior distribution is again Gaussian. Hence, as the data

arrives, the distribution can again be updated to obtain another Gaussian distribution.

For the time series, the test point X∗ would always be ahead of X. For other applications,

test point can be scattered in between the set X. Furthermore, the data can be assumed

as noisy. To incorporate noise components, noise variance σ2 can be added to the diagonal

elements of covariance matrix 1. The noise variance can also be a part of hyperparameters

of the model. The posterior distribution incorporating noise components(Section 2.2

in [97]) can be written as follows.

1Diagonal elements of covariance matrix represent the variance, hence incorporating noise would

increase the variance. At other entries in the matrix, the addition would be 0 as the noise is assumed to

be uncorrelated.

100

f∗|X∗, X,f ∼ N
(
K(X∗, X)(K(X,X) + σ2

nI)
−1
f ,

K(X∗, X∗)−K(X∗, X)(K(X,X) + σ2
nI)
−1
K(X,X∗)

) (5.11)

Another important observation that can be made from posterior distribution is that

the mean prediction (that is, K(X∗, X)(K(X,X) + σ2
nI)
−1
f in Equation 5.11) is a linear

combination of observations f . Hence, this is sometimes referred to as a linear predictor in

terms of past observations. However, it should not be confused with the type of regression.

Based on the covariance function, the regression can be non-linear as well, that is, the fit

that it produces can be of any shape.

5.1.1 Obtaining Optimal Hyperparameters

Choosing the right value of hyperparameters of the mean and covariance functions are

important to build useful Gaussian process models. In a bayesian framework, the posterior

of the hyperparameters θ can be found using Baye’s rule as follows:

p(θ|y,X) =
p(y|X, θ)p(θ)

p(y|X)
(5.12)

where,

p(θ) is the prior of the hyperparameters,

p(θ|y,X) is the posterior of the hyperparameters,

p(y|X, θ) is likelihood function (the probability density of observations given the param-

eters), and

p(y|X) is marginal likelihood function with the hyperparameters marginalized.

The marginal likelihood can be further calculated as follows.

p(y|X) =

∫
p(y|X, θ)p(θ)dθ (5.13)

101

There could be several metrics by which an estimate of θ can be obtained. Expected

value (Mean) of the posterior distribution of θ minimizes the expected mean square er-

ror [104]. The evaluation of the mean of hyperparameters posterior (equation 5.12) in-

cludes the evaluation of the integral in equation 5.13. This integral might be difficult to

evaluate for practical purposes. Hence, instead of finding out the expected value, an ap-

proximation method called Maximum a Posteriori (MAP) is used which selects that value

of θ which corresponds to the maximum value of posterior distribution. This approach

saves a lot of overhead of calculating the marginal likelihood since it is independent of θ.

Another approach which selects the θ that corresponds to maximum value of the likeli-

hood function, is known as type II maximum likelihood (ML-II) [97] approximation. This

approximation uses the observation that likelihood function is proportional to the poste-

rior distribution. Maximum likelihood approach is a common approach used in selecting

values of hyperparameters for Gaussian processes [69], as an analytical expression can be

easily derived for it. It can be shown that maximizing the likelihood function is equivalent

to maximizing its logarithm (log likelihood function), since the logarithm is monotonically

increasing function. Based on gaussian probability density function (equation 5.5), the

log likelihood can be easily found as follows.

log(p(y|X, θ)) = −1

2
yTK−1

y y − 1

2
log|Ky| −

n

2
log(2π) (5.14)

where, Ky = K(X,X) + σ2
nI is the covariance matrix for the noise target y (and

K(X,X) is the covariance for the noise-free function f). It is relatively simpler to max-

imize the log likelihood to obtain the hyperparameters (Section 2.2 in [97]), than maxi-

mizing likelihood function directly.

102

0 50 100 150 200

0
20

00
00

40
00

00
60

00
00

80
00

00
10

00
00

0
12

00
00

0

|X−X'|

Pe
rio

dic
 Co

var
ian

ce
 Fu

nc
tio

n

theta1=1000
theta2=24

theta3=1
theta3=0.5
theta3=0.25

Figure 5.2: Effect of roughness parameter on Periodic Covariance Function

5.2 Modeling Cloud workloads using Gaussian Pro-

cesses

In this section, cloud workload modeling using Gaussian Processes is described. The

same workloads used in the previous Chapter, namely webserver and mailserver work-

load, are used here. The important consideration while applying Gaussian processes is

selecting prior covariance and mean function, which are calculated first. Secondly, using

the GP prior, optimal value of hyperparameters is calculated using Maximum Likelihood

approach.

5.2.1 Selection of Kernel Function

Since the prior kernel function encodes the assumptions about the data, the basic as-

sumption about both the webserver and mailserver workloads is that they are periodic.

Hence, periodic covariance function class is taken to be as the prior for the given data.

Mathematically, periodic covariance function class is of the following form:

103

−5780

−5760

−5740

−5720

−5700

−5680

−5660

−5640

1200000 1400000 1600000 1800000 2000000 2200000

20

30

40

50

60

Likelihood Function Value with hyperparameters

theta1

the
ta2

Figure 5.3: Likelihood Function variation with hyperparameters

K(X,X ′) = θ2
1exp

−2 ∗ sin2
(

Π(X−X′)
θ2

)
θ2

3

 (5.15)

This class of periodic function includes all periodic functions with different periods,

ampitudes and roughness (or smoothness). Here, θ1 controls the amplitude of the func-

tion, θ2 controls the period of the function and θ3 controls the roughness of the periodic

covariance function. The effect of first two hyperparameters θ1 and θ2 is quite intuitive,

and the effect of θ3 on the covariance function is shown in Figure 5.2. As is clear from the

figure, small value of θ3 tends to a sharp peak at the periodic interval and decays down

to zero rapidly at other times. All of these three hyperparameters can generate all shapes

of periodic covariance funtions.

5.2.2 Prediction Results

Web server workload

There are three hyperparameters namely θ1, θ2 and θ3 for which optimal values need to

be calculated. For the webserver workload, the variation of likelihood function with the

104

−5950

−5900

−5850

−5800

−5750

−5700

−5650

−5600

0e+00 1e+07 2e+07 3e+07 4e+07

5

10

15

Likelihood Function Value with hyperparameters

theta1

the
ta3

Figure 5.4: Likelihood Function variation with hyperparameters

two of the parameters θ1 and θ2 is shown in Figure 5.3. The color in the figure represents

the value of likelihood and the two axis represents different values of hyperparamters. It

shows that global maxima is seen at θ2 = 24 with local maximas at 48, 72 hours and so

on, which is expected as they are multiples of days. Hence, the optimal value of θ2 is 24.

Further, keeping the θ2 fixed, the value of θ1 and θ3 is varied and the variation of likelihood

function is shown in Figure 5.4. It clearly shows a region of maxima and the value of

hyperparameters which forms the maxima are θ1 ≈ 4000000 and θ3 ≈ 2.2. However, the

exact value can be found by using any optimization technique. To avoid getting stuck

in local minimas, different starting points are chosen. Using the optimization routine in

R, optimx, the exact results for the hyperparameters using BFGS algorithm [105] are:

θ1 = 4713556, θ2 = 24, θ3 = 2.458337 and noise standard deviation (σ) is 1976770.8.

Using the hyperparameters corresponding to maximum likelihood function, the fore-

cast obtained is shown in Figure 5.5(a). Using the same experimental results of resource

requirement corresponding to the web server hosted in cloud, predicted workload can be

converted into the corresponding resource requirements. Figure 5.5(b) further shows the

comparison of the actual and predicted VM CPU requirement using the forecast obtained

by Gaussian Process model. Finally, Figure 5.5(c) shows the forecast of virtualization

105

0 100 200 300 400

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

30
00

00
0

Time(in hours)

Re
qu

es
t R

at
e

●

●

●

●

●

●

●
●
●●●
●
●
●
●
●
●
●
●●
●
●
●
●●●
●

●

●

●

●

●
●●●●
●
●
●
●
●●
●
●
●
●
●
●●●
●
●

●

●

●
●
●●●●
●
●
●
●●●●
●
●
●
●
●●●
●
●

●

●

●
●
●●●●●
●
●●●●
●
●
●
●
●
●●●
●
●

●

●

●

●
●●
●●
●
●●
●●●
●
●
●
●
●
●●●●
●

●

●

●

●
●
●●●●
●●
●●
●
●
●
●
●
●
●
●●●
●
●

●

●

●
●
●●●●
●●
●

o

Fit
Forecast − (alpha = 0%)
Forecast − (alpha = 99.9%)

(a) Workload forecast

350 400 450

0
10

20
30

Time (in hours)

CP
U

Re
qu

ire
m

en
t (

in
 p

er
ce

nt
)

●

●

●

●

●

●●

●
●

●

●
●●

●

●

●
●
●
●
●

●

●

●
●
●

●

●

●

●

●●
●

●
●
●
●●
●

●

●
●
●
●

●
●

●

●
●
●

●

●

●

●

●●
●●●●●●

●

●
●
●
●
●
●
●

●

●
●●

●

●

●

●

●

●●●●●●●
●
●
●
●
●
●

●
●

●

●
●●

●

●

●

●

●

●●●●●●●
●

●
●
●
●
●

●
●

●

●

●●
●

●

●

●

●

●
●●●●●●●

●
●

●
●
●

●
●

●

●

●●
●

●

●

●

●

●
●●●●●●●

●

o

Actual CPU requirement
Predicted (alpha = 0%)
Predicted (alpha = 99.9%)

(b) VM CPU requirement forecast

350 400 450

0
5

10
15

20
25

30

Time (in hours)

Hy
pe

rv
iso

r C
PU

 o
ve

rh
ea

d
fo

r V
M

 (i
n

%
)

Actual
Predicted (alpha = 0%)
Predicted (alpha = 99.9%)

(c) Hypervisor’s CPU overhead forecast

Figure 5.5: Web server workload prediction using Gaussian Processes

106

0 100 200 300 400

20
00

0
30

00
0

40
00

0
50

00
0

Time(in hours)

Re
qu

es
t R

at
e

●

●●●●
●
●

●

●

●

●

●
●
●●●●
●
●

●

●

●

●
●
●
●●●●
●
●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●
●
●
●●●●●
●

●

●

●

●

●
●
●
●
●●●
●

●

●

●

●

●
●
●●●●
●
●
●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●

●
●●●●●
●
●

●

●

●

●

●

●
●
●●●
●

●

●

●

●

●
●
●
●●●●●
●

●

●

●

●

●

●
●●
●●
●

●

●

●

●

●

o

Fit
Forecast − (alpha = 0%)
Forecast − (alpha = 95%)
Forecast − (alpha = 99.9%)

(a) Workload forecast

300 320 340 360 380 400 420

20
00

00
24

00
00

28
00

00

Time (in hours)

M
em

or
y

Re
qu

ire
m

en
t (

in
 K

B)

●

●●●●
●
●

●

●

●

●
●
●●●●●●

●
●

●

●

●

●
●
●●●●

●
●

●

●

●

●
●
●
●●

●●●
●

●

●

●

●

●
●
●●●●●

●

●

●

●

●
●
●●

●●●●
●

●

●

●

●

●
●
●●●●

●
●

●

●

●

●

●
●
●●

●●●
●

●

●

●

●

●
●
●●●●

●
●

●

●

●

●
●
●
●●

●●●
●

●

●

●

●

●
●
●●●●●

●

●

●

●

●

●
●
●●●●●

●

●

●

●

●

o

Actual memory requirement
Predicted (alpha = 0%)
Predicted (alpha = 95%)
Predicted (alpha = 99.9%)

(b) VM Memory requirement forecast

300 320 340 360 380 400 420

10
00

00
0

11
00

00
0

12
00

00
0

Time (in hours)

Bu
ffe

r C
ac

he
 R

eq
ui

re
m

en
ts

 (i
n

KB
s)

Actual Memory requirement
Predicted (alpha = 0%)
Predicted (alpha = 95%)
Predicted (alpha = 99.9%)

(c) Dom0 buffer cache requirement forecast

Figure 5.6: Mail server workload prediction using Gaussian Processes

overhead in the form of hypervisor’s CPU usage towards the VM where web server is

hosted. This has been calculated on the basis of modification in the monitoring frame-

work, which can segregate hypervisor’s effort towards each VM.

Mail server workload

The similar analysis of mail server logs yields the value of hyperparameters as follows:

θ1 = 16100.125, θ2 = 24, θ3 = 0.7883559 and the noise σ is found to 10568.765. Using

these values, the forecast for mail server logs is shown in Figure 5.6(a). Again, to derive

the resource requirement corresponding to the workload prediction, the results obtained in

107

previous chapter are used. Figure 5.6(b) shows the comparison of the actual and predicted

VM memory requirement using the forecast obtained by Gaussian process model. Further,

Figure 5.6(c) shows the comparison of the actual and predicted buffer cache requirement

in Dom0 using the forecast obtained by Gaussian process model.

Prediction Accuracy

To compare the prediction accuracy with the Seasonal ARIMA model, the same metric

SMAPE error is used. Table 5.1 shows the SMAPE error comparison for 0% confidence

interval prediction for both Web server and Mail server workload. Both of the methods

are comparable with respect to prediction accuracy.

Case Seasonal ARIMA Gaussian Process
Web Server VM’s CPU 8.849851% 8.564232%
Mail Server VM’s Memory 1.933894% 2.052788%
Web Server Hypervisor’s CPU effort 5.835377% 6.36905%
Mail Server Buffer Cache Requirement 1.049119%% 1.031191%

Table 5.1: SMAPE Error Comparison

5.3 Summary

Gaussian process is a powerful machine learning based technique for regression and used

for prediction. In this thesis, it is used in the component “Forecasting Engine based on a

Cost Model” of elasticity engine proposed. Gaussian process modeling involves selecting a

prior covariance function based on the initial assumption about the data. The parameters

of the covariance function are called hyperparameters in this case, which are optimized

using Maximum Likelihood approach after observing the data. Forecasting obtained using

Gaussian process model shows a small improvement over Seasonal ARIMA model for the

used workloads.

108

Chapter 6

Evaluation of Elastic Framework

The elastic resources framework that has been proposed in this thesis consists of mainly

two parts: 1) Forecasting engine, and 2) Cost Model. Forecasting engine predicts the

user workload which is then translated into resource requirement. It can produce forecast

bounds for any given confidence interval. Cost model further modifies the forecast in such

a way that it tries to obtain the best trade off between over-allocation and SLA penalty.

It does so by selecting the upper bound of the forecast and finding the appropriate value

of confidence interval which minimizes the sum of two cost functions. The techniques used

for building forecasting engine, that is, Seasonal ARIMA and Gaussian Processes, have

been discussed in the previous chapters. This chapter mainly deals with the cost model

and demonstrates the framework through a case study in continuation with previous

chapters.

Section 6.1 discusses the affect on application’s performance when the resources are

allocated as per the prediction. The aim is to calculate SLA penalty cost for the system

for a given confidence interval by translating the response time into SLA penalty cost for

all of the points where resources allocated by prediction are not sufficient to sustain the

current workload. Section 6.2 then discusses about minimizing the total excess cost by

finding the confidence interval that corresponds to minimum cost. Using that confidence

interval, Section 6.3 then discusses about the imporovement in the resource utilization by

keeping the performance at a respectable level. Finally, Section 6.4 concludes the chapter.

109

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
T

im
e

(i
n

m
s)

VM CPU Allocated

Request Rate - 1440000
Request Rate - 5760000

Request Rate - 23040000
Request Rate - 92160000

Request Rate - 368640000
Request Rate - 1474560000

Figure 6.1: Response time with varying request rates and CPU allocated

6.1 System Performance using prediction

This section discusses the approach used to calculate SLA penalty cost of the system,

when the resources are allocated based on prediction. Basically, when the resources are

under-allocated (under-prediction errors by forecast engine), SLA violations occur because

of increase in response time of the system. Hence, in order to quantify the SLA violations

in the form of a penalty cost, response time of the system needs to be measured when

the resources are provisioned based on the prediction and the system recieves the actual

workload. Once the system behavior is known, it can be then used to find the response

time of the system at each point where the allocated resources based on prediction are

not sufficient to satisfy the demand.

6.1.1 Response time with limited resources

To find the system’s performance behavior, response time of the system is measured after

providing limited resources to the system. For the web server application, response time

of the system is calculated while restricting CPU allocated to the VM and CPU limit is

varied from 0 to 100% for different request rates. As of now, it is assumed that the other

VM resources including memory, network bandwidth etc. and hypervisor resources are

110

230 240 250 260 270 280 290 300

0
50

10
0

15
0

20
0

Memory Allocated (in MB)

Re
spo

nse
 Ti

me
 (in

 se
c)

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●
●

●

Request Rate (No. of Mails per hour)

o
o
o
o

14083.41
17604.26
21125.11
24645.96
28166.81
31687.66
35208.51
38729.36
42250.22
45771.07

Figure 6.2: Response time variation with limited memory

not constrained. However, these can also be the reason for SLA violations. It is not posed

here as it not within the scope of this study.

Figure 6.1 shows the response times observed at different request rates, the VM CPU

is restricted from 2% to 100%. Response time starts decreasing and comes under the

defined performance SLA limit (where SLA violations do not occur, which is set to 50 ms

for web server application), after a certain point. For example, at 368640000 requests per

hour, response time is well under 50 ms after 36-38% of VM CPU. This point is named as

Safe Resource Allocation Point (SRAP). This SRAP increases with increase in the request

rate as can be observed from the Figure 6.1.

On the similar lines of web server performance, for mail server application, response

time of the system is measured by restricting memory to the VM. Figure 6.2 shows

the system response when the VM memory limit is varied from 200 MB to 650 MB for

different request rates. The similar trend can be observed in response time behavior of

the system as in previous case. In the case of mail server, the safe response time has been

assumed to be 5 seconds. This is because mail delivery is a time consuming process and

system has been observed to take under 5 seconds normally without any restriction of

resources [106] [107] [108].

111

6.1.2 Response time using predicted resources

Using the response time behavior of the system under restricted resources, the response

time of the system for simulated workload can be calculated if the predicted resources are

allocated to the system. The resource requirement prediction was shown in the previous

chapters for the web server workload and mail server workload using the two prediction

techniques Seasonal ARIMA and Gaussian process. When the resources are allocated

using the predicted value (0% confidence interval), the response time behavior for all of

the cases (Webserver using Seasonal ARIMA forecast, webserver using gaussian process

forecast, mail server using Seasonal ARIMA forecast and mail server using gaussian pro-

cess forecast) is shown in Figure 6.3. The x-axis denotes time of workload and y-axis

denotes response time. Here, dotted line denotes the safe response time for the system

corresponding to that application. Dark line represents response time of the system when

the resources are allocated based on prediction, which has been calculated using Figure 6.1

and Figure 6.2 by interpolation of limited resources allocated and actual request rate. All

of the points where the response time exceeds the safe limit correspond to SLA violation

points. Further, SLA penalty cost can be determined based on the response time of the

system by using the penalty function described in Chapter 3. SLA penalty cost starts

increasing if the response time of the system increases beyond the safe limit and saturates

after a long point where in the service becomes meaningless to the user.

6.2 Minimizing Excess Cost

Excess cost at each point in the time series can be found as following :

CExcess =



α1 ∗RExcess Over-allocation cost

α2 ∗RTimeExceeded SLA penalty cost

0 otherwise

112

350 400 450

0
1

2
3

4
5

6
7

Time (in hours)

R
es

po
ns

e
Ti

m
e

(lo
ga

rit
hm

ic
 p

lo
t)

in
 m

s SLA Violations Limit
Response Time
 based on prediction

(a) Seasonal ARIMA model for web server workload

350 400 450

0
2

4
6

Time (in hours)

R
es

po
ns

e
Ti

m
e

(lo
ga

rit
hm

ic
 p

lo
t)

in
 m

s SLA Violations Limit
Response Time
 based on prediction

(b) Gaussian process model for web server workload

300 320 340 360 380 400 420

−1
0

1
2

3
4

5

Time (in hours)

R
es

po
ns

e
Ti

m
e

(lo
ga

rit
hm

ic
 p

lo
t)

in
 m

s SLA Violations Limit
Response Time
 based on prediction

(c) Seasonal ARIMA model for mail server workload

300 320 340 360 380 400 420

−1
0

1
2

3
4

5

Time (in hours)

R
es

po
ns

e
Ti

m
e

(lo
ga

rit
hm

ic
 p

lo
t)

in
 m

s SLA Violations Limit
Response Time
 based on prediction

(d) Gaussian process model for mail server workload

Figure 6.3: Response time of the system for predicted workload

113

Here, RExcess denotes the extra resources allocated than required and RTimeExceeded de-

notes the response time of the system that exceeded beyond threshold defined in SLA.

α1 and α2 are the weights for the two cost functions. Total excess cost is the sum of

the excess cost calculated at each point. As mentioned earlier, the upper bound of the

forecast for a given confidence interval is used to provision resources. With the increase

in confidence interval, the upper bound of the forecast increases. This leads to increase

in over-allocation cost for all of the points where allocation is more than the required re-

sources. On the other hand, for all of the points where allocation is less than the required

resources, increasing the confidence interval decreases SLA penalty. Hence, it turns out

that the two excess cost functions are the functions of confidence interval. The objective

is to find the minimum excess cost or a value of confidence interval which minimizes the

total excess cost.

Figure 6.4 depicts the variation of excess cost function with confidence interval for

our data using different weights of the cost, for all of the cases. The x-axis denotes

the confidence interval values ranging from 0 to 100% and y-axis denotes the value of

total excess cost derived for the system when resources are allocated using the upper

bound of the forecast at corresponding confidence intervals. For different values of the

over-allocation cost factor and SLA penalty factor, the variation of total excess cost with

the confidence interval is shown in all of the figures. Choosing different value of weights

associated with over-allocation and SLA penalty cost leads to a different minima. As an

instance, in Figure 6.4(a), by increasing the value of α2 from 0.005 to 0.01, the confidence

interval corresponding to minimum cost increases from 18% to 64%. At higher confidence

interval, SLA violations will be less and over-allocation of resources will be more. In this

way, one can prioritize SLA violations over over-allocation and vice-versa based on the

user’s requirement.

6.3 Improvement using the framework

Using the proposed elastic resource framework, the resources can be allocated as per the

upper bound of the confidence interval which minimizes the total excess cost. This section

114

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Confidence Interval

E
xc

e
ss

 C
o

st
 F

u
n

ct
io

n

Over−allocation cost factor for CPU = 0.002

SLA Penalty slope for response time

0.005
0.01

Indicates Minima

(a) Web Server using Seasonal ARIMA Model

●●●●

●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●

●●

●●

●●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●
●●
●●

●●
●

0 20 40 60 80 100

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Confidence Interval

E
xc

e
ss

 C
o

st
 F

u
n

ct
io

n

Over−allocation cost factor = 0.002

o

SLA violations cost factor
 0.01
 0.2

(b) Web Server using Gaussian process Model

0 20 40 60 80 100

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

Confidence Interval

E
xc

e
ss

 C
o

st
 F

u
n

ct
io

n

●
●●

●
●●

●

●

●
●

●
●

●●●●●●●
●

●
●

●
●●●●●●

●●●

●

●

●

●

●
●

●
●

●●
●

●

●
●

●

●

●●

Over−allocation cost factor for Memory = 0.00005

o
SLA Penalty slope for response time = 1
SLA Penalty slope for response time = 2

(c) Mail Logs using Seasonal ARIMA Model

●●●
●●●

●●●
●●●

●●●
●●●

●●●●
●●●●

●●●●
●●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●
●●●

●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●●

●●●
●●●

●●●●
●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●

●

●
●
●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

0 20 40 60 80 100

0
.8

5
0

.9
0

0
.9

5
1

.0
0

Confidence Interval

E
xc

e
ss

 C
o

st
 F

u
n

ct
io

n

Over−allocation cost factor = 0.00005

SLA violations cost factor

o 1.35

(d) Mail Logs using Gaussian process Model

Figure 6.4: Minimizing Excess Cost Function

115

0.0
e+

00
4.0

e+
06

8.0
e+

06
1.2

e+
07

Time (in Days)

Wo
rkl

oa
d (

in
Re

qu
es

ts/
ho

ur)

1 2 3 4 5 6 7

Allocation using proposed framework
Actual workload
Static Allocation

Figure 6.5: Reduction in resource allocation

identifies the improvement in terms of reduction in the resource allocation while keeping

the performance intact, using the framework proposed.

The improvement is illustrated using web server example with Seasonal ARIMA pre-

diction model. For this case, Figure 6.5 shows the predicted workload using the confidence

interval which minimizes the excess cost (using α2 = 0.01). The x-axis shows the time in

days and y-axis shows the workload. The figure shows the original workload, workload

corresponding to static allocation, and workload corresponding to allocation using the

proposed framework. As can be seen, the workload corresponding to allocation using

proposed framework forms an approximate envelope over the original workload. This en-

velope depends on the choice of over-allocation cost factor and SLA penalty factor. As

an instance, smaller value of SLA violations cost factor would lead to an envelope which

is more closer to the requirement. This is because the overall cost function would be

minimized at a lower confidence interval since it penalizes lesser for application’s SLA

violations. There are two main observations from Figure 6.5:

• Reduction in the resource allocation: The reduction in the resource allocation

using the proposed elastic framework is clearly visible from the figure. However, in

order to quantify the imporovement, area under curve of the workload corresponding

116

to which allocation is done using the proposed framework is compared with area

under curve of the workload corresponding to static allocation policy. As discussed

earlier in Chapter 2, actual workload needs just 45.5307% of the allocated resources

in case of static allocation (different VMs during day and night). In other words,

the allocated resources are 2.196 times (or 219.6%) more than what is required.

Now, using the proposed framework, the allocated resources are 1.4469 times (or

144.69%) of the required ones. Thus an improvement of almost 75% is observed in

terms of resource utilization efficiency.

• Few SLA violations: SLA violations are likely to occur at those points where the

allocated resources are less than the required resources, since the response time of the

server can reach beyond the specified safe limit. These are mostly the points where

a sudden peak is observed in the workload and is most likely not predictable using

the patterns from history 1. Using the dynamic allocation by proposed framework,

the SLA violations as a percentage of all of the points over the workload. For the

web server using Seasonal ARIMA prediction technique, the SLA violations occur

for 3.75% of the workload.

Hence, using the proposed elastic framework, significant imporovement in the terms

of efficient resource allocation has been observed keeping the SLA violations at a minimal

level. It can be noted that the above values, that is, improvement in the resource allocation

and SLA violations are related to each other. By using different minima of the confidence

interval, an increase in the improvement would lead to increase in SLA violations as

well. The similar analysis with other workloads and forecasting techniques yield the

results as explained in Table 6.1. It shows the imporovement in resource utilization and

SLA violations at the confidence intervals at which the excess cost function is minimized

for all of the cases. In summary, the two objectives namely 1) Allocating resources

close to requirement, and 2) Minimal SLA violations, conflicts with one another and this

1It is mentioned that the sudden peaks are most likely not predictable because a hypothetical pre-

diction algorithm (not known) might exist which can predict them.

117

work aims to obtain the best trade off between the two. However, both can be achieved

simultaneously only when the prediction accuracy is 100% which is practically difficult to

achieve.

Case Confidence
Interval

Improvement in
utilization

SLA Violations

Web Server (Seasonal ARIMA) 66% 74.9321% 3.75%
Mail Server (Seasonal ARIMA) 82% 49.2192% 2.777778%
Web Server (Gaussian Process) 80% 112.6528% 6.21118%
Mail Server (Gaussian Process) 84% 64.9459 8.290155%

Table 6.1: Improvement using proposed elastic framework

6.4 Summary

This chapter provides the cost model and evaluates the proposed elastic resource frame-

work. The two excess cost functions namely over-allocation cost and SLA penalty cost

are calculated over a period of workload and the system comes up the minimum total

excess cost. The value of the confidence interval associated with the forecasting engine

is used which minimizes the total excess cost. The results show that, using the proposed

framework, the significant reduction in the resource allocation can be achieved and the

performance of the application can also be preserved at the same time.

118

Chapter 7

Conclusions and Future Work

Enabling fine-grained elasticity in the current IaaS architecture along with preserving

performance of the applications hosted is the main idea of this work. In this thesis, an

elastic resources framework for IaaS based on cost model has been proposed. The cost

model aims at providing the optimal balance between the two opposite goals of improving

resource utilization and preserving performance.

This chapter mainly deals with the conclusion and key points that can be drawn from

this thesis. Section 7.1 provides the gist of the thesis and discusses the key points. This

thesis also opens up several other interesting questions that can be taken up as future

work and are discussed in Section 7.2. Section 7.3 summarizes the chapter.

7.1 Conclusion

Elasticity refers to the cloud users’ ability to acquire and relinquish resources on-demand.

In the context of current IaaS architecture, since the resources are allocated in the form of

VMs, elasticity options available to the users are 1) Horizontal Scaling, where in more VMs

of same configuration (or size) are provided to the user application, or 2) Vertical Scaling,

where in application is migrated to another VM of different size. These existing resource

provisioning techniques are not efficient in terms of resource utilization as they force the

users to characterize their workload on a coarse grained level according to the VMs’ sizes.

119

Or, if the resources are not sufficient to satisfy the user workload, the performance of the

application gets affected. Hence, the main problem with the current elasticity techniques

in IaaS arise due to statically sized VMs. Moreover, existing provisioning models are not

very efficient for the cloud providers too. In the cases of under-utilized VMs of users,

there are idle resources available in the system but provider can not release them for any

other customer.

Another problem in the current IaaS architecture is that there are no performance

based SLAs with respect to application level performance metrics. Guaranteeing perfor-

mance is difficult in current IaaS architecture because:

• Application level performance metrics like response time, throughput etc. are not

used to take resource provisioning decisions at the IaaS level. In other words, these

metrics are not associated with the IaaS level resource provisioning.

• In the current systems, virtualization overhead has bearing on resource usage and is

not considered while taking scheduling decisions. In some cases, especially for I/O

workloads, virtualization overhead can impact the performance of the application.

To demonstrate the same, an experiment is performed on Xen hypervisor with web

server hosted on the 3 VMs on a physical machine. A client program httperf gener-

ates the web request workload. The results show that the hypervisor’s CPU usage

becomes the bottleneck leading to the system saturation, where as VMs resources

remain highly under-utilized. This shows that virtualization overhead can be sig-

nificant in some cases and the resource scheduling decisions should take it into the

account as a separate resource to guarantee performance.

The approach taken in this work to resolve the above mentioned issues is the de-

velopment of an elastic resources framework for IaaS, which automatically provisions

fine-grained resources and at the same time preserves performance SLAs associated with

the application. The following steps have been taken in the thesis as the part of proposal:

• For the identification of the kind of workloads which need elastic resource allocation

frequently, a term Variability has been introduced. This is further linked with the

120

definition of elasticity. For those workloads which have significant variability, elas-

ticity is measured by the closeness of allocated resources with the required resources

necessary to sustain the workload.

• To provision for the fine grained resources, the size of the VM is changed dynami-

cally. The resource requirement for the next scheduling cycle is forecasted using a

forecasting engine. There are mainly two strategies that have been used to build

the forecasting engine: 1) Seasonal ARIMA, a time series based approach, and 2)

Gaussian process model, a non-parametric machine learning based technique. Fore-

casting engine also provides the bound of the forecast for a given confidence interval

and the upper bound is used to provision the resources. However, for the workloads

that do not need elastic resource allocation, that is, which do not have enough vari-

ability, the whole forecasting step can be bypassed as they would not benefit by

elastic allocation.

• Since the forecast engine may not always predict accurately, it may lead to SLA

violations whenever the predicted resources are less than the actual requirement

or over-allocation in the other case. To capture these two scenarios, a cost model

has been developed. Corresponding to the over-allocation, an over-allocation cost

function is assumed which is proportional to the amount of over-allocated resources.

The under-allocations have been modeled through SLA penalty function for the

increased response time of the system. Since the upper bound of the forecast is

used to provision resources, the upper bound increases with increase in confidence

interval. As a result, over-allocation cost increases and SLA penalty cost decreases.

The aim of the cost model is to modify the forecast in such a way that it finds the

optimal trade off between two excess cost functions of the system.

• To account for the virtualization overhead, a distributed monitoring framework has

been developed, which can segregate the hypervisor’s effort for each VM hosted

on virtualized server. There are four components that have been introduced: a)

VM Agent, which collects VM specific metrics; b) Hyper Agent, which segregates

121

the virtualization overhead; c) Metrics Collector, which configures the VM Agents

and Hyper Agents; and d) Customer Interface Module, which can be configured by

customers or SLA manager to monitor the specific metrics. The design of Hyper

Agent has been presented for Xen hypervisor.

The framework has been demonstrated using two real life workloads collected from the

institute, namely web server and mail server workload. In order to simulate the workload,

mail server and web servers are hosted on VMs and the IaaS is build using OpenNebula

Cloud. Using the simulation, the response time of the system is tested when the resources

are allocated as per the forecast. This can be used to find the SLA penalty cost for the

system. Further, using different values of confidence interval, total excess cost is found

for the system and that value is chosen for the confidence interval which minimizes the

total excess cost.

The results show that the significant improvement in the resource utilization can be

achieved using adaptive provisioning of resources based on variations in workload, over

the static allocation that is used currently in IaaS clouds. At the same time, it ensures

the performance guarantees to the user by restricting SLA violations to a minimum.

7.2 Future Work

The proposed elastic resource framework opens up possibilities of some new and chal-

lenging problems. Some of the possible extensions of the current work are discussed as

below:

• Finding optimal scheduling cycle subject to what is practically permissi-

ble: In the current system, a fixed one hour interval of scheduling cycle has been

considered. Most of the current cloud systems also (like Amazon EC2) have a fixed

scheduling interval of usually one hour. However, it might be useful if scheduling

cycle can be decided based on the variability in the workload. For example, if the

workload changes very frequently, a short scheduling cycle might be better since the

122

requirement would be more closer to the allocation in that case, thereby increas-

ing elasticity of the system. However, the challenge can be to handle the optimal

scheduling cycle for a large number of customers.

• A Mix of Causal and Non-causal Forecasting: Forecasting engine is imple-

mented as a “Non-Causal Method”, which basically means that the forecast is based

on patterns in the history of the workload only. However, there can be other factors

that can be incorporated into the prediction model. For example, information like

“Diwali or Christmas festival increase the sale of an e-commerce business, and con-

sequently increases the workload” can be incorporated into the forecasting engine

to produce better forecasts. Thereby, including the causal factors along with the

history based prediction can be one of the future work.

• Fully Automated Elasticity Engine: The current proposed engine still involves

some human intervention either to select the parameters of the model, or an initial

guess for the covariance function pertaining to the data. For the ARIMA model,

auto.arima() in R finds out the best order for the model, but the automatic version

of the function is not available for seasonal ARIMA. This can be useful to implement

and integrate in this framework as the overhead of finding out the order initially

gets alleviated. Further, if the initial information that a user needs to give to

the provider including monitoring information, response time of the system using

restricted resources, etc. can also be automated, it would be very easy to adapt

this model. Also, since this framework incurs some overhead in terms of forecasting

and finding optimal total excess cost, in some cases there is rarely a need of elastic

resources. Hence, deciding automatically and switching dynamically from elastic to

static allocation or vice versa as the workload changes seems a good idea.

• Dynamic resource provisioning on host: Corresponding to the resource re-

quirements in the VM, dynamic provisioning on the host to match the VM’s elastic

requirements need to be supported. Fine grained allocation for the CPU, memory,

network bandwidth, and disk bandwidth is not possible in the current IaaS cloud

123

system. This is one of the future work identified.

• Pricing Model: For the proposed framework to be adapted by the cloud providers,

a feasible pricing model needs to be developed. For example, in the current system,

cloud users are charged as per the VM’s allocation. But with this new model,

it might be the case that pricing happen by the actual requirement rather than

allocation. Ofcourse, pricing per unit resource needs to be increased in that case,

since the new model should benefit providers as well. It also doesn’t rule out the

pricing by allocation as well. A more formal game theoretic model can reveal the

benefits and disadvantages of different models, where in multiple cloud providers

can serve as multiple players.

• Integrating Elasticity Engine with open source cloud platforms like Open-

Nebula: Currently, Service manager in OpenNebula has some elasticity features

like AutoScaling which is a kind of reactive technique. Implementing the proposed

forecasting engine in OpenNebula/Eucalyptus/OpenStack like cloud toolkits which

caters to generic applications can be one of the future work.

7.3 Summary

This chapter provides the gist of the thesis. The motivation behind the proposed frame-

work is that the current IaaS systems have static sized VMs which do not prove out to

be very efficient for users and providers. Further, the current IaaS cloud systems do not

have performance SLAs in place for the users. This work brings out the elastic resources

framework which optimizes the resource utilization by preserving the performance of the

applications. Finally, the chapter provides some of the possible future work.

124

Bibliography

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,

D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud computing,”

Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010. [Online]. Available:

http://doi.acm.org/10.1145/1721654.1721672

[2] “Amazon Web Services,” 2012. [Online]. Available: http://aws.amazon.com/

[3] D. Milojii, I. Llorente, and R. S. Montero, “Opennebula: A cloud management

tool,” Internet Computing, IEEE, vol. 15, no. 2, pp. 11–14, 2011.

[4] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and

D. Zagorodnov, “The eucalyptus open-source cloud-computing system,” in Clus-

ter Computing and the Grid, 2009. CCGRID ’09. 9th IEEE/ACM International

Symposium on, 2009, pp. 124–131.

[5] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid computing 360-

degree compared,” in Grid Computing Environments Workshop, 2008. GCE ’08,

2008, pp. 1–10.

[6] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-Lederman, MPI: The

Complete Reference. Cambridge, MA, USA: MIT Press, 1995.

[7] P. Mell and T. Grance, “The nist definition of cloud computing,” National Institute

of Standards and Technology, vol. 53, no. 6, p. 50, 2009. [Online]. Available:

http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc

125

http://doi.acm.org/10.1145/1721654.1721672
http://aws.amazon.com/
http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc

[8] E. Casalicchio and L. Silvestri, “Architectures for autonomic service management

in cloud-based systems,” in Computers and Communications (ISCC), 2011 IEEE

Symposium on, 2011, pp. 161–166.

[9] J. Keung and F. Kwok, “Cloud deployment model selection assessment for smes:

Renting or buying a cloud,” in Utility and Cloud Computing (UCC), 2012 IEEE

Fifth International Conference on, 2012, pp. 21–28.

[10] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer, “A secure

environment for untrusted helper applications confining the wily hacker,”

in Proceedings of the 6th conference on USENIX Security Symposium,

Focusing on Applications of Cryptography - Volume 6, ser. SSYM’96.

Berkeley, CA, USA: USENIX Association, 1996, pp. 1–1. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1267569.1267570

[11] “Google App Engine,” 2013. [Online]. Available: https://developers.google.com/

appengine/

[12] “AWS Elastic Beanstalk,” 2013. [Online]. Available: aws.amazon.com/

elasticbeanstalk/

[13] “Windows Azure,” 2013. [Online]. Available: http://www.windowsazure.com/

en-us/

[14] “Amazon Elastic Compute Cloud (Amazon EC2),” 2013. [Online]. Available:

http://aws.amazon.com/ec2/

[15] “Google Compute Engine,” 2013. [Online]. Available: https://cloud.google.com/

products/compute-engine

[16] “The Rackspace Cloud,” 2013. [Online]. Available: http://www.rackspace.com/

cloud/

126

http://dl.acm.org/citation.cfm?id=1267569.1267570
https://developers.google.com/appengine/
https://developers.google.com/appengine/
aws.amazon.com/elasticbeanstalk/
aws.amazon.com/elasticbeanstalk/
http://www.windowsazure.com/en-us/
http://www.windowsazure.com/en-us/
http://aws.amazon.com/ec2/
https://cloud.google.com/products/compute-engine
https://cloud.google.com/products/compute-engine
http://www.rackspace.com/cloud/
http://www.rackspace.com/cloud/

[17] J. Kang and K.-M. Sim, “Ontology and search engine for cloud computing system,”

in System Science and Engineering (ICSSE), 2011 International Conference on,

2011, pp. 276–281.

[18] R. Buyya, J. Broberg, and A. M. Goscinski, Cloud Computing Principles and

Paradigms. Wiley Publishing, 2011.

[19] R. T. Fielding, “Architectural styles and the design of network-based software ar-

chitectures,” 2000.

[20] “An architectural blueprint for autonomic computing, White Paper, IBM,” 2013.

[21] J. Lakshmi, “System Virtualization in the Multi-core Era - a QoS Perspective,”

Ph.D. dissertation, Supercomputer Education and Research Center, Indian Institute

of Science, 2010.

[22] M. Rosenblum and T. Garfinkel, “Virtual machine monitors: current technology

and future trends,” Computer, vol. 38, no. 5, pp. 39–47, 2005.

[23] L. Popa, A. Krishnamurthy, S. Ratnasamy, and I. Stoica, “Faircloud: sharing

the network in cloud computing,” in Proceedings of the 10th ACM Workshop on

Hot Topics in Networks, ser. HotNets-X. New York, NY, USA: ACM, 2011, pp.

22:1–22:6. [Online]. Available: http://doi.acm.org/10.1145/2070562.2070584

[24] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu, “An analysis of

performance interference effects in virtual environments,” in Performance Analysis

of Systems Software, 2007. ISPASS 2007. IEEE International Symposium on, 2007,

pp. 200–209.

[25] Vincent C. Emeakaroha and Marco A.S. Netto and Rodrigo N. Calheiros

and Ivona Brandic and Rajkumar Buyya and Csar A.F. De Rose, “Towards

autonomic detection of SLA violations in Cloud infrastructures,” Future

Generation Computer Systems, no. 0, pp. –, 2011. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167739X11002184

127

http://doi.acm.org/10.1145/2070562.2070584
http://www.sciencedirect.com/science/article/pii/S0167739X11002184

[26] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield,

“Remus: high availability via asynchronous virtual machine replication,” in

Proceedings of the 5th USENIX Symposium on Networked Systems Design and

Implementation, ser. NSDI’08. Berkeley, CA, USA: USENIX Association, 2008, pp.

161–174. [Online]. Available: http://dl.acm.org/citation.cfm?id=1387589.1387601

[27] “VMware White paper, Protecting Mission-Critical Workloads with VMware

Fault Tolerance,” 2013. [Online]. Available: http://www.vmware.com/files/pdf/

resources/ft virtualization wp.pdf

[28] “Amazon EC2 Service Level Agreement,” 2013. [Online]. Available: http:

//aws.amazon.com/ec2-sla/

[29] “GoGrid Service Level Agreement,” 2013. [Online]. Available: http://www.gogrid.

com/legal/service-level-agreement-sla

[30] “RackSpace Cloud Legal,” 2012. [Online]. Available: http://www.rackspace.com/

cloud/legal/sla/

[31] N. Gonzalez, C. Miers, F. Redgolo, M. Simplcio, T. Carvalho, M. Nslund, and

M. Pourzandi, “A quantitative analysis of current security concerns and solutions

for cloud computing,” Journal of Cloud Computing, vol. 1, no. 1, pp. 1–18, 2012.

[Online]. Available: http://dx.doi.org/10.1186/2192-113X-1-11

[32] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of

my cloud: exploring information leakage in third-party compute clouds,” in

Proceedings of the 16th ACM conference on Computer and communications security,

ser. CCS ’09. New York, NY, USA: ACM, 2009, pp. 199–212. [Online]. Available:

http://doi.acm.org/10.1145/1653662.1653687

[33] Y. Chen, V. Paxson, and R. H. Katz, “Whats new about cloud computing

security?” EECS Department, University of California, Berkeley, Tech. Rep.

UCB/EECS-2010-5, Jan 2010. [Online]. Available: http://www.eecs.berkeley.edu/

Pubs/TechRpts/2010/EECS-2010-5.html

128

http://dl.acm.org/citation.cfm?id=1387589.1387601
http://www.vmware.com/files/pdf/resources/ft_virtualization_wp.pdf
http://www.vmware.com/files/pdf/resources/ft_virtualization_wp.pdf
http://aws.amazon.com/ec2-sla/
http://aws.amazon.com/ec2-sla/
http://www.gogrid.com/legal/service-level-agreement-sla
http://www.gogrid.com/legal/service-level-agreement-sla
http://www.rackspace.com/cloud/legal/sla/
http://www.rackspace.com/cloud/legal/sla/
http://dx.doi.org/10.1186/2192-113X-1-11
http://doi.acm.org/10.1145/1653662.1653687
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-5.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-5.html

[34] R. Moreno-Vozmediano, R. Montero, and I. Llorente, “Iaas cloud architecture:

From virtualized datacenters to federated cloud infrastructures,” Computer, vol. 45,

no. 12, pp. 65–72, 2012.

[35] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed monitoring

system: design, implementation, and experience,” Parallel Computing, vol. 30,

no. 7, pp. 817 – 840, 2004. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S0167819104000535

[36] “Nagios,” 2013. [Online]. Available: www.nagios.org/

[37] “OpenNebula : Managing Virtual Machines,” 2013. [Online]. Available:

http://www.opennebula.org/documentation:rel3.8:vm guide 2

[38] S. Nair, S. Porwal, T. Dimitrakos, A. Ferrer, J. Tordsson, T. Sharif, C. Sheridan,

M. Rajarajan, and A. Khan, “Towards secure cloud bursting, brokerage and aggre-

gation,” in Web Services (ECOWS), 2010 IEEE 8th European Conference on, 2010,

pp. 189–196.

[39] “GoGrid IaaS,” 2013. [Online]. Available: https://www.gogrid.com/products/

cloud-hosting

[40] “Open data center alliance: Compute infrastructure as a service rev,

1.0,” 2012. [Online]. Available: http://www.opendatacenteralliance.org/docs/

ODCA Compute IaaS MasterUM v1.0 Nov2012.pdf

[41] R. R. Nikolas Roman Herbst, Samuel Kounev, “Elasticity in cloud computing: What

it is, and what it is not,” in ICAC 2013, To be published, 2013.

[42] N. R. Herbst, “Quantifying the Impact of Configuration Space for Elasticity Bench-

marking,” Study Thesis, Faculty of Computer Science, Karlsruhe Institute of Tech-

nology (KIT), Germany, 2011.

[43] E. Keogh, “Exact indexing of dynamic time warping,” in Proceedings of

the 28th international conference on Very Large Data Bases, ser. VLDB

129

http://www.sciencedirect.com/science/article/pii/S0167819104000535
http://www.sciencedirect.com/science/article/pii/S0167819104000535
www.nagios.org/
http://www.opennebula.org/documentation:rel3.8:vm_guide_2
https://www.gogrid.com/products/cloud-hosting
https://www.gogrid.com/products/cloud-hosting
http://www.opendatacenteralliance.org/docs/ODCA_Compute_IaaS_MasterUM_v1.0_Nov2012.pdf
http://www.opendatacenteralliance.org/docs/ODCA_Compute_IaaS_MasterUM_v1.0_Nov2012.pdf

’02. VLDB Endowment, 2002, pp. 406–417. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=1287369.1287405

[44] J. v. K. Michael Kuperberg, Nikolas Herbst and R. Reussner, “Defining and

Quantifying Elasticity of Resources in Cloud Computing and Scalable Platforms,”

Informatics Innovation Center, Karlsruhe Institute of Technology, Karlsruhe,

Germany, Tech. Rep., 2011. [Online]. Available: http://digbib.ubka.uni-karlsruhe.

de/volltexte/1000023476

[45] M. Majakorpi, “Theory and practice of rapid elasticity in cloud applications,” Study

Thesis, Department of Computer Science, UNIVERSITY OF HELSINKI, Swedish,

2013.

[46] J. Weinman, “Time is Money: The Value of On-Demand,” Jan. 2011. [Online].

Available: www.joeweinman.com/Resources/Joe Weinman Time Is Money.pdf

[47] S. Islam, K. Lee, A. Fekete, and A. Liu, “How a consumer can measure elasticity for

cloud platforms,” in Proceedings of the 3rd ACM/SPEC International Conference

on Performance Engineering, ser. ICPE ’12. New York, NY, USA: ACM, 2012,

pp. 85–96. [Online]. Available: http://doi.acm.org/10.1145/2188286.2188301

[48] “Amazon EC2 Instance Types,” 2013. [Online]. Available: http://aws.amazon.

com/ec2/instance-types/

[49] W. Lloyd, S. Pallickara, O. David, J. Lyon, M. Arabi, and K. Rojas, “Performance

implications of multi-tier application deployments on infrastructure-as-a-service

clouds: Towards performance modeling,” Future Generation Computer Systems,

vol. 29, no. 5, pp. 1254 – 1264, 2013, ¡ce:title¿Special section: Hybrid Cloud

Computing¡/ce:title¿. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S0167739X12002270

[50] L. Yazdanov and C. Fetzer, “Vertical scaling for prioritized vms provisioning,” in

CGC’12, 2012, pp. 118–125.

130

http://dl.acm.org/citation.cfm?id=1287369.1287405
http://dl.acm.org/citation.cfm?id=1287369.1287405
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023476
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023476
www.joeweinman.com/Resources/Joe_Weinman_Time_Is_Money.pdf
http://doi.acm.org/10.1145/2188286.2188301
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://www.sciencedirect.com/science/article/pii/S0167739X12002270
http://www.sciencedirect.com/science/article/pii/S0167739X12002270

[51] D. Bellenger, J. Bertram, A. Budina, A. Koschel, B. Pfänder, C. Serowy, I. Astrova,

S. G. Grivas, and M. Schaaf, “Scaling in cloud environments,” in Proceedings of the

15th WSEAS international conference on Computers. Stevens Point, Wisconsin,

USA: World Scientific and Engineering Academy and Society (WSEAS), 2011, pp.

145–150. [Online]. Available: http://dl.acm.org/citation.cfm?id=2028299.2028329

[52] “Amazon Auto Scaling,” 2013. [Online]. Available: http://aws.amazon.com/

autoscaling/

[53] “Amazon Auto Scaling Developer Guide.” [Online]. Available: http://docs.aws.

amazon.com/AutoScaling/latest/DeveloperGuide/Welcome.h%tml

[54] “Scalr Cloud Management,” 2013. [Online]. Available: http://scalr.com/

[55] [Online]. Available: http://wiki.scalr.com/display/docs/Scaling

[56] J. Fito, I. Goiri, and J. Guitart, “Sla-driven elastic cloud hosting provider,” in

Parallel, Distributed and Network-Based Processing (PDP), 2010 18th Euromicro

International Conference on, 2010, pp. 111–118.

[57] P. Marshall, K. Keahey, and T. Freeman, “Elastic site: Using clouds to elastically

extend site resources,” in Cluster, Cloud and Grid Computing (CCGrid), 2010 10th

IEEE/ACM International Conference on, 2010, pp. 43–52.

[58] M. Murphy, B. Kagey, M. Fenn, and S. Goasguen, “Dynamic provisioning of virtual

organization clusters,” in Cluster Computing and the Grid, 2009. CCGRID ’09. 9th

IEEE/ACM International Symposium on, 2009, pp. 364–371.

[59] W. Iqbal, M. Dailey, and D. Carrera, “Sla-driven adaptive resource management

for web applications on a heterogeneous compute cloud,” in Proceedings of

the 1st International Conference on Cloud Computing, ser. CloudCom ’09.

Berlin, Heidelberg: Springer-Verlag, 2009, pp. 243–253. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-10665-1 22

131

http://dl.acm.org/citation.cfm?id=2028299.2028329
http://aws.amazon.com/autoscaling/
http://aws.amazon.com/autoscaling/
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/Welcome.h% tml
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/Welcome.h% tml
http://scalr.com/
http://wiki.scalr.com/display/docs/Scaling
http://dx.doi.org/10.1007/978-3-642-10665-1_22

[60] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual machines for

managing sla violations,” in Integrated Network Management, 2007. IM ’07. 10th

IFIP/IEEE International Symposium on, 21 2007-yearly 25 2007, pp. 119 –128.

[61] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource scaling for cloud

systems,” in Network and Service Management (CNSM), 2010 International Con-

ference on, oct. 2010, pp. 9 –16.

[62] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: elastic resource scaling

for multi-tenant cloud systems,” in Proceedings of the 2nd ACM Symposium on

Cloud Computing, ser. SOCC ’11. New York, NY, USA: ACM, 2011, pp. 5:1–5:14.

[Online]. Available: http://doi.acm.org/10.1145/2038916.2038921

[63] H. C. Lim, S. Babu, and J. S. Chase, “Automated control for elastic storage,”

in Proceedings of the 7th international conference on Autonomic computing, ser.

ICAC ’10. New York, NY, USA: ACM, 2010, pp. 1–10. [Online]. Available:

http://doi.acm.org/10.1145/1809049.1809051

[64] G. Reig and J. Guitart, “On the anticipation of resource demands to fulfill the

qos of saas web applications,” in Grid Computing (GRID), 2012 ACM/IEEE 13th

International Conference on, sept. 2012, pp. 147 –154.

[65] H.-Y. Li, C. S. Xie, and Y. Liu, “A new method of pefetching i/o requests,” in

Networking, Architecture, and Storage, 2007. NAS 2007. International Conference

on, 2007, pp. 217–224.

[66] F. Li and P. Luan, “Arma model for predicting the number of new outbreaks of new-

castle disease during the month,” in Computer Science and Automation Engineering

(CSAE), 2011 IEEE International Conference on, vol. 4, 2011, pp. 660–663.

[67] S. Rajagopalan and S. Santoso, “Wind power forecasting and error analysis using

the autoregressive moving average modeling,” in Power Energy Society General

Meeting, 2009. PES ’09. IEEE, 2009, pp. 1–6.

132

http://doi.acm.org/10.1145/2038916.2038921
http://doi.acm.org/10.1145/1809049.1809051

[68] X. Jiang, B. Dong, L. Xie, and L. Sweeney, “Adaptive gaussian process for

short-term wind speed forecasting,” in Proceedings of the 2010 conference on ECAI

2010: 19th European Conference on Artificial Intelligence. Amsterdam, The

Netherlands, The Netherlands: IOS Press, 2010, pp. 661–666. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1860967.1861097

[69] S. Brahim-Belhouari and J. Vesin, “Bayesian learning using gaussian process for

time series prediction,” in Statistical Signal Processing, 2001. Proceedings of the

11th IEEE Signal Processing Workshop on, 2001, pp. 433–436.

[70] H. Mori and M. Ohmi, “Probabilistic short-term load forecasting with gaussian

processes,” in Intelligent Systems Application to Power Systems, 2005. Proceedings

of the 13th International Conference on, 2005, pp. 6 pp.–.

[71] A. Pufnik and D. Kunovac, Short-term Forecasting of Inflation in Croatia with

Seasonal ARIMA Processes, ser. Working papers: Hrvatska Narodna Banka, 2006.

[Online]. Available: http://books.google.co.in/books?id=eKPzPgAACAAJ

[72] Y. Mei, L. Liu, X. Pu, S. Sivathanu, and X. Dong, “Performance analysis of network

i/o workloads in virtualized data centers,” Services Computing, IEEE Transactions

on, vol. 6, no. 1, pp. 48–63, 2013.

[73] K. Boloor, R. Chirkova, T. Salo, and Y. Viniotis, “Analysis of response time per-

centile service level agreements in soa-based applications,” in Global Telecommuni-

cations Conference (GLOBECOM 2011), 2011 IEEE, dec. 2011, pp. 1 –6.

[74] M. Dhingra, J. Lakshmi, and S. K. Nandy, “Resource usage monitoring in clouds,”

in Proceedings of the 2012 ACM/IEEE 13th International Conference on Grid

Computing, ser. GRID ’12. Washington, DC, USA: IEEE Computer Society,

2012, pp. 184–191. [Online]. Available: http://dx.doi.org/10.1109/Grid.2012.10

[75] D. Mosberger and T. Jin, “httperf-a tool for measuring web server performance,”

SIGMETRICS Perform. Eval. Rev., vol. 26, no. 3, pp. 31–37, dec 1998. [Online].

Available: http://doi.acm.org/10.1145/306225.306235

133

http://dl.acm.org/citation.cfm?id=1860967.1861097
http://books.google.co.in/books?id=eKPzPgAACAAJ
http://dx.doi.org/10.1109/Grid.2012.10
http://doi.acm.org/10.1145/306225.306235

[76] Chisnall, David, The Definitive Guide to the Xen Hypervisor (Prentice Hall Open

Source Software Development Series). Upper Saddle River, NJ, USA: Prentice Hall

PTR, 2007.

[77] D. Gupta, R. Gardner, and L. Cherkasova, “Xenmon: Qos monitoring and perfor-

mance profiling tool,” HP Labs, http://www.hpl.hp.com/techreports/2005/HPL-

2005-187.pdf, Tech. Rep., 2005.

[78] A. Anand, M. Dhingra, J. Lakshmi, and S. K. Nandy, “Resource usage monitoring

for kvm based virtual machines,” in Proceedings of the 18th annual International

Conference on Advanced Computing and Communications (ADCOM 2012), To Be

Published, dec. 2012.

[79] J. Levon and P. Elie., “Oprofile: A system profiler for linux.” [Online]. Available:

http://oprofile.sourceforge.net

[80] B. Jeong, H.-S. Jung, and N.-K. Park, “A computerized causal forecasting

system using genetic algorithms in supply chain management,” J. Syst.

Softw., vol. 60, no. 3, pp. 223–237, Feb. 2002. [Online]. Available: http:

//dx.doi.org/10.1016/S0164-1212(01)00094-2

[81] W.-B. Yu, “Agent-based demand forecasting for supply chain management,” Ph.D.

dissertation, Louisville, KY, USA, 2003, aAI3089526.

[82] H. Song and G. Li, “Tourism demand modelling and forecastinga review of recent

research,” Tourism Management, vol. 29, no. 2, pp. 203 – 220, 2008. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S0261517707001707

[83] R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its Applications

(Springer Texts in Statistics). Secaucus, NJ, USA: Springer-Verlag New York,

Inc., 2005.

[84] W. Fuller, Introduction to statistical time series, ser. A Wiley publication

134

http://oprofile.sourceforge.net
http://dx.doi.org/10.1016/S0164-1212(01)00094-2
http://dx.doi.org/10.1016/S0164-1212(01)00094-2
http://www.sciencedirect.com/science/article/pii/S0261517707001707

in applied statistics. New York [u.a.]: Wiley, 1976. [Online]. Avail-

able: http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&

TRM=ppn+021846995&sourceid=fbw bibsonomy

[85] D. Ryabko, “Uniform hypothesis testing for ergodic time series distributions,” in

Computational Technologies in Electrical and Electronics Engineering (SIBIRCON),

2010 IEEE Region 8 International Conference on, 2010, pp. 23–27.

[86] D. Howe, “Circular representation of infinitely extended sequences,” in Frequency

Control Symposium, 1995. 49th., Proceedings of the 1995 IEEE International, 1995,

pp. 337–345.

[87] “Autocorrelation,” 2013. [Online]. Available: http://en.wikipedia.org/wiki/

Autocorrelation

[88] “Akaike information criterion,” 2012. [Online]. Available: http://en.wikipedia.org/

wiki/Akaike information criterion

[89] Y.-W. Cheung and K. S. Lai, “Lag order and critical values of the augmented

dickey-fuller test,” Journal of Business & Economic Statistics, vol. 13, no. 3,

pp. 277–80, July 1995. [Online]. Available: http://ideas.repec.org/a/bes/jnlbes/

v13y1995i3p277-80.html

[90] A. Trapletti and K. Hornik, tseries: Time Series Analysis and Computational

Finance, 2012, r package version 0.10-29. [Online]. Available: http://CRAN.

R-project.org/package=tseries

[91] R Core Team, R: A Language and Environment for Statistical Computing, R

Foundation for Statistical Computing, Vienna, Austria, 2012, ISBN 3-900051-07-0.

[Online]. Available: http://www.R-project.org

[92] R. J. H. with contributions from Slava Razbash and D. Schmidt, forecast:

Forecasting functions for time series and linear models, 2012, r package version

3.25. [Online]. Available: http://CRAN.R-project.org/package=forecast

135

http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+021846995&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+021846995&sourceid=fbw_bibsonomy
http://en.wikipedia.org/wiki/Autocorrelation
http://en.wikipedia.org/wiki/Autocorrelation
http://en.wikipedia.org/wiki/Akaike_information_criterion
http://en.wikipedia.org/wiki/Akaike_information_criterion
http://ideas.repec.org/a/bes/jnlbes/v13y1995i3p277-80.html
http://ideas.repec.org/a/bes/jnlbes/v13y1995i3p277-80.html
http://CRAN.R-project.org/package=tseries
http://CRAN.R-project.org/package=tseries
http://www.R-project.org
http://CRAN.R-project.org/package=forecast

[93] “Google Apps for Business,” 2013. [Online]. Available: http://www.google.com/

enterprise/apps/business/products.html

[94] “VMware Zimbra,” 2013. [Online]. Available: http://www.zimbra.com/

[95] M. J. Bach, The design of the UNIX operating system. Upper Saddle River, NJ,

USA: Prentice-Hall, Inc., 1986.

[96] “auto.arima forecast,” 2013. [Online]. Available: http://www.inside-r.org/

packages/cran/forecast/docs/auto.arima

[97] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning

(Adaptive Computation and Machine Learning). The MIT Press, 2005. [Online].

Available: http://www.gaussianprocess.org/gpml/chapters/

[98] C. K. I. Williams and C. E. Rasmussen, “Gaussian processes for regression,” in

Advances in Neural Information Processing Systems 8. MIT press, 1996, pp. 514–

520.

[99] M. Gibbs and D. J. C. Mackay, “Variational gaussian process classifiers,” IEEE

Transactions on Neural Networks, vol. 11, pp. 1458–1464, 1997.

[100] W. Yan, H. Qiu, and Y. Xue, “Gaussian process for long-term time-series

forecasting,” in Proceedings of the 2009 international joint conference on Neural

Networks, ser. IJCNN’09. Piscataway, NJ, USA: IEEE Press, 2009, pp. 1031–1038.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1704175.1704327

[101] M. Osborne, “Bayesian Gaussian Processes for Sequential Prediction, Optimisation

and Quadrature,” Ph.D. dissertation, PhD thesis, University of Oxford, 2010.

[102] “Positive-definite Matrix,” 2013. [Online]. Available: http://en.wikipedia.org/

wiki/Positive-definite matrix

[103] “Covariance matrix,” 2013. [Online]. Available: http://en.wikipedia.org/wiki/

Covariance matrix

136

http://www.google.com/enterprise/apps/business/products.html
http://www.google.com/enterprise/apps/business/products.html
http://www.zimbra.com/
http://www.inside-r.org/packages/cran/forecast/docs/auto.arima
http://www.inside-r.org/packages/cran/forecast/docs/auto.arima
http://www.gaussianprocess.org/gpml/chapters/
http://dl.acm.org/citation.cfm?id=1704175.1704327
http://en.wikipedia.org/wiki/Positive-definite_matrix
http://en.wikipedia.org/wiki/Positive-definite_matrix
http://en.wikipedia.org/wiki/Covariance_matrix
http://en.wikipedia.org/wiki/Covariance_matrix

[104] D. P. Bertsekas and J. N. Tsitsiklis, Introduction to probability. Athena Scientific

Nashua, NH, 2002, vol. 1.

[105] “BroydenFletcherGoldfarbShanno algorithm,” 2013. [Online]. Avail-

able: http://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%

93Goldfar%b%E2%80%93Shanno algorithm

[106] “SPEC Mail 2009 Benchmark Result,” 2013. [Online]. Available: http:

//www.spec.org/mail2009/results/res2009q1/mail2009-20090216-00001%.html

[107] “SPEC Mail 2009 Benchmark,” 2013. [Online]. Available: http://www.spec.org/

mail2009/results/

[108] A. Anand, “Adaptive Virtual Machine Placement supporting performance SLAs,”

Master’s thesis, Supercomputer Education and Research Center, Indian Institute of

Science, 2013.

137

http://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfar% b%E2%80%93Shanno_algorithm
http://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfar% b%E2%80%93Shanno_algorithm
http://www.spec.org/mail2009/results/res2009q1/mail2009-20090216-00001% .html
http://www.spec.org/mail2009/results/res2009q1/mail2009-20090216-00001% .html
http://www.spec.org/mail2009/results/
http://www.spec.org/mail2009/results/

	Abstract
	Introduction to Compute Clouds
	Overview of Compute Cloud
	A brief history and evolution
	What is cloud computing?
	Cloud Architecture
	Characteristics of Clouds
	Cloud Deployment Models
	Service models of Cloud - SaaS, PaaS and IaaS

	Cloud enabling Technologies
	Service-oriented Architectures
	Grid Computing
	Utility computing
	Autonomic Computing
	Virtualization

	Quality of Service in Clouds
	IaaS Architecture
	Issues with current IaaS architecture
	Objective of the thesis
	Organization of the Thesis
	Summary

	Elasticity in Clouds
	Elasticity as a metric
	Variability of Workload
	Elasticity of System

	Elasticity in current IaaS cloud systems
	Dynamic Provisioning Proposals
	Reactive Scheduler based techniques
	Forecasting based techniques

	Main Contribution of this work
	Summary

	Provisioning for Elasticity in IaaS Architecture with Performance SLAs
	Modified IaaS Architecture
	Forecasting Engine based on Cost Model and Resource Manager
	Metrics used
	Elastic Resources Framework
	Changes envisaged in other components

	Modifications in Monitoring Engine
	Virtualization overhead: A case study
	Analysis
	Monitoring virtualization overhead
	Proposed Monitoring Framework
	Segregation of Hypervisor Usage per-VM

	Summary

	Forecasting Engine based on Seasonal ARIMA Model
	Introduction to Time Series
	ARMA Model
	Order selection in AR, MA and ARMA Model
	ARIMA and Seasonal ARIMA Model for Nonstationary Series

	Modeling Cloud workloads
	HTTP Logs
	Mail Logs

	Summary

	Forecasting Engine based on Gaussian Processes
	Introduction to Gaussian Processes
	Obtaining Optimal Hyperparameters

	Modeling Cloud workloads using Gaussian Processes
	Selection of Kernel Function
	Prediction Results

	Summary

	Evaluation of Elastic Framework
	System Performance using prediction
	Response time with limited resources
	Response time using predicted resources

	Minimizing Excess Cost
	Improvement using the framework
	Summary

	Conclusions and Future Work
	Conclusion
	Future Work
	Summary

	Bibliography

